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LOCAL OPERATOR MULTIPLIERS AND POSITIVITY

N.M. STEEN, I.G. TODOROV AND L. TUROWSKA

Abstract. We establish an unbounded version of Stinespring’s The-
orem and a lifting result for Stinespring representations of completely
positive modular maps defined on the space of all compact operators.
We apply these results to study positivity for Schur multipliers. We
characterise positive local Schur multipliers, and provide a description
of positive local Schur multipliers of Toeplitz type. We introduce local
operator multipliers as a non-commutative analogue of local Schur mul-
tipliers, and characterise them extending both the characterisation of
operator multipliers from [18] and that of local Schur multipliers from
[29]. We provide a description of the positive local operator multipliers
in terms of approximation by elements of canonical positive cones.

1. Introduction

A bounded function ϕ : N × N → C is called a Schur multiplier if
(ϕ(i, j)ai,j) is the matrix of a bounded linear operator on `2 whenever (ai,j)
is such. The study of Schur multipliers was initiated by I. Schur in the
early 20th century, and a characterisation of these objects was given by A.
Grothendieck in his Résumé [12] (see also [27]). A measurable version of
Schur multipliers was developed by M.S. Birman and M.Z. Solomyak (see
[3] and the references therein) and V. V. Peller [25]. More concretely, given
standard measure spaces (X,µ) and (Y, ν) and a function ϕ : X × Y → C,
one defines a linear transformation Sϕ on the space of all Hilbert-Schmidt
operators from H1 = L2(X,µ) to H2 = L2(Y, ν) by multiplying their integral
kernels by ϕ; if Sϕ is bounded in the operator norm (in which case ϕ is called
a measurable Schur multiplier), one extends it to the space K(H1, H2) of all
compact operators from H1 into H2 by continuity. The map Sϕ is defined
on the space B(H1, H2) of all bounded linear operators from H1 into H2 by
taking the second dual of the constructed map on K(H1, H2). A characteri-
sation of measurable Schur multipliers, extending Grothendieck’s result, was
obtained in [25] (see also [21] and [32]). Namely, a function ϕ ∈ L∞(X×Y )
was shown to be a Schur multiplier if and only if ϕ coincides almost ev-
erywhere with a function of the form

∑∞
k=1 ak(x)bk(y), where (ak)k∈N and

(bk)k∈N are families of essentially bounded measurable functions such that
esssupx∈X

∑∞
k=1 |ak(x)|2 <∞ and esssupy∈Y

∑∞
k=1 |bk(y)|2 <∞.

A local version of Schur multipliers was defined and studied in [29]. Lo-
cal Schur multipliers are, in general, unbounded, but necessarily closable,
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2 N.M. STEEN, I.G. TODOROV AND L. TUROWSKA

densely defined linear transformations on B(L2(X,µ), L2(Y, ν)). A mea-
surable function ϕ : X × Y → C was shown in [29] to be a local Schur
multiplier if and only if it agrees almost everywhere with a function of the
form

∑∞
k=1 ak(x)bk(y), where (ak)k∈N and (bk)k∈N are families of measur-

able functions such that
∑∞

k=1 |ak(x)|2 < ∞ for almost all x ∈ X and∑∞
k=1 |bk(y)|2 <∞ for almost all y ∈ Y .
In [22], a quantised version of Schur multipliers, called universal operator

multipliers, was introduced. Universal operator multipliers are defined as el-
ements of C*-algebras satisfying certain boundedness conditions, and hence
are non-commutative versions of continuous Schur multipliers. A character-
isation of universal operator multipliers, generalising Grothendieck-Peller’s
results, was obtained in [17].

In the present paper, we introduce and study local operator multipliers.
Due to their spatial nature, the natural setting here is that of von Neumann
algebras. Pursuing the analogue with the commutative setting, where lo-
cal multipliers are measurable (not necessarily bounded) functions of two
variables, we define local operator multipliers as operators affiliated with
the tensor product of two von Neumann algebras. We characterise local op-
erator multipliers, extending both the description of local Schur multipliers
from [29] and the description of universal operator multipliers from [17]. We
further characterise the positive local Schur multipliers (Section 4), as well
as the positive local operator multipliers (Section 6). We describe positive
local Schur multipliers of Toeplitz type, and consider local Schur multipliers

that are divided differences, that is, functions of the form f(x)−f(y)
x−y . We

show that such a divided difference is a positive local Schur multiplier with
respect to every standard Borel measure if and only if f is an operator
monotone function.

Our main tool for characterising positivity of multipliers is an unbounded
version of Stinespring’s Theorem (Section 2). In the literature, there are
a number of versions of Stinespring’s Theorem for completely positive, not
necessarily bounded, maps, defined on *-algebras, see e.g. [15], [26] and [31].
Our version differs from the existing ones in that the domain is a non-unital
pre-C*-algebra, and a partial boundedness of the map is assumed – as a
result, we are able to obtain more specific conclusions regarding the (clos-
able) operator implementing the Stinespring representation. In Section 3, we
prove a lifting result for Stinespring representations of completely positive
maps defined on the space of compact operators (Theorem 3.4). The result,
which we believe is interesting in its own right, is used in Section 4 to obtain
a lifting result for positive Schur multipliers, and provides an alternative
approach to the unbounded Stinespring Theorem from Section 2.

All Hilbert spaces appearing in the paper will be assumed to be separable.
The inner product of a Hilbert space H is denoted by (·, ·)H , if H needs to
be emphasised. We let IH denote the identity operator acting on H, and
write I when H is clear from the context. For Hilbert spaces H and K,
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we denote by B(H,K) (resp. K(H,K), C2(H,K)) the space of all bounded
linear (resp. compact, Hilbert-Schmidt) operators from H into K, and let
B(H) = B(H,H), K(H) = K(H,H) and C2(H) = C2(H,H). We denote
by IH the identity operator acting on H. The operator norm is denoted
by ‖ · ‖op. We often use the weak* topology of B(H,K), which arises from
the identification of this space with the dual of the space of all nuclear
operators from K into H. The weak* continuous linear maps on B(H,K)
will be referred to as normal maps. If α is a cardinal number, we let Hα

denote the direct sum of α copies of H, and for x ∈ B(H), we let x⊗ 1α be
the ampliation of x acting on Hα. We let `2α be the Hilbert space of square
summable sequences of length α.

Throughout the paper, we will use notions and results from Operator
Space Theory; we refer the reader to the monographs [4], [9], [24] and [28].
If A ⊆ B(H) is a C*-algebra, we denote by A′ the commutant of A, and
by Mn,m(A) the set of all n × m matrices with entries in A which define
bounded operators (here n or m may be ∞). For a matrix a ∈ Mn,m(A),
we denote by at its transposed matrix. If M ⊆ B(H) is a von Neumann
algebra, we will denote by AffM the set of all densely defined operators on
H that are affiliated with M; thus, T ∈ AffM if and only if the spectral
measure of the operator |T | = (T ∗T )1/2 takes values in M and the partial
isometry in the polar decomposition of T belongs to M. The domain of an
(unbounded) operator T will be denoted by dom(T ).

If A and B are linear spaces, we will denote by A � B their algebraic
tensor product; if A and B are von Neumann algebras, their weak* spatial
tensor product will be denoted by A⊗̄B. The linear span of a subset X of a
vector space will be denoted by [X ].

2. An unbounded version of Stinespring’s theorem

The classical Stinespring’s Representation Theorem for completely pos-
itive maps states that if A is a unital C*-algebra and Φ : A → