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Abstract 

Chemical functionalization broadens carbon nanotube (CNT) applications, conferring 

new functions, but at the same time potentially altering toxicity. Although 

considerable experimental data related to CNT toxicity, at the molecular and cellular 

levels, have been reported, there is very limited information available for the 

corresponding mechanism involved (e.g. cell apoptosis and genotoxicity). The 

threshold dose for safe medical application in relation to both pristine and 

functionalized carbon nanotubes remains ambiguous. In this study, we evaluated the 

in vitro cytotoxicity of pristine and functionalized (-OH, -COOH) multi-walled 

carbon nanotubes (MWCNTs) for cell viability, oxidant detection, apoptosis and 

DNA mutations, to determine the non-toxic dose and influence of functional group in 

a human lung-cancer cell line exposed to 1-1000 µg/ml MWCNTs for 24, 48 and 72 

h. The findings suggest that pristine MWCNTs induced more cell death than 

functionalized MWCNTs while functionalized MWCNTs are more genotoxic 

compared to their pristine form. The level of both dose and dispersion in the matrix 

used should be taken into consideration before applying further clinical applications 

of MWCNTs. 

Keywords: Multi-walled Carbon Nanotubes; Cytotoxicity; Functionalization; 

Viability; Reactive Oxygen Species; Apoptosis; DNA Damage 
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Introduction 

Carbon nanotubes (CNTs) are a family of nanomaterials made up entirely of carbon. 

In this family, structurally multi-walled carbon nanotubes (MWCNTs) consist of 

multiple layers of graphite superimposed and rolled in on themselves to form a 

tubular shape. MWCNTs are of special interest for industry and have been 

increasingly utilised as advanced nanovectors in drug/gene delivery systems (Vashist 

et al., 2011). They possess significant advantages including high surface area, 

well-defined morphologies and unique optical as well as electrical properties, in 

addition to their super mechanical strength and thermal conductivity.  

Apart from their special physico-chemical properties however, MWCNTs present low 

bio-compatibility in most biological and chemical environments, already generating 

some health and environmental concerns. Although the toxicological effects of 

MWCNTs have been investigated, existing data are far from adequate. It has been 

suggested that the related factors of MWCNTs such as fibre dose (He et al., 2011), 

length (Johnston et al., 2010), diameter (Nagai et al., 2011), surface area (Kim et al., 

2011), tendency to agglomerate (Kim et al., 2011) and dispersibility in media (Kim et 

al., 2011) could influence toxicity and reactivity of CNTs in vitro and in vivo. For 

example, a recent study showed that the pathogenicity observed for asbestos-like long 

pristine MWCNTs could be obviated if their effective length is decreased 

(Ali-Boucetta et al., 2013). Elgrabli further reported that CNTs dispersed in bovine 

serum albumin (BSA) exhibited significantly reduced toxic (Elgrabli et al., 2007). 

Other researchers observed that agglomerates induced more pronounced cytotoxic 

effects than asbestos fibres at the same mass concentrations (Wick et al., 2007). 

It is worth noting that, as previously reported, the functionalization/modification of 

the structure of MWCNTs can optimise their solubility and dispersion, allowing 

innovative applications in materials (Martín et al., 2013a), electronics (Castranova et 

al., 2013), chemical processing (Martín et al., 2013b) and energy management 



Page 4 of 30 
 

(Mauter and Elimelech, 2008). However, the functionalization of MWCNTs produced 

additional controversy regarding their toxicity. For example, Vashist et al (Vashist et 

al., 2011) and Mali et al. (Mali et al., 2011) reported that functionalized CNTs were 

able to exhibit very low toxicity and higher propensity to cross cell membranes, 

increasing their potential for drug and gene delivery. On the contrary, Magrez et al. 

showed that the toxicity of MWCNT, in human lung-tumor cell lines, was increased 

when carboxyl and hydroxyl groups were present on their surface (Magrez et al., 

2006). A study conducted by Patlolla et al. performed on bone marrow cells of mice 

exposed to –COOH functionalized and pristine MWCNTS, found that functionalized 

MWCNTs had higher clastogenic and genotoxic potential than non-functionalized 

CNTs (Patlolla et al., 2010).  

