
Working With Reverse Engineering Output for Benchmarking and
Further Use

Cutting, D., & Noppen, J. (2014). Working With Reverse Engineering Output for Benchmarking and Further Use.
In ICSEA 2014 : The Ninth International Conference on Software Engineering Advances: Proceedings (pp. 584-
590). (ICSEA: International Conference on Software Advances: Proceedings).
http://www.thinkmind.org/index.php?view=instance&instance=ICSEA+2014

Published in:
ICSEA 2014 : The Ninth International Conference on Software Engineering Advances: Proceedings

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 IARIA.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:24. Sep. 2020

http://www.thinkmind.org/index.php?view=instance&instance=ICSEA+2014
https://pure.qub.ac.uk/en/publications/working-with-reverse-engineering-output-for-benchmarking-and-further-use(3c95f319-5129-4d5f-bbc4-7c9cd0022ef2).html

Working With Reverse Engineering Output
for Benchmarking and Further Use

David Cutting and Joost Noppen

School of Computing Science
University of East Anglia

Norwich, Norfolk, UK
Email: {david.cutting,j.noppen}@uea.ac.uk

Abstract—Various tools exist to reverse engineer software source
code and generate design information, such as UML projections.
Each has specific strengths and weaknesses, however no stan-
dardised benchmark exists that can be used to evaluate and
compare their performance and effectiveness in a systematic
manner. To facilitate such comparison we introduce the Reverse
Engineering to Design Benchmark (RED-BM), which consists of
a comprehensive set of Java-based targets for reverse engineering
and a formal set of performance measures with which tools
and approaches can be analysed and ranked. When used to
evaluate 12 industry standard tools performance figures range
from 8.82% to 100% demonstrating the ability of the benchmark
to differentiate between tools. Most reverse engineering tools
can provide their output in the Extensible Metadata Information
(XMI) format. Theoretically this should ensure tool interoperabil-
ity but in practice the implementation of the XMI standard varies
widely to the point where outputs cannot be exchanged between
tools. In addition, this severely hinders the systematic usage of
reverse engineering tool output, for example in a benchmark
or for use in other analysis. To aid the comparison, analysis and
further use of reverse engineering XMI output we have developed
a parser which can interpret the XMI output format of the most
commonly used reverse engineering applications, and is used in
a number of tools. These tools offer the facility for standalone
examination of one or more XMI files, comparison between
outputs for benchmarking or measurement, the use of XMI
within Eclipse to generate UML projections in UMLet, and use of
reverse engineering output in combination with other sources of
relationship information. Given the imperfect performance of the
majority of the reverse engineering tools tested by the benchmark
a future direction of research is the combination of different
sources of information, multiple tool output or other data, to build
a more complete and accurate picture of structural relationships
within source code.

Keywords–Reverse Engineering; Benchmarking; Tool Compar-
ison; XMI; Software Comprehension; UML; UML Reconstruction.

I. INTRODUCTION

Reverse engineering is concerned with aiding the com-
prehensibility and understanding of existing software systems.
With ever growing numbers of valuable but poorly documented
legacy codebases within organisations reverse engineering
has become increasingly important. In response, there are a
wide number of reverse engineering techniques, which offer
a variety in their focus from Unified Modelling Language
(UML) projection to specific pattern recognition [1][2][3].
However, it is difficult to compare their effectiveness against
each other, as no standard set of targets exist to support this
goal over multiple approaches, a problem also found in the

verification and validation of new tools and techniques [4].
Any performance evaluations which do exist are specific to
an approach or technique. It is impossible, therefore to gain a
comparative understanding of performance for a range tasks,
or to validate new techniques or approaches. To address this
gap, a benchmark of such targets, the Reverse Engineering to
Design Benchmark (RED-BM) was created that can be used
to compare and validate existing and new tools for reverse
engineering.

The use of benchmarks as a means to provide a stan-
dardised base for empirical comparison is not new and the
technique is used widely in general science and in computer
science specifically. Recent examples where benchmarks have
been successfully used to provide meaningful and repeatable
standards include comparison of function call overheads be-
tween programming languages [5], mathematical 3D perfor-
mance between Java and C++ [6], and embedded file systems
[7]. Our benchmark provides the ability for such meaningful
and repeatable standard comparisons in the area of reverse
engineering.

