Sensitivity Analysis of Limited Actuation for Real-time Hybrid Model Testing of 5MW and 10MW Monopile Offshore Wind Turbines

Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 The Author(s).

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Sensitivity Analysis of Limited Actuation for Real-time Hybrid Model Testing of 5MW and 10MW Monopile Offshore Wind Turbines

Madjid Karimirad (SINTEF Ocean)
Erin Bachynski (NTNU)
Context

• Design of ReaTHM® tests of large monopile wind turbines
 • Physical hydrodynamic loads
 • Virtual aerodynamic/turbine loads, applied in an integrated manner

• How important are each of the turbine load components?
• How important are aerodynamic effects in parked, extreme conditions?
Outline

• Computational methodology
• Wind turbine models
• Load cases
• Sensitivity to
 • Aerodynamic loading in parked condition
 • Aerodynamic pitch moment
 • Aerodynamic sway force
 • Aerodynamic yaw moment
• Outlook
Computational methodology

RIFLEX/SIMO

Control
(JAVA)

- Torque
- Commanded pitch
- Rotor velocity
- Current blade pitch

Aerodynamic forces on blades and tower

Modify forces one by one

AeroDyn

OWT element positions, orientations, and velocities

Present limitation: rigid blades (elastic blades in near future)

Source: NREL/Wind power today, 2010.

Madjid Karimirad and Erin Bachynski
Computational methodology: aerodynamic force modification

Rigid body dynamics: Jacobian matrices used for transformation of forces and velocities between frames

\[\tau^R_a = J_{BR}^F \tau^B_a \]

\[\hat{\tau}^R_a = \tau^R_a + \text{modifications} \]

\[\hat{\tau}^B_a = J_{BR}^F \left(\sum_{i=1}^{N_b} \sum_{j=1}^{N_e} \hat{\tau}^R_{aij} \right) \frac{1}{N_e N_b} \]

Madjid Karimirad and Erin Bachynski
5MW and 10MW monopile wind turbine models

- 30 m water depth
- 5MW: based on OC3, but extended due to deeper water
- 10MW: new design, soil-pile characteristics assumed same as OC3 despite larger diameter
- Sensitivity study is carried out with torsional spring (as in lab) rather than soil springs

<table>
<thead>
<tr>
<th></th>
<th>5MW</th>
<th>10MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine</td>
<td>NREL 5MW</td>
<td>DTU 10MW</td>
</tr>
<tr>
<td>Monopile</td>
<td>OC3</td>
<td>Representative</td>
</tr>
<tr>
<td>Soil stiffness</td>
<td>OC3*</td>
<td>OC3*</td>
</tr>
<tr>
<td>Rated thrust (kN)</td>
<td>710</td>
<td>1500</td>
</tr>
<tr>
<td>Hub height (m)</td>
<td>90</td>
<td>119</td>
</tr>
<tr>
<td>Monopile diameter (m)</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Thickness (cm)</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Embedded length (m)</td>
<td>46</td>
<td>56</td>
</tr>
</tbody>
</table>

Madjid Karimirad and Erin Bachynski
Eigenfrequencies and eigenmodes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Linear distributed springs (below the seabed)</th>
<th>Single torsional spring (at seabed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st bending (Hz)</td>
<td>0.261</td>
<td>0.261</td>
</tr>
<tr>
<td>2nd bending (Hz)</td>
<td>1.239</td>
<td>1.423</td>
</tr>
<tr>
<td>10 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st bending (Hz)</td>
<td>0.262</td>
<td>0.261</td>
</tr>
<tr>
<td>2nd bending (Hz)</td>
<td>1.219</td>
<td>1.365</td>
</tr>
</tbody>
</table>
Load cases

- Based on hindcast data for 29m water depth, North Sea site (Li et al., 2013)
- 3 operational cases, one storm (parked)
- EC 2 cases repeated with fault
 - Grid loss (with shutdown)
 - Blade seize (without shutdown)
 - Blade seize (with shutdown)