Data on genotoxicity induced by pristine and functionalized MWCNTs are still very 

limited. Until very recently, their effect on DNA damage has been investigated but the 

accumulation of 8-OHdG in DNA was not found (Ogasawara et al., 2012). 

Information about apoptosis induced by MWCNT is also incomplete although pristine 

MWCNTs does not appear to cause apoptosis in lung cells (Ursini et al., 2012).   

Hence, in this study, we investigated the effect of dispersion of two most frequently 

used functionalized multi-walled carbon nanotubes (i.e. OH-MWCNTs and 

COOH-MWCNTs) on A549 cell line apoptosis and DNA damage, in comparison with 

pristine MWCNTs. As the primary route of human exposure to MWCNTs is via 

inhalation, the A549 cell line, a lung cancer cell line, was selected for this study. 

More importantly and interestingly, cell proliferation and oxidative stress were also 

investigated in order to provide a more comprehensive understanding of the potential 

mechanism of toxicity as well as the threshold dose for their safe medical 

applications. 
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Materials and Methods  

Material  

Prisitine multi-walled carbon nanotubes (P-MWNCNTs), carboxylic acid, hydroxy 

functionalized MWCNTs (COOH-MWCNTs, OH-MWCNTs) were purchased at 

Cheap Tubes Inc. (United States, Sku-030111, 030112, 030113). External diameter: 

13-18nm; functional group content: 7.0%+/-1.5%; length: 1-12µm; purity: >99wt% 

(Figure 1). 

Preparation of BSA solution 

Five milligram nanotubes were suspended in FBS free medium which contains 0.5% 

BSA at 1000 µg/ml. Then they were diluted into 316, 200, 100, 50, 36, 20, 10 3.6 and 

1 µg/ml.  

Cell culture  

Human lung epithelial cell line (A549) was obtained as a gift from Dr Huijun Zhu. 

Passage number is 76-79 according to ATCC website 

(http://atcc.custhelp.com/app/answers/detail/a_id/3/~/high-passage-number, 

27/06/2014). Before using, bacterial, yeast and fungal contamination were checked 

under a microscope for mycoplasma using Gibco’s Mycotect kit (Cat.No. 15672017). 

A549 cells were cultured in F12/DMEM (Dulbecco’s Modified Eagle Medium) 

(Invitrogen, United Kingdom) supplemented with 10% fetal calf serum (sigma, 

United Kingdom) at 37°C in 5% CO2. All the experiments were conducted using the 

same passage number. Six T-75 flasks of cells were collected and re-suspended in 

freezing media (90% serum+10% dimethylsulfoxide), and then they were aliquoted 

into 1 ml vials. The cells were frozen and kept at -20°C for 2 h and then at -80°C 

overnight. The cells were then moved to a -150°C freezer the next day. This protocol 

was repeated in each passage. 
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Cell viability  

Two hundred microliter of cells were seeded in 96-well plates at 2 × 104 cells/ml per 

well and treated with carbon nanotubes the following day for 24 h. Before 

measurement, cells were washed with PBS one time and 100 µl new medium was 

added per well. The tetrazolium salt WST-1 cell proliferation reagent was added to 

cells at the recommended concentration (5µl/well) and incubated at 37°C in a 

humidified atmosphere of 5% CO2 for 3 h. Plates were shaken for 1 min and 

absorbance was measured at 405 nM with a Varioskan Flash Multimode plate reader 

(Thermo Scientific). Unexposed cells were used as negative control.   

Cell membrane integrity  

Lactate dehydrogenase release was measured as an indicator of cell membrane 

damage using an LDH assay kit (Cytotoxicity Detection Kit, sigma, United Kingdom) 

of the culture medium of cells exposed to MWCNTs for 24 h. 200 µl cells were 

seeded in 96-well plates at 2 × 104 cells/ml per well and treated with carbon 

nanotubes the following day for 24 h. Aliquots (50 µl) of supernatant and reaction 

mixture were transferred into corresponding wells of an optically clear 96-well plate 

and incubated for 30 min at 25 °C, protecting the plate from the light. The increase in 

enzyme activity directly correlates to the amount of formazan produced by reduction 

of the tetrazolium salt. The absorbance was measured at 490 nm using a Varioskan 

Flash Multimode plate reader. A background and negative controls were obtained by 

LDH activity measurement of assay medium and unexposed cell medium, 

respectively. 