Previous work reviewing reverse engineering tools has pri-
marily focused on research tools many with the specific goal of
identification of design patterns [2][3][8][9][10], clone detec-
tion [11] or a particular scientific aspect of reverse engineering,
such as pattern-based recognition of software constructs [12].
A previous benchmarking approach for software reverse engi-
neering focused on pattern detection with arbitary subjective
judgements of performance provided by users [13]. The need
for benchmarks within the domain of reverse engineering to
help mature the discipline is also accepted [4].

To make further use of reverse engineering output, for
example, between tools or for re-projection of UML, an Object
Management Group (OMG) standard, the XML Metadata
Interchange (XMI) format [14], is provided. XMI is a highly
customisable and extensible format with many different inter-
pretations. In practice tools therefore have a wide variation in
their XMI output and exchange between reverse engineering
tools, useful for interactive projection between tools without
repetition of the reverse engineering process, is usually impos-
sible. This variance in XMI format also hinders use of XMI
data for further analysis outside of a reverse engineering tool,
as individual tools are required for each XMI variation.

During the creation of the reverse engineering benchmark,
two tools were developed which could analyse Java source
code identifying contained classes, and then, check for the

584Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

https://www.researchgate.net/publication/248380250_A_Java_vs_C_Performance_Evaluation_A_3D_Modeling_Benchmark?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/230775219_On_Benchmarking_Embedded_Linux_Flash_File_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224675562_Pattern-based_Reengineering_of_Software_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224342422_Towards_a_Benchmark_for_Evaluating_Reverse_Engineering_Tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224097538_Evaluation_of_Accuracy_in_Design_Pattern_Occurrence_Detection?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/221663825_Function_call_overhead_benchmarks_with_MATLAB_Octave_Python_Cythonand_C?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4129225_A_comparison_of_reverse_engineering_tools_based_on_design_pattern_decomposition?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/2565384_Using_Benchmarking_to_Advance_Research_A_Challenge_to_Software_Engineering?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/2565384_Using_Benchmarking_to_Advance_Research_A_Challenge_to_Software_Engineering?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/profile/Joost_Noppen?el=1_x_100&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/profile/David_Cutting?el=1_x_100&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==

presence of these classes within XMI output. Further work
based upon the identification and analysis of variances within
different reverse engineering tools’ output, along with a desire
to be able to integrate such output within more detailed
analysis, led to the creation of a generic XMI parser (Section
III). The parser solves the problem of XMI accessibility
through generic use and abstract representation of structural
data contained in XMI files of multiple formats. This parser
is used by further tools for structural analysis or comparison
as well as automated UML re-projection within Eclipse.

The remainder of this paper in organised as follows: in
Section II, we introduce our benchmark, and show it’s appli-
cation to industry tools (Section II-E). Section III concerns our
work to make further use of reverse engineering output through
the development of a generic XMI Parser. Finally, Section IV
summarises work to date and details our current and future
direction of research.

II. THE REVERSE ENGINEERING TO DESIGN
BENCHMARK (RED-BM)

RED-BM facilitates the analysis of reverse engineering
approaches based on their ability to reconstruct class diagrams
of legacy software systems. This is accomplished by offering
the source code of projects of differing size and complexity as
well as a number of reference UML models. The benchmark
provides a set of measures that facilitate the comparison of
reverse engineering results, for example class detection, to
reference models including a “gold standard” and a number
of meta-tools to aid in the analysis of tool outputs.

The benchmark allows ranking of reverse engineering
approaches by means of an overall performance measure that
combines the performance of an approach with respect to a
number of criteria, such as successful class or relationship
detection. This overall measure is designed to be extensible
through the addition of further individual measures to facilitate
specific domains and problems. In addition the benchmark
provides analysis results and a ranking for a set of popular
reverse engineering tools which can be used as a yardstick
for new approaches. Full details, models, targets, results as
well as a full description of the measurement processes used
can be found at [15]. Although based on Java source code,
the concepts and measurements are applicable to any object-
oriented language and the benchmark could be extended to
include other languages.

A. Target Artefacts
Our benchmark consists of a number of target software

artefacts that originate from software packages of varying
size and complexity. The range of artefacts is shown in
Table I where large projects are broken down into constituent
components. In addition the Table contains statistics on the
number of classes, sub-classes, interfaces and lines of code
for each of the artefacts.

