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Event Detection in Molecular Communication
Networks with Anomalous Diffusion

Trang C. Mai, Malcolm Egan, Trung Q. Duong, and Marco Di Renzo

Abstract—A key problem in nanomachine networks is how
information from sensors is to be transmitted to a fusion
center. In this paper, we propose a molecular communication-
based event detection network. In particular, we develop a
detection framework that can cope with scenarios where the
molecules propagate according to anomalous diffusion instead
of the conventional Brownian motion. We propose an algorithm
for optimizing the network throughput by exploiting tools from
reinforcement learning. Our algorithms are evaluated with the
aid of numerical simulations, which demonstrate the tradeoffs
between performance and complexity.

I. INTRODUCTION

Networks consisting of a large number of nanomachines,
which are able to sense, communicate, and actuate at the
nanoscale, have been proposed for applications ranging from
intrabody health monitoring to pollution control [1]. A key
component of these networks is the detection of events such
as the presence of undesirable chemicals in the atmosphere or
the malfunction of cells in biological systems. In a network
of distributed nanomachines, this information must then be
sent to a fusion nanomachine (FN), which can take action to
mitigate the effect of the event.

Molecular communication forms one approach to support
communication among sensing nanomachines (SNs) and a
FN, where unlike conventional electromagnetic-based commu-
nication, each SN encodes information in the release time,
number, or type of molecules emitted by each SN [1]–[3].
Molecular communication raises new challenges, due to the
low energy and limited computational resources available at
each nanomachine. Moreover, the achievable throughput of
molecular communication systems is limited by the noise
introduced from the random diffusion time of each molecule.

In existing works, the diffusion is typically modeled accord-
ing to Brownian motion. In this case, it is possible to derive
closed-form expressions for the first passage time distribution
and the impulse response for reasonable boundary conditions.
Under the assumption of Brownian motion, capacity char-
acterizations [4], [5], practical receiver designs [6], [7] and
intersymbol interference mitigation strategies [8] have been
proposed.
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However, Brownian motion cannot capture anomalous dif-
fusion, where the growth of the mean square displacement
is much faster or slower as it usually occurs in scenarios
with turbulence [9]. A key class of models for anomalous
diffusion are the Lévy walks, which introduce challenges
for the design of reliable molecular communication systems,
as the first passage time and the impulse response are not
generally available in closed-form. Moreover, the diffusion
process cannot be encapsulated in a small number of pa-
rameters in Lévy walk models, as is the case in Brownian
motion. These challenges are exacerbated in the context of
event detection, where the large number of SNs lead to a
corresponding number of diffusion channels, each with a
different distance and fluid properties between the transmitting
and receiving nanomachines. In particular, existing molecular
communication techniques for Brownian motion and a single
transmitting SN cannot be directly applied.

In this paper, we propose a molecular communication
system for event detection which can cope with anomalous
diffusion. Our system consists of a event detector and a
training phase to optimize the time slot duration and tune the
detection rule. In particular, we design the training phase to
estimate the parameters required for reliable detection based
on one bit messages from each SN. To design the training
phase, we introduce a reinforcement learning-based algorithm
for optimizing the time slot duration. In the proposed algo-
rithm, the duration of each time slot is chosen in order to
maximize the throughput and is applicable to any diffusion
process with stationary increments and an independent first
passage time for each link between a SN and the FN. In
particular, it can be applied to the Lévy walks. To evaluate the
performance of the system, we derive a tractable expression for
the probability of error and numerically investigate tradeoffs
between performance and complexity.

II. SYSTEM MODEL

We consider a synchronized and time-slotted nanoscale
network, where NS SNs monitor the state of a system. The
duration of each time slot is TS . When a SN observes an event,
it emits a molecule at the beginning of the next transmission
slot. The intended receiver of the message is the FN, which
processes the messages from the SNs. For example, the FN
might be the head of a cluster of SNs which sends the detection
of an event to an actuator nanomachine.

Events occur with probability pE and we assume that
each SN detects an event with probability pD. The molecule
transmitted by each SN diffuses to the FN according to a
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Lévy walk [10]. We assume that the FN perfectly absorbs
any detected molecule. As we will see in further text, our
system design is applicable to any network of SNs where the
diffusion process is stationary and the first passage time of
each SN-FN link is independent. In particular, the proposed
design applies both to Brownian motion and to Lévy walks
under a wide range of boundary conditions. As Lévy walks
form a very general class of diffusion processes, to make our
description concrete, we assume that the FN is an absorbing
boundary, the Lévy walk is one-dimensional, and the distance
that a molecule travels within time t is given by

dt =

nt∑
j=1

vDj , (1)

where nt is the number of jumps within time t, Dj ∈ R is
the duration and direction of the j-th jump, and v is the fixed
velocity. We assume that Dj is an α-stable random variable
with exponent 1 < α < 2, scale parameter σ ∈ R>0, skewness
β = 0, and shift δ = 0.

Molecules that are emitted in earlier time slots and that
are not absorbed by the FN persist. As a consequence, there
is inter-symbol interference and the number of molecules
observed by the FN in time slot j is given by

∑j
k=1 Y

j
k ,

where Y jk =
∑NS

i=1 Y
j
k,i is the number of molecules that are

transmitted in time slot k and that arrive in time slot j. In
particular, the random variable Y jk,i is Bernoulli distributed
with success occurring when an event occurs and the molecule
sent from the i-th SN in slot k arrives at the FN in slot j. Let
F (t) be probability that a molecule transmitted at time 0 is
absorbed before time t. Then the success probability is equal
to

Pj−k,i = F ((j + 1− k)TS)− F ((j − k)TS), (2)

where Pj−k,i is the probability that (j − k) time slots for the
molecule from SN i to diffuse to the FN are needed. Based
on these assumptions, the inter-symbol interference is given
by
∑j−1
k=1 Y

j
k and the desired signal is Y jj .

III. DETECTION RULE AND ERROR PROBABILITY

To determine whether or not an event has occurred, the FN
solves a hypothesis-testing problem based on the number of
observed molecules. Let H1 be the hypothesis that an event
occur and H0 be the hypothesis that an event did not occur.
The number of molecules that arrive in time slot j under each
hypothesis is given by

H0 : RH0
=

j−1∑
k=1

Y jk

H1 : RH1 = Y jj +

j−1∑
k=1

Y jk , (3)

For an observation of r molecules, the detection rule is given
by the likelihood ratio test [11]

Pr(r|H1)

Pr(r|H0)

H1

R
H0

η, (4)

where η = (1−pE)/pE and the costs are C00 = C11 = 0 and
C01 = C10 = 1.

As observed in [6], Y jk,i, which is the event that the molecule
emitted in time slot k by SN i that arrive in time slot j, is a
Bernoulli random variable with success probability Pj−k,i. It
then follows that Y jk =

∑NS

i=1 Y
j
k,i is binomial distributed. For

finite j, RH0 and RH1 , which are sums of independent bino-
mial distributions, are Poisson-binomial distributed. Moreover,
for systems operating for long periods of time corresponding
to j →∞, it follows from the law of rare events [12], [13] that
RH0

and RH1
converge in distribution to a Poisson random

variable. The large j approximation also forms a worst case
scenario for short system run times.

To derive the parameter of the Poisson random variable,
we note that an event occurs and is detected by SN i with
probability pEpD. Moreover,

∑j
k=0 Pj−k,i = 1 when j →∞.

This means that the inter-symbol interference due to SN i is a
Poisson random variable with expected value pEpD(1−P0,i),
where P0,i is the probability that a single time slot is needed
for a molecule emitted by SN i to reach the FN. Since the
sum of Poisson random variables is Poisson, it follows that

RH0
∼ Poisson

(
pEpD

NS∑
i=1

(1− P0,i)

)

RH1
∼ Poisson

(
NS∑
i=1

P0,i + pEpD

NS∑
i=1

(1− P0,i)

)
. (5)

We are now in the position to derive a decision rule. Let

λ0 = pEpD

NS∑
i=1

(1− P0,i)

λ1 =

NS∑
i=1

P0,i + pEpD

NS∑
i=1

(1− P0,i). (6)

By using the probability density function of the Poisson
distribution in (4), we obtain the decision rule

r
H1

R
H0

Θ, (7)

where

Θ =
log η + λ1 − λ0

log(λ1)− log(λ0)
. (8)

Under the Poisson approximation, the average probability of
detection error is given by

Pe = pEF (λ1; bΘc) + (1− pE)(1− F (λ0; dΘe)), (9)

where F (λ;x) is the CDF of the Poisson distribution. Since
Poisson-binomial random variables converges in distribution to
a Poisson random variable under the conditions [12] satisfied
by our model, it follows that the probability of error converges
to (9).

A key observation is that the decision rule and hence the
error probability are completely determined by the parameter

A =

NS∑
i=1

P0,i. (10)
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We remark that if Brownian motion is considered, it is possible
to obtain an analytical expression for P0,i, under appropriate
boundary conditions, and perfect knowledge of the fluid diffu-
sion coefficient as well as the distances between each SN and
the FN. However, in the case of Lévy walks, a closed-form
expression for the first passage time is not available. Moreover,
due to the large number of SNs, it is unlikely that the FN will
have access to the necessary information on the fluid properties
and locations of all the SNs throughout the network. In the
next section, we explore the effect of the training phase on the
estimate of A and the decision rule.

IV. TRAINING PHASE DESIGN

Due to the unknown diffusion process, the training phase
plays a crucial role in obtaining the parameters that are
required for the decision rule. In this section, we design
the training phase to ensure that the probability of error
lies within a known confidence interval. We then exploit the
confidence interval to develop an online algorithm inspired by
reinforcement learning [14], to optimize the time slot duration.
By exploiting reinforcement learning, our approach optimizes
the time slot duration by exploiting observations from sensor
signals without having a complete characterization of the
channel. As the first passage time and the impulse response in
our model are not available in closed-form, such a learning-
based approach is highly desirable.

To develop an online algorithm, we assume that after each
time slot in the training phase, the network can remove the
transmitted molecules from the system. This can be achieved
by the introduction of reactants, such as the enzyme-based
approach in [8], which reduce the lifetime of the information
molecules, only necessary during the training phase to reduce
the energy consumption at the FN while achieving accurate
parameter estimation.

From (10), it follows that the probability of error is
completely determined by the parameter A in (10). As a
consequence, the key step in the training phase is to estimate
A. A natural estimator is

Â =

NS∑
i=1

1

n

n∑
j=1

1{Yi,j=1}, (11)

where Yi,j ∈ {0, 1} is the number of molecules that are
received within a single time slot from the i-th SN in the
j-th training slot. Let us define

P̂0,i =
1

n

n∑
j=1

1{Yi,j=1}, (12)

which is an empirical distribution function. Thus, it follows
that the estimator Â is consistent [15]. Moreover, we observe
that

P(|A− Â| > NSε) ≤ P

(
NS∑
i=1

|P0,i − P̂0,i| > NSε

)

≤ 1−
NS∏
i=1

(
1− P

(
|P0,i − P̂0,i| > ε

))
.

(13)

Based on these considerations, we can apply the Dvoretzky-
Kiefer-Wolfowitz inequality [15], which yields

P(|A− Â| > NSε) ≤ 1−
NS∏
i=1

(1− 2e−2nε
2

)

= 1− (1− 2e−2nε
2

)NS . (14)

Let the time slot duration be TS ∈ {T1, . . . , TK}. The
bound in (14) provides a means of obtaining the confidence
intervals for the probability of error and the throughput, which
is defined as

Rl =
1

Tl
(1− Pe,l), (15)

for the l-th time slot duration, where Pe,l is the probability of
error corresponding to a time slot duration Tl. In particular,
given an estimate Âl it follows that the probability Al ∈ [Âl−
NSε, Âl +NSε] is bounded by (14). Note that Pe,l in (9) is a
monotonically decreasing function of A, which is due to the
fact that the number of molecules that arrive in a single time
slot is increasing as A increases.