Oxidant detection  

The production of oxidants was assessed on intact cells in 96 wells microplates using 

the dichlorofluorescein (DCF) assay. Oxidation of the hydrolysed product of DCF-DA 

to DCF is not specific for a particular reactive species, but its oxidation generally 

correlates with oxidative stress. Cells at 2×104/ml were incubated with MWCNTs at 

concentrations 2, 20 and 50µg/ml for 6 h firstly. 2′ ,7′ -dichlorofluorescein 
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diacetate (DCFH-DA) (Sigma, United Kingdom) was dissolved in culture medium to 

give a final concentration of 20 µM. Total DCF fluorescence was detected by 

incubation with DCFH-DA solution (200 µl) at 37 °C for 30 min, and then washed 

with PBS (phosphate buffered saline) and resuspended in 100 µl of PBS. The 

formation of the fluorescence-oxidized derivative of DCF was monitored at an 

emission wavelength of 520 nm and excitation wavelength of 485 nm with Varioskan 

Flash Multimode plate reader. DCF fluorescence was expressed as percentage of 

control. 

Apoptosis detection  

A549 cell apoptosis was evaluated by Annexin V–FITC, PI apoptosis detection kit 

(Ebioscience, United Kingdom). Annexin V binds to phosphatidylserine that moves to 

the outer leaflet of cells at the beginning of apoptosis. Necrotic cells were stained with 

both Annexin V and PI. 

Cells were cultured in 6 well plate at 1 × 105/ml per well and then exposed for 48 h to 

MWCNTs culture medium the following day; control cells were incubated without 

MWCNTs.  Before detection, the cell culture medium were removed and washed by 

cold PBS. Then the detached cells were centrifuged at 1200 rpm and placed on ice. 

After a 10 min incubation period with 2 µl Annexin-V and 4 µl PI, cells were 

analysed by flow cytometer (Accuri C6). 

DNA damage 

A549 cells were seeded in 6-well plates at 1 × 105/ml exposed to pristine and 

functionalized MWCNTs at 50 µg/ml for 72 h. Negative control cells were incubated 

without MWCNTs. The concentration of 8-oxodeoxyguanosine (8-OHdG) in DNA, 

indicating oxidative DNA damage, was quantified by colorimetric antibody ELISA 

assay that has been widely used for the 8-OHdG detection. 

1. DNA extraction 
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DNA isolation from cells treated with MWCNTs was carried out with a DNA 

extraction kit from QIAGEN (United Kingdom). The assay was performed according 

to manufacturer’s instruction. After exposure to MWCNTs, cells were treated with 

cell lysis buffer and then centrifuged at 300 × g for 3 min, the supernatant discarded, 

and the tube inverted on a clean piece of absorbent paper. The DNA pellets were 

cleaned using 600 µg 70% ethanol and then centrifuged at 10000 × g for 3 min. The 

supernatant was discarded and the DNA pellets air-dried until dry. The DNA was then 

dissolved in Tris-EDTA buffer for 30 min at 65°C. All the DNA samples were stored 

at -20°C for later use. 

2. ELISA 

The concentration of 8-OHdG was measured by HT 8-oxo-dG kit (TREVIGEN, 

United Kingdom) based on ELISA. The assay was performed according to 

manufacturer’s instruction. Briefly, the DNA samples were diluted to 50 µg/ml 

(Picodrop) and then further diluted 2:3 in Assay Diluent. 25 µg 8-OHdG standards 

and DNA samples were added to each well, followed by adding 25µg monoclonal 

antibody. Then the plate was covered with film sealer and incubated at 25°C for 1 h. 

After washing the plate 4 times with PBST, add 50 µl HRP conjugate to each well, 

followed by 1 h incubation. After aspirating and washing with washing solution, the 

plate was inverted and blotted against clear paper towels and this process was 

repeated four times. Each well was added 50 µl of TACS-SapphireTM gently mixed 

and incubated at 37 °C for 15 min, then stopped with 50 μl of 1M hydrochloric acid. 

Assay plates were read at 450 nm with a plate reader. 