The benchmark artefact targets represent a range of com-
plexity and architectural styles from standard Java source
with simple through to high complexity targets using dif-
ferent paradigms, such as design patterns and presentation
techniques. This enables a graduated validation of tools, as
well as a progressive complexity for any new tools to test and
assess their capabilities. Also, included within RED-BM are
a set of gold standards for class and relationship detection

TABLE I. SOFTWARE ARTEFACT TARGETS OF THE RED-BM

Software
Target Artefact Main

Classes
Sub
Classes

Inter-
faces

Lines of
Code

ASCII Art Example A
Example A 7 0 0 119
ASCII Art Example B
Example B 10 0 0 124
Eclipse
org.eclipse.core.
commands

48 1 29 3403

org.eclipse.ui.ide 33 2 6 3949
Jakarta Cactus
org.apache.cactus 85 6 18 4563
JHotDraw
org.jhotdraw.app 60 6 6 5119
org.jhotdraw.color 30 7 4 3267
org.jhotdraw.draw 174 51 27 19830
org.jhotdraw.geom 12 8 0 2802
org.jhotdraw.gui 81 29 8 8758
org.jhotdraw.io 3 2 0 1250
org.jhotdraw.xml 10 0 4 1155
Libre Office
complex.writer 11 33 0 4251
org.openoffice.java.
accessibility.logging

3 0 0 287

org.openoffice.java.
accessibility

44 63 1 5749

All bundled code
(sw + accessibility)

241 173 33 39896

against which tool output is measured. These standards were
created by manual analysis supported by tools, as described in
Section II-D.

Artefacts were chosen for inclusion on the basis that they
provided a range of complexity in terms of lines of code and
class counts, used a number of different frameworks, offered
some pre-existing design information and were freely available
for distribution (under an open-source licence). Two artefacts
(ASCII Art Examples A and B) were created specifically for
inclusion as a baseline offering a very simple starting point
with full UML design and use of design patterns.

Cactus, although depreciated by the Apache Foundation,
has a number of existing UML diagrams and makes use of a
wide number of Java frameworks. Eclipse was included pri-
marily owing to a very large codebase which contains a varied
use of techniques. The large codebase of Eclipse also provides
for the creation of additional targets without incorporating new
projects. JHotDraw has good UML documentation available
both from the project itself and some third-party academic
projects which sought to deconstruct it manually to UML.
As with Eclipse, Libre Office provides a large set of code
covering different frameworks and providing for more targets
if required.

B. Measuring Performance
RED-BM enables the systematic comparison and ranking

of reverse engineering approaches by defining a set of perfor-
mance measures. These measures differentiate the performance
of reverse engineering approaches and are based on accepted
quality measures, such as successful detection of classes
and packages [16][17]. Although seemingly both trivial and
essential within a reverse engineering tool, these measures
provide a basic foundation for measurement to be built on, and
represent the most common requirement in reverse engineering

585Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

https://www.researchgate.net/publication/220674123_Software_visualization_in_software_maintenance_reverse_engineering_and_re-engineering_A_research_survey?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/2954247_Taxonomy_of_program_visualization_systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==

for detection of structural elements. Further, as seen in Section
II-E, these measures are alone capable of differentiating wide
ranges of tool performance. The performance of tools with
respect to a particular measure is expressed as the fraction of
data that has been successfully captured. Individual measures
are then used in conjunction to form a weighted compound
measure of overall performance. In our benchmark we define
three base measures to assess the performance of reverse
engineering tools and approaches:

• Cl: The fraction of classes successfully detected
• Sub: The fraction of sub-packages successfully de-

tected
• Rel: The fraction of relationships successfully de-

tected

Each of these measures are functions that take a system to
be reverse engineered s and a result r that is produced by a
reverse engineering approach when applied to s. The formal
definition of our three base measures are as follows:

Cl(s,r) =
C(r)

C(s)
, Sub(s,r) =

S(r)

S(s)
, Rel(s,r) =

R(r)

R(s)
(1)

where
C(x) is the number of correct classes in x
S(x) is the number of correct (sub-)packages in x
R(x) is the number of correct relations in x
The overall performance P of a reverse engineering ap-

proach for the benchmark is a combination of these perfor-
mance measures. The results of the measures are combined
by means of a weighted sum which allows users of the
benchmark to adjust the relative importance of, e.g., class
or relation identification. We define the overall performance
of a reverse engineering approach that produces a reverse
engineering result r for a system s as follows:

P(s,r) =
wCLCL(s, r) + wSubSub(s, r) + wRelRel

wCL + wSub + wRel
(2)

In this function, wCL, wSub and wRel are weightings that
can be used to express the importance of the performance
in detecting classes, (sub-)packages and relations respectively.
The benchmark results presented in this article all assume that
these are of equal importance: wCL = wSub = wRel = 1.