Using the fact that Pe,l is a monotonically decreasing
function of A and (14), the confidence interval bound on Rj

1− Pe,l(Âl −NSε(φ))

Tl
≤ Rl ≤

1− Pe,l(Âl +NSε(φ))

Tl
,

(16)

holds with probability greater than 1− φ, where

ε(φ) =

√
1

2n
log

(
2

1− NS
√

1− φ

)
. (17)

The confidence interval in (16) bounds the error probability
and throughput with n trials, which is useful for providing
guarantees on the throughput given a limited training phase.
The confidence interval also provides a means for optimizing
the time slot duration. Since it is undesirable to obtain tight
confidence intervals for every time slot duration, we can use
the confidence interval as the basis for an online optimiza-
tion algorithm. The algorithm can provide guarantees for the
probability that the selected time slot duration is suboptimal.

We now present our online algorithm to minimize the
probability that a suboptimal time slot duration is selected,
as opposed to the time-consuming approach of estimating
the throughput for each time slot duration separately. Let
0 < φ < 1 be the confidence level in (16) and the stopping
criterion is δ > 0. Suppose that the training phase is in the
k-th time slot, then:

1) If 1 ≤ k ≤ K, set j = k and select time slot duration Tk.
Using (11), compute the estimate Âk and the confidence
interval via (16).

2) If k > K, select the time slot duration j such that
1

Tj
(1− Pe,j(Âj +NSε(φ))) (18)

is maximized.
The training phase is ended if for the selected time slot Tj ,
the stopping criterion

1

Tj

(
Pe,j(Âj −NSε(φ))− Pe,j(Âj +NSε(φ))

)
< δ (19)
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is satisfied and the intersection of the confidence intervals
defined by (16) is empty. Otherwise, the algorithm continues
with k ← k + 1.

Note that the algorithm is based on the confidence interval
estimate in (16), Thus, it follows that the probability that the
time slot duration Tj selected by the algorithm is suboptimal
based on (9) is upper bounded by φK.

We remark that the estimation procedure is based on the
estimation of the cumulative distribution function for the first
passage time. Hence, our algorithm can be applied to systems
with any diffusion process as long as the increments are
independent and the first passage times for each SN-FN link
are each independent.

V. NUMERICAL RESULTS
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Fig. 1. Throughput with different stopping criteria.
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Fig. 2. Number of iterations with different stopping criteria.

In this section, we show the tradeoffs between performance
and complexity of our algorithm by comparing its robustness
with time duration spent on the training phase. The system
consists of a single FN and NS = 100 transmitting SNs
located at equal distance d = 10−2 m from the FN. To
illustrate the behavior of our algorithm in the presence of
anomalous diffusion, we consider a fluid medium with a drift
velocity v = 0.01 m/s, pE = 0.5, pD = 1, stability exponent
α = 1.2 and scale parameter σ = 0.01 for each SN-FN link.
We assume that the network can select a time slot duration in
the set {1.3, 1.4, 1.5, 1.6, 1.7}.

Fig. 1 compares the throughput for each time slot duration
obtained directly from Monte Carlo simulations and from the
estimated parameter Â using our algorithm for each time

slot duration separately with a confidence level φ = 0.01.
We observe that the estimate from our algorithm is in good
agreement with the throughput obtained from Monte Carlo
simulations. This implies that our algorithm can obtain the
optimal throughput with probability dependent on the stopping
time.

Fig. 2 plots the complexity in terms of the number of
iterations for the training period as the confidence level varies,
which determines the probability the selected throughput is
suboptimal. We observe that the stopping criterion has a large
influence on the number of iterations. Despite this, we can still
obtain an accurate estimate of the throughput in our setting
with a small number of iterations as observed in Fig. 1.

VI. CONCLUSION

We have proposed an algorithm to optimize molecular com-
munication in nanomachine sensor networks in the presence
of a medium with anomalous diffusion. A key feature of
our algorithm is that it does not rely on detailed statistical
knowledge of the underlying diffusion processes and that it
provides a guarantee on the probability that the throughput is
optimal. Simulation results suggest that good performance can
be obtained with very short training periods.
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