Statistical methods 

Three independent experiments were performed. Each concentration was assayed in 

triplicate, in each independent experiment. The measurements were corrected using 

absorbance/fluorescence readings from MWCNT addition within a cell-free system. 

Results were expressed as mean ± standard deviation (SD). Statistical analysis was 
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carried out using analysis of variance (ANOVA), followed by Tukey’s multiple 

comparison tests. Differences were considered significant from P < 0.05. 

 

Results 

Cell viability  

In our cell viability study, the cell proliferation reagent WST-1 was used to evaluate 

cell viability in response to pristine and functionalized MWCNTs. Figure 2 describes 

the comparison of the concentration-response curves obtained for each MWCNT 

[Bottom (minimum effect), IC50 (concentration required for 50% of cell viability 

inhibition), Top (maximum effect)]. IC50 of pristine MWCNTs (255.2 µg/ml) were 

significant different from IC50 of –OH and –COOH functionalized MWCNTs (2198, 

2456 µg/ml). P<0.0001. 

LDH  

LDH release from cells treated with MWCNTs was also assessed. The increase of 

LDH activity in cell culture medium, indicative of cell membrane damage was 

detectable as early as 6 h after treatment (data are not shown). Figure 3 shows the 

results obtained at 24 h. The effect on LDH leakage was not significant at 20 and 50 

µg/ml with all three MWCNTs. However, at 200 µg/ml, functionalized carbon 

nanotubes exhibited significant membrane damage while the pristine form showed no 

significant membrane damage compared with untreated cells (Figure 3). 

 

Aggregation 

It has been reported that MWCNTs showed a very good dispersion in 0.5% bovine 

serum albumin (BSA solution) (Elgrabli et al., 2007). A comparison experiment of 

cell viability test of cells treated with MWCNT and BSA-contained MWCNT 
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suspension, from 0 to 200 µg/ml, has been conducted in order to evaluate toxicity of 

more thoroughly dispersed CNTs. Figure 4 shows the pictures of pristine MWCNTs, 

OH-MWCNTs and COOH-MWCNTs dispersed in cell culture medium without and 

with BSA, suggesting different extent of aggregation. The samples were suspended at 

200 µg/ml and left still for 1 min in order to allow them to settle and form aggregates. 

From visual observation, pristine carbon nanotubes had smaller aggregates compared 

to functionalized carbon nanotubes and the suspension with BSA showed better 

dispersibilty than those without BSA. 

 

The results of comparison of cell viability with and without 0.5% BSA (Figure 5) 

showed that the dispersion of carbon nanotubes was of great importance and 

significantly increased cell viability. At 50 µg/ml, none of the three types of 

MWCNTs showed significant alterations to cell viability with or without BSA. 

However, at 200 µg/ml, viability of functionalized carbon nanotubes (OH-MWCNTs 

& COOH-MWCNTs) treated cells was significantly decreased by adding BSA (the P 

values of slope difference are 0.01745 and 0.007834 respectively). But with respect to 

pristine MWCNTs, BSA did not increase cell viability at the same concentration. this 

indicated that the toxicity of pristine MWCNTs was not changed by adding BSA. 

These results could be explained by the fact that pristine MWCNTs were well 

dispersed, so additional BSA did not change the dispersion significantly. Although at 

200 µg/ml the absorbance value did not show a significant difference with and 

without BSA, the p value of slope difference indicates that the adding BSA made 

functionalised MWCNTs more toxic (Figure 5 b and c). However, the absorbance 

values corresponding to pristine MWCNTs at both 50 and 200 µg/ml were 

significantly higher in the presence than in the absence of BSA. In addition, the slopes 

of the two curves were not significantly different.  

DCF fluorescence  
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Oxidative stress plays a role in toxicity induced by carbon nanotubes (Pichardo et al., 

2012). In this report, DCF-DA was used to measures oxidizing potential within cells. 

The results of MWCNTs-induced DCF fluorescence are summarized in Figure 6. 