C. Application of the Benchmark
To analyse the effectiveness of our benchmark, we apply

a range of commercial and open source reverse engineering
tools (shown in Table II) to each target artefact. Each of the
tools is used to analyse target source code, generate UML
class diagram projections (if the tool supports such projections)
and export standardised XMI data files. Although the source
code target artefacts used for testing are broken down into
the package level for analysis, the reverse engineering process
is run on the full project source code to facilitate package
identification. The output produced by each of the tools is
subsequently analysed and compared to the reference UML
documentation using a benchmark toolchain we specifically
created for comparison of class detection rates (see Section

II-D). Finally, we perform a manual consistency between the
standard tool output and XMI produced to identify and correct
any inconsistencies where a tool had detected an element but
not represented it within the generated XMI.

Figure 1. Reference Class Diagram Design for ASCII Art Example A

When analysing the results a wide range of variety can
be observed even for simple targets such as Example A, one
of the simplest targets with just 7 classes, as depicted in
Figure 1. Please note that although Example A only con-
tains generalisation and composition relationships other target
artefacts contained associations, and these were included in
the measurement. It can be seen in Figure 2 that Software
Ideas Modeller failed to identify and display any relationship
between classes. Other tools such as ArgoUML [18] (Figure
3) were very successful in reconstructing an accurate class dia-
gram when compared to the original reference documentation.

Figure 2. ASCII Art Example A Output for Software Ideas Modeller

Figure 3. ASCII Art Example A Output for ArgoUML

In stark contrast to tools which performed well (e.g.,
Rational Rhapsody and ArgoUML) a number of tools failed

586Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

to complete reverse engineering runs of benchmark artefacts
and even crashed repeatedly during this procedure. The result
of which is that they are classified as detecting 0 classes for
those target artefacts. While some tools failed to output valid
or complete XMI data, a hindrance to their usability and ease
of analysis, this has not affected their performance evaluation
as their performance could be based on our manual analysis
of their UML projection.

TABLE II. LIST OF TOOLS AND VERSIONS FOR USE IN EVALUATION

Tool Name
(Name Used)

Version Used (OS)
Licence

ArgoUML 0.34 (Linux)
Freeware

Change Vision Astah Professional
(Astah Professional)

6.6.4 (Linux)
Commercial

BOUML 6.3 (Linux)
Commercial

Sparx Systems Enterprise Architect
(Enterprise Architect)

10.0 (Windows)
Commercial

IBM Rational Rhapsody Developer for Java
(Rational Rhapsody)

8.0 (Windows)
Commercial

NoMagic Magicdraw UML
(MagicDraw UML)

14.0.4 Beta (Windows)
Commercial

Modeliosoft Modelio
(Modelio)

2.2.1 (Windows)
Commercial

Software Ideas Modeller 6.01.4845.43166
(Windows)
Commercial

StarUML 5.0.2.1570 (Windows)
Freeware

Umbrello UML Modeller
(Umbrello)

2.3.4 (Linux)
Freeware

Visual Paradigm for UML Professional
(Visual Paradigm)

10.1 (Windows)
Commercial

IBM Rational Rose Professional J Edition
(Rational Rose)

7.0.0.0 (Windows)
Commercial

D. Benchmark Toolchain

To facilitate effective analysis and ease reproduction or
repetition of the results a toolchain was developed for use
within RED-BM, consisting of two main components (jcAnal-
ysis and xmiClassFinder), combined to measure the rate of
class detection. The steps followed in the application of the
benchmark are shown in Figure 4 with the developed tools
highlighted.

Figure 4. RED-BM Process with Toolchain Elements Highlighted

1) jcAnalysis: This tool recurses through a Java source tree
analysing each file in turn to identify the package along with
contained classes (primary and sub-classes). The list of classes
is then output in an intermediate XML format (DMI). For every
target artefact, jcAnalysis’ output was compared against a
number of other source code analysis utilities, including within
Eclipse, to verify the class counts. A manual analysis was also
performed on sections of source code to verify naming.

2) xmiClassFinder: This tool analyses an XMI file from a
reverse engineering tool and attempts to simply identify all the
classes contained within the XMI output (the classes detected
by the reverse engineering tool in question). The classes
contained within the XMI can be automatically compared
to input from jcAnalysis (in DMI format) for performance
(classes correctly detected) to be measured.

Once an analysis had been completed, a manual search
was then performed on the source code, in XMI output, and
within the reverse engineering tool itself, to try and locate
classes determined as “missing” by the toolchain. This step
also served to validate the toolchain, in that classes identified
as “missing” were not then found to be actually present in the
reverse engineering output.

E. Evaluation of Analysis Results
For the analysis of the results produced by the reverse en-

gineering tools, we use a standard class detection performance
measure for all targets (CD, formula 2).

To further refine the evaluation of the reverse engineering
capabilities of approaches, we divide the artefacts of the
benchmark into three categories of increasing complexity; C1,
C2 and C3. These categories allow for a more granular analysis
of tool performance at different levels of complexity. For
example, a tool can be initially validated against the lowest
complexity in an efficient manner only being validated against
higher complexity artefacts at a later stage. Our complexity
classes have the following boundaries:

• C1: 0 ≤ number of classes ≤ 25

• C2: 26 ≤ number of classes ≤ 200

• C3: 201 ≤ number of classes

The complexity categories are based on the number of
classes contained in the target artefact. As source code grows
in size both in the lines of code and the number of classes it
becomes inherently more complex, and so, more difficult to
analyse [19][20]. While a higher number of classes does not
necessarily equate to a system that is harder to reverse engi-
neer, we have chosen this metric as it provides a quantitative
measure without subjective judgement.

The bounds chosen for these categories demonstrated a
noticeable drop-off in detection rates observed in many of the
tools (Table III). However, any user of the benchmark can in-
troduce additional categories and relate additional performance
measures to these categories to accommodate for large scale
industrial software or more specific attributes, such as design
patterns.

Finally, we use the compound measure CM, which contains
the three complexity measures with weighting as follows:
wC1 = 1, wC2 = 1.5, wC3 = 2; giving a higher weighting
to target artefacts that contain more lines of code.

Using these performance measures a wide range of results
between the tools used for analysis can be seen. Some tools
offer extremely poor performance, such as Rational Rose and
Umbrello, as they crashed or reported errors during reverse
engineering or UML projection, failing to detect or display
classes and relationships entirely for some targets. As a general
trend, the percentage of classes detected on average declined as
the size of the project source code increased. As the number of
classes detected varied significantly in different tools (Figure

587Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

https://www.researchgate.net/publication/236944400_Software_Metrics_A_Rigorous_Practical_Approach?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/3713985_A_Comparison_of_four_reverse_engineering_tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==

Figure 5. Overall Class Detection (CD) and Compound Measure (CM) Performance by Tool

TABLE III. CRITERIA RESULTS BY TOOL

Criterion >
∨ Tool

CD
%

C1
%

C2
%

C3
%

CM
%

ArgoUML 100 98.15 75 100 88.27
Astah Professional 100 97.62 100 100 99.47
BOUML 100 92.59 75 100 86.42
Enterprise Architect 100 66.67 62.22 100 80.00
Rational Rhapsody 100 100 100 100 100.00
MagicDraw UML 100 98.15 100 100 99.38
Modelio 47.33 95.92 29.66 12.02 36.54
Software Ideas Modeller 86.41 62.15 41.48 46.04 48.10
StarUML 47.11 47.22 23.47 31.16 32.17
Umbrello 9.2 35.79 5.95 0 9.94
Visual Paradigm 12.42 38.18 51.68 16.67 33.12
Rational Rose 8.69 38.05 1.09 0 8.82

5) so did the amount of detected relationships, to a degree
this can be expected as if a tool fails to find classes it would
also fail to find relationships between these missing classes. In
this figure the difference between the standard class detection
measure CD and the compound measure CM becomes clear
as, for example, ArgoUML was very strong in class detection
but performed at a slightly lower level on relation detection,
which is explicitly considered in the compound measure. It
is also interesting to note that Visual Paradigm offered better
performance for the compound measure as opposed to class
detection highlighting its superior ability to deal with relations
and packages as compared to class detection.

Overall our benchmark identified IBM Rational Rhapsody
as the best performer as it achieved the maximum score for
our compound measure (100%) with two other tools, Astah
Professional and MagicDraw UML coming in a close second
scoring in excess of 99%. As the poorest performers our
work highlighted Umbrello, Visual Paradigm and notably IBM
Rational Rose which scored the lowest with a compound
measure of just 8.82% having only detected 8.69% of classes.
A detailed breakdown of the performance of the tools for
individual targets is provided with the benchmark [15].

III. XMI PARSER

As previously mentioned the XMI standard is highly
fragmented and cannot be used as designed to interchange
information between tools. It is also desirable to be able
to make use of reverse engineering output for further use
or analysis (for example, within a benchmark). Therefore,
building from the knowledge gained in creating the toolchain
for the benchmark, the simple xmiClassFinder tool, a XMI
Parser was created.

This is a generic component designed for integration within
other projects consisting of a Java package. The parser is capa-
ble of reading an XMI file, of most common output formats,
recovering class and relationship information in a structured
form. Data access classes are provided, which contain the
loaded structural information, and can be accessed directly
or recursively by third-party tools. As a self-contained utility
package, the XMI Parser can be developed in isolation to tools
making use of it and be incorporated into tools when required.
A number of tools have been and continue to be developed
within UEA to make use of reverse engineering information
through implementation of the XMI Parser.

A. XMI Analyser

XMI Analyser uses the generic XMI Parser to load one or
more XMI files which can then be analysed. Features include
a GUI-based explorer showing the structure of the software
and items linked through relationships. A batch mode can be
used from the command line for automated loading of XMI
files and analysis. XMI Analyser is primarily used for testing
revisions to the XMI Parser, as an example application and
also for the easy viewing of structural information contained
within XMI, as shown in Figure 6.

XMI Analyser is also capable of comparison between mul-
tiple XMI files generating a report highlighting any differences
found. This analysis can inform decisions as to the accuracy of
the reverse engineering data represented in reverse engineering
output.

588Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 6. XMI Analyser Structure Display

B. Eclipse UMLet Integration
One of our desired outcomes was the ability to re-project

UML outside of a specific reverse engineering tool. Such a
capability would not only allow for detailed UML projections
without access to the reverse engineering tool, but also pro-
gramatic projection, for example in an interactive form. The
Eclipse UMLet Integration, the interface of which is shown in
Figure 7, is in the form of a plugin for the Eclipse Framework.
The XMI Parser and supporting interfaces are included along
with a graphical window-based interface and a visualisation
component. This tool can load one or more XMI files and
associate them with open or new UMLet documents. These
documents can then be used to automatically generate a UML
class diagram projection containing the structural elements
contained within the XMI. An example of a re-projection
within UMLet can be seen in Figure 8; please note, however,
owing to a limitation in our UMLet API relationships are
recovered but not shown.

Figure 7. Eclipse Visualisation Interface

Figure 8. Eclipse UMLet Re-Projection of UML

C. Java Code Relation Analysis (jcRelationAnalysis)
The jcRelationAnalysis tool is a generic utility designed

to analyse and comprehend the relationship between elements
(classes) in Java source code. This is accomplished by first
building a structural picture of the inter-relationships between
elements, such as classes, contained within a source code
corpus, initially from reverse engineering output, for which
the XMI Parser is used. The ultimate intention of the tool is
to work with combinational data from a number of different
sources to compare or augment relationship information. This

tool is now being used and further developed within our current
and future research (Section IV).

IV. CONCLUSION AND FUTURE DIRECTION

To analyse the effectiveness of RED-BM we applied it to a
range of reverse engineering tools, ranging from open source
to comprehensive industrial tool suites. We demonstrated that
RED-BM offers complexity and depth as it identified clear
differences between tool performance. In particular, using the
compound measure (CM) RED-BM was capable of distin-
guishing and ranking tools from very low (8.82%) to perfect
(100%) performance.