<table>
<thead>
<tr>
<th></th>
<th>EC 1</th>
<th>EC 2</th>
<th>EC 3</th>
<th>EC 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uw (m/s)</td>
<td>8</td>
<td>11.4</td>
<td>20</td>
<td>31.5</td>
</tr>
<tr>
<td>Hs (m)</td>
<td>1.2</td>
<td>1.8</td>
<td>3.6</td>
<td>9.5</td>
</tr>
<tr>
<td>Tp (s)</td>
<td>5.8</td>
<td>6.5</td>
<td>8.2</td>
<td>12.3</td>
</tr>
<tr>
<td>I% (NTM)</td>
<td>17.1</td>
<td>14.0</td>
<td>11.5</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Madjid Karimirad and Erin Bachynski
Fault cases

![Graph 1](image1.png)

- **PileBMY (kNm)**
- **turb wind 11.4m/s, waves, wavedir 0 deg**
- **time (sec)**
- **No fault**
- **Grid loss**
- **Blade seize**
- **Blade seize shutdown**

![Graph 2](image2.png)

- **Spectrum PileBMY (kNm²/rad/sec)**
- **turb wind 11.4m/s, waves, wavedir 0 deg**
- **First elastic bending mode**
- **Rotor harmonic 1P**
- **No fault**
- **Grid loss**
- **Blade seize**
- **Blade seize shutdown**
Aerodynamic loading in parked condition

- Aerodynamic **damping** is important even in parked conditions for the dynamic bending moment response
 - 100% difference

- Dynamic shear force is less affected

- Similar results for 5 MW and 10 MW
Sensitivity study results: summary

<table>
<thead>
<tr>
<th></th>
<th>5MW, normal</th>
<th>5MW, fault</th>
<th>10MW, normal</th>
<th>10MW, fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic damping, parked</td>
<td>100%</td>
<td>N/A</td>
<td>100%</td>
<td>N/A</td>
</tr>
<tr>
<td>Aerodynamic pitch</td>
<td><5%</td>
<td>20-30%</td>
<td>10-30%</td>
<td>25-40%</td>
</tr>
<tr>
<td>Aerodynamic sway</td>
<td><7%</td>
<td><5%</td>
<td><5%</td>
<td><10%</td>
</tr>
<tr>
<td>Aerodynamic yaw</td>
<td>60% *</td>
<td>100% *</td>
<td>90% *</td>
<td>100% *</td>
</tr>
<tr>
<td>Dynamic torque</td>
<td><5%</td>
<td><5%</td>
<td><20%</td>
<td><10%</td>
</tr>
</tbody>
</table>

*only for torsion/yaw

- **Key observations:**
 - Only effects on “responses of interest” are shown
 - 10 MW is generally more sensitive to limited actuation
 - Aerodynamic yaw is important for torsion/yaw responses, but largely decoupled from other responses
 - Aerodynamic pitch moment is less important for bottom-fixed concept compared to NOWITECH FWT
Aerodynamic pitch moment

- Different effects for 5 MW vs 10 MW.
- Less important for 5 MW monopile than for 5 MW floating.
Aerodynamic yaw moment: fixed vs. floating

- Natural periods in yaw/torsion:
 - Bottom-fixed: <2s
 - CSC 5MW: 62s

- Aerodynamic yaw is primarily a low-frequency excitation, so it can excite yaw resonant response in the floating concept, but only quasi-static response for the bottom-fixed turbines

5 MW CSC results for yaw, above-rated wind speed
Conclusions/outlook

- Monopile wind turbine designs for basin tests, including torsional stiffness
- Preliminary response analysis for physical test design
- Application of a methodology developed for FWT to bottom-fixed concepts, and to a new turbine
- Aerodynamic damping should be included in tests with extreme waves (in some way)
- Aerodynamic pitch moment is important in fault cases and for the 10 MW concept
- Aerodynamic yaw moment is only important for torsional responses
- Aerodynamic sway and dynamic torque have minor effects

Future work:
- Extension to flexible blades
- Sensitivity to other limitations (frequency, delays)
- NOWITECH tests in 2017
Teknologi for et bedre samfunn