A549 cells showed responsiveness following 6 h exposure of MWCNTs at each 

concentration. At 2 µg/ml concentration, all three carbon nanotubes did not induce 

significant DCF fluorescence while cells treated with 20 µg/ml MWCNTs (pristine, 

-OH, -COOH) induced 5.35, 4.84 and 5.36 fold greater DCF fluorescence than 

untreated cells respectively. However, a reduction in DCF fluorescence was observed 

following exposure to MWCNTs at 50 µg/ml, which may have been caused by either 

interference of carbon nanotubes with DCF fluorescence or the loss of cell viability 

(Figure 2). 

Apoptosis 

Flow cytometer analysis of A549 cells treated for 48 h with three types of MWCNTs 

revealed apoptosis in response to a dose from 20 µg/ml to 200 µg/ml. Functionalized 

carbon nanotubes elicited a greater dose response and larger apoptotic cell percentage 

compared with unexposed cells and pristine MWCNTs that was statistically 

significant starting from 20 µg/ml. At 20 µg/ml, pristine MWCNT induced 8.5 

percent of apoptosis while –OH and –COOH functionalized MWCNT caused 2.58 

and 1.59 times that of the pristine MWCNTs, respectively. At 50 µg/ml, the 

percentage of apoptosis was increased in response to all three different MWCNTs. 

Similarly, induction of apoptosis by functionalised MWCNTs was more pronounced 

with –OH and –COOH MWCNTs causing 2.28 and 1.95 times the apoptosis induced 

by pristine MWCNTs. However, at 200 µg/ml, apoptosis induced by both 

functionalized MWCNTs decreased whilst the percentage of apoptosis induced by 

pristine MWCNTs continued to increase (Table 1). The percentage of necrosis has 

not been shown here as they were around 1%, which is much lower than the 

percentage of apoptosis. In addition, they are not significant different among different 

groups. 
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DNA Damage 

In order to measure oxidative DNA damage after exposure to MWCNTs, 

8-oxo-2'-deoxyguanosine (8-oxo-dG), a frequently used biomarker of oxidative DNA 

damage, was measured. No significant oxidative of DNA damage was observed 

following the exposure of all the concentrations of MWCNTs. By 72 h of exposure, 

all three MWCNTS induced 8-OHdG at 50μg/ml, which become statistically 

significant for pristine MWCNTs (0.745 ± 0.017 ng/ml) compared to negative control 

(0.651 ± 0.014ng/ml). OH-MWCNTs (0.998 ± 0.008 ng/ml) and COOH-MWCNTs 

(0.975 ± 0.034 ng/ml) were 1.40 and 1.31 fold more genotoxic than pristine 

MWCNTs, respectively (Figure 7).  
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Discussion  

MWCNTs are widely used for a variety of commercial products; however, the 

biological consequences of MWCNT exposure in the environment is still poorly 

understood. In this study, the cytotoxic effects of functionalized and pristine 

MWCNTs (Figure 1) were investigated using an experimental in vitro model 

consisting of the human lung A549 epithelial cell line. Several measurements were 

applied in order to estimate the effects of potential human exposure. Early and late 

cellular response to MWCNT were evaluated by measurements of cell cytotoxicity, 

apoptosis and oxidative stress induced genotoxicity. In addition, non-toxic dose was 

also investigated in order to evaluate the safety of using such materials 

therapeutically. 

In a study conducted by Srivastava, MWCNTs were found to be non-toxic at 

concentrations from 0.8 to 10 µg/ml following 24 and 48 h exposure using the less 

sensitive MTT assay (Srivastava et al., 2011). This finding is consistent with our cell 

viability results (Figure 2), suggesting that these concentrations could be applied for 

biosensor, drug vector or cancer imaging with limited toxicity. Within the 

concentration range of 50-1000 µg/ml, we found that cell viability was altered by 

MWCNTs in a dose dependent manner. In addition, the result of IC50 detection 

showed that pristine MWCNTs were relatively more cytotoxic than functionalized 

MWCNTs (Figure 3). This result could be attributed to functionalized MWCNTs 

exhibiting higher degree of aggregation than pristine MWCNTs in the medium at high 

concentration (200 µg/ml). At the same concentration, -COOH and –OH 

functionalized MWCNTs showed a higher level of aggregation than pristine 

MWCNTs in the medium (F12/DMEM) (Figure 4), possibly due to the stronger 

bonding between functional groups (e.g. hydrogen bonding and van der Waals 

interactions) on MWCNTs.  