The XMI Parser allows tools to make direct use of reverse
engineering output overcoming the fragmentation issues. The
capability of direct use of reverse engineering output is clearly
demonstrated through the ability for UML to be re-projected
within UMLet, and also used in other tools for further analysis.

The future direction of our work will be to combine reverse
engineering output with other sources of information about
a source corpus, for example mining repository metadata or
requirement documentation. The jcRelationAnalysis tool is
being used as a programmable basis for integration of different
sources of information into a common format of relationships
between source code elements. These relationships, be they
direct and found through reverse engineering, such as gen-
eralisations, or semantic in nature and found through other
means, will be used in combination to form a more complete
understanding of a software project.

Such analysis will aid both general comprehension of
software and also change impact analysis by identifying re-
lationships between elements not immediately obvious at the
code or UML level.

REFERENCES
[1] G. Rasool and D. Streitfdert, “A survey on design pattern recovery

techniques,” International Journal of Computing Science Issues, vol. 8,
2011, pp. 251–260.

[2] J. Roscoe, “Looking forwards to going backwards: An assessment of
current reverse engineering,” Current Issues in Software Engineering,
2011, pp. 1–13.

[3] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of
reverse engineering tools based on design pattern decomposition,” in
Software Engineering Conference, 2005. Proceedings. 2005 Australian.
IEEE, 2005, pp. 262–269.

[4] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proceedings
of the 25th International Conference on Software Engineering. IEEE
Computer Society, 2003, pp. 74–83.

[5] A. Gaul, “Function call overhead benchmarks with matlab, octave,
python, cython and c,” arXiv preprint arXiv:1202.2736, 2012.

[6] L. Gherardi, D. Brugali, and D. Comotti, “A java vs. c++ performance
evaluation: a 3d modeling benchmark,” Simulation, Modeling, and
Programming for Autonomous Robots, 2012, pp. 161–172.

[7] P. Olivier, J. Boukhobza, and E. Senn, “On benchmarking embedded
linux flash file systems,” arXiv preprint arXiv:1208.6391, 2012.

[8] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo, “Design
pattern detection using software metrics and machine learning,” in First
International Workshop on Model-Driven Software Migration (MDSM
2011), 2011, p. 38.

[9] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An approach
for reverse engineering of design patterns,” Software and Systems
Modeling, vol. 4, no. 1, 2005, pp. 55–70.

[10] N. Pettersson, W. Lowe, and J. Nivre, “Evaluation of accuracy in design
pattern occurrence detection,” Software Engineering, IEEE Transactions
on, vol. 36, no. 4, 2010, pp. 575–590.

589Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

https://www.researchgate.net/publication/268381036_A_Survey_on_Design_Pattern_Recovery_Techniques?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/268381036_A_Survey_on_Design_Pattern_Recovery_Techniques?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/268381036_A_Survey_on_Design_Pattern_Recovery_Techniques?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/266384845_Design_Pattern_Detection_using_Software_Metrics_and_Machine_Learning?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/266384845_Design_Pattern_Detection_using_Software_Metrics_and_Machine_Learning?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/266384845_Design_Pattern_Detection_using_Software_Metrics_and_Machine_Learning?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/266384845_Design_Pattern_Detection_using_Software_Metrics_and_Machine_Learning?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/248380250_A_Java_vs_C_Performance_Evaluation_A_3D_Modeling_Benchmark?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/248380250_A_Java_vs_C_Performance_Evaluation_A_3D_Modeling_Benchmark?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/248380250_A_Java_vs_C_Performance_Evaluation_A_3D_Modeling_Benchmark?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/230775219_On_Benchmarking_Embedded_Linux_Flash_File_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/230775219_On_Benchmarking_Embedded_Linux_Flash_File_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224097538_Evaluation_of_Accuracy_in_Design_Pattern_Occurrence_Detection?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224097538_Evaluation_of_Accuracy_in_Design_Pattern_Occurrence_Detection?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224097538_Evaluation_of_Accuracy_in_Design_Pattern_Occurrence_Detection?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/221663825_Function_call_overhead_benchmarks_with_MATLAB_Octave_Python_Cythonand_C?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/221663825_Function_call_overhead_benchmarks_with_MATLAB_Octave_Python_Cythonand_C?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220059450_An_approach_for_reverse_engineering_of_design_patterns?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220059450_An_approach_for_reverse_engineering_of_design_patterns?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220059450_An_approach_for_reverse_engineering_of_design_patterns?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4129225_A_comparison_of_reverse_engineering_tools_based_on_design_pattern_decomposition?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4129225_A_comparison_of_reverse_engineering_tools_based_on_design_pattern_decomposition?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4129225_A_comparison_of_reverse_engineering_tools_based_on_design_pattern_decomposition?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4129225_A_comparison_of_reverse_engineering_tools_based_on_design_pattern_decomposition?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4016809_Using_benchmarking_to_advance_research_A_challenge_to_software_engineering?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4016809_Using_benchmarking_to_advance_research_A_challenge_to_software_engineering?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4016809_Using_benchmarking_to_advance_research_A_challenge_to_software_engineering?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/4016809_Using_benchmarking_to_advance_research_A_challenge_to_software_engineering?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” Software Engineering,
IEEE Transactions on, vol. 33, no. 9, 2007, pp. 577–591.