Agglomeration of CNT (Tagmatarchis and Prato, 2004) could cause problems in the 

investigation of CNT toxicity. Methods to disperse CNT have been reviewed by 
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Smart et al. (Smart et al., 2006). The most commonly used method needs utilization of 

organic solvents. However organic solvents are not suitable for biological studies as 

they are toxic. Another method commonly employed is utilization of surfactant such 

as BSA which is biomolecule present in body fluids. A possible explanation of these 

results was provided by Casey et al. (Casey et al., 2007), in which, a better dispersion 

was shown to occur in the presence of fetal calf serum and medium. This improved 

dispersion could be explained by physical absorption of CNT by fetal calf 

serum-medium proteins including albumin. In order to investigate the link between 

dispersibility and cytotoxicity, we compared the cell viability of cell exposed to 

MWCNTs with and without BSA. A study conducted by Li et al. suggested that lower 

dispersion was more likely to result in settling of the MWCNT at the bottom of the 

wells (Li et al., 2013), where they make more cellular contact. However, in our 

experiments, results of functionalized MWCNTs showed that the differences between 

slopes were significant, demonstrating that carbon nanotubes with better dispersibility 

actually had increased interactions with cells and thereby decreased cell viability 

(Figure 5). These results were also supported by Johnston who suggested that only 

those carbon nanotubes which are not aggregated and free in the medium are able to 

reach the cytoplasm and subsequently the nucleus (Johnston et al., 2010).  

Apoptosis is one of the major factors, which determine the medical application of 

nanomaterials. Therefore, it is important to learn which modification of CNTs with 

functional group would activate apoptosis. The data presented in this study revealed 

that MWCNTs induced less apoptosis compared with functionalized MWCNTs 

(Table 1), indicating that the presence of –OH and –COOH on MWCNTs promotes 

cell apoptosis. However, the extent of apoptosis was reduced when the functionalized 

MWCNTs’ concentration increased to 200 µg/ml. This reduction may be explained by 

the aggregation at 200 µg/ml, which altered the mechanism of cell death from 

apoptosis to membrane disruption (Figure 3). At lower concentrations, where carbon 

nanotubes were better dispersed, cell death was mainly due to apoptosis. When 
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concentrations were increased to 200 µg/mL cells underwent necrotic cell death due 

to aggregates in the medium. 

Oxidative stress plays an essential role in toxicity induced by carbon nanotubes 

(Pichardo et al., 2012). During times of environmental stress, the highly increased 

production of oxidants can result in significant damage to cells by activating cell 

death. DNA damage was found in Met-5A and A549 cell lines using the comet assay 

(Cavallo et al., 2012), (Lindberg et al., 2013) when exposed to MWCNTs. Our study 

showed that functionalized MWCNTs induced significantly higher amount of 

8-oxo-dG indicating that functionalized forms of MWCNTs could lead to 

genotoxicity by damaging DNA (Figure 7). However, understanding of the 

mechanisms underlying this toxicity still remains incomplete. One view is that CNTs 

were taken up as nanoneedles which could puncture cell membrane directly and then 

move to the nucleus (Mu et al., 2009). A study carried out by Palomaki further 

showed that only long, needle-like CNT induced inflammatory activation (Palomäki 

et al., 2011). Another view is that the induction of oxidative stress is a principle 

mechanism underlying particle exposure-associated genotoxicity (Van Berlo et al., 

2012). DNA damage can occur due to the direct action of hydroxyl radicals (Eastman 

and Barry, 1992). For MWCNT to produce hydroxyl radicals that could oxidize DNA, 

they would need to enter the nucleus as hydroxyl radical reacts with targets 

immediately in the vicitnity where it is produced. While in our study, DCF 

fluorescence was not significantly different among pristine and functionalised 

MWCNTs (Figure 6), it must be noted that 8-OHdG is actually a far better indicator 

of oxidant damage to DNA than the measurement of a dye that has little specificity. In 

our experiment, functionalized MWNCTs induced more cell damage while DCF 

fluorescence caused by them was not significantly higher than that caused by the 

pristine form. It is possible that functionalized MWCNTs have higher propensity to 

cross cell membranes into the nucleus (Mali et al., 2011), and thereby they increase 

more genotoxicity as we observed.  
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Conclusions 

In conclusion, in this study of pristine and functionalized (-OH, -COOH) multi-walled 

carbon nanotubes (MWCNTs) caused cell death with a concentration at or above 50 

µg/ml with the mechanism of cell death altered from apoptosis to necrosis as 

concentration increased. After 48 h exposure, both apoptosis and DNA damage could 

be further observed. Pristine MWCNTs are more cytotoxic while functionalized 

MWCNTs exerted more genotoxicity compared with the pristine form. Toxic effects 

of MWCNTs were also dependent on the dispersing agents. Cytotoxicity was 

increased by the presence of BSA which changed dispersibility of MWCNTs in cell 

culture medium.  

Further work is needed to investigate cellular internalization of carbon nanotubes in 

order to gain better insight into the mechanism of toxicity. In addition, a normal lung 

fibroblast cell line as well as other cell lines (e.g. skin cell lines) may be employed for 

further study since different cell lines may show various sensitivities to nanoparticles 

(Hasan et al., 2012) and cancer cells might be more resistant. Progress has been made, 

but it clinical applications of MWCNTs will still be limited until a better 

understanding their health impact on humans is achieved. 
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Figure Legends 

Figure 1 Multi-walled carbon nanotubes (MWCNTs). a, pristine MWCNTs; b, 

OH-MWCNTs; c, COOH-MWCNTs 

Figure 2 Cell viability curves of A549 cells were evaluated after 24 h exposure to 

pristine MWCNTs, OH-MWCNTs and COOH-MWCNTs with concentrations from 1 

to 1000 µg/ml. Viability was detected by using the WST-1 assay. Data are represented 

as mean ± SD of triplicate.  

Figure 3 LDH release assay. Cytotoxicity of all the cell lines was evaluated after 24 h 

exposure to pristine MWCNTs, OH-MWCNTs and COOH-MWCNTs with 

concentrations from 20 to 200 µg/ml. Among these groups, cells treated with 200 

µg/ml COOH-MWCNTs was significant different. Data are represented as mean ± SD 

of triplicate. * p<0.05, **p<0.01 

Figure 4 Photo of MWCNTs in the medium. A-C: pristine MWNCT, OH-MWCNT, 

COOH-MWCNT in the BSA- medium at 200 µg/ml; D-F: MWNCT, OH-MWCNT, 

COOH-MWCNT in the BSA+ medium at 200 µg/ml. 

Figure 5 Comparison of cell viability with and without 0.5% BSA in FBS-free 

medium. The viability of A549 cell was detected by using WST-1 assay following 24 

h incubation with all three types of MWCNTs at concentrations of 0, 50 and 200 

µg/ml. a, pristine MWCNTs; b, OH-MWCNTs; c, COOH-MWCNTs. Data are 

represented as mean ± SD of triplicate. 

 

Figure 6 DCFH oxidation following 6 h exposure to various concentrations of 

MWCNTs in A549 cells. Positive control: 200 µM H2O2. Data are represented as 

mean ± SD of triplicate analysis. 
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Figure 7 DNA damage induced by MWCNTs following 72 h exposure at a 

concentration of 50 µg/ml. DNA damage was studied using DNA samples of 

untreated and MWCNTs treated A549 cells. 8-OHdG was quantified by colorimetric 

antibody ELISA assay. Data are represented as mean ± SD of triplicate. **p<0.01, 

***p<0.001 
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 Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
 
 

 



Page 27 of 30 
 

Figure 5 

Cell Viability (Pristine MWCNTs)
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Figure 6  
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Figure 7 
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Table 1 Apoptosis induced by MWCNTs in A549 cells after 48 h exposure 

Dose 

(µg/ml) P-MWCNT OH-MWCNT COOH-MWCNT 

 Mean (% apoptotic cells ± SD) 

 20 8.5 ± 2.09a 21.90 ± 3.80 13.50 ± 1.58 

 50 18.8 ± 4.31  42.7 ± 4.84b 36.8 ± 3.79  

200 25.0 ± 1.45  29.7 ± 3.40  33.9 ± 2.13  

a,b Denote significant difference (p<0.05) Untreated cells showed 5.63 ± 0.66% 

apoptosis 

 

 

 

 

 

 