[12] M. Meyer, “Pattern-based reengineering of software systems,” in Re-
verse Engineering, 2006. WCRE’06. 13th Working Conference on.
IEEE, 2006, pp. 305–306.

[13] L. Fulop, P. Hegedus, R. Ferenc, and T. Gyimóthy, “Towards a bench-
mark for evaluating reverse engineering tools,” in Reverse Engineering,
2008. WCRE’08. 15th Working Conference on. IEEE, 2008, pp. 335–
336.

[14] OMG et al., “Omg mof 2 xmi mapping specification,”
http://www.omg.org/spec/XMI/2.4.1, 2011, [Online; accessed
December 2012].

[15] UEA, “Reverse engineering to design benchmark,”
http://www.uea.ac.uk/computing/machine-learning/traceability-
forensics/reverse-engineering, 2013, [Online; accessed May 2013].

[16] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, 2003,
pp. 87–109.

[17] G.-C. Roman and K. C. Cox, “A taxonomy of program visualization
systems,” Computer, vol. 26, no. 12, 1993, pp. 11–24.

[18] ArgoUML, “Argouml,” http://argouml.tigris.org/, 2012, [Online; ac-
cessed December 2012].

[19] N. E. Fenton and S. L. Pfleeger, Software metrics: a rigorous and
practical approach. PWS Publishing Co., 1998.

[20] B. Bellay and H. Gall, “A comparison of four reverse engineering tools,”
in Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on. IEEE, 1997, pp. 2–11.

590Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

https://www.researchgate.net/publication/236944400_Software_Metrics_A_Rigorous_Practical_Approach?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/236944400_Software_Metrics_A_Rigorous_Practical_Approach?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224675562_Pattern-based_Reengineering_of_Software_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224675562_Pattern-based_Reengineering_of_Software_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224675562_Pattern-based_Reengineering_of_Software_Systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224342422_Towards_a_Benchmark_for_Evaluating_Reverse_Engineering_Tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224342422_Towards_a_Benchmark_for_Evaluating_Reverse_Engineering_Tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224342422_Towards_a_Benchmark_for_Evaluating_Reverse_Engineering_Tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/224342422_Towards_a_Benchmark_for_Evaluating_Reverse_Engineering_Tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220674123_Software_visualization_in_software_maintenance_reverse_engineering_and_re-engineering_A_research_survey?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220674123_Software_visualization_in_software_maintenance_reverse_engineering_and_re-engineering_A_research_survey?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220674123_Software_visualization_in_software_maintenance_reverse_engineering_and_re-engineering_A_research_survey?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/220674123_Software_visualization_in_software_maintenance_reverse_engineering_and_re-engineering_A_research_survey?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/3713985_A_Comparison_of_four_reverse_engineering_tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/3713985_A_Comparison_of_four_reverse_engineering_tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/3713985_A_Comparison_of_four_reverse_engineering_tools?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/2954247_Taxonomy_of_program_visualization_systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==
https://www.researchgate.net/publication/2954247_Taxonomy_of_program_visualization_systems?el=1_x_8&enrichId=rgreq-d14a88932b4395fc3456b435d2345a33-XXX&enrichSource=Y292ZXJQYWdlOzI3MjYyMTE3MTtBUzoxOTk3MTg1MDUzMjQ1NjNAMTQyNDYyODAxMTAwMw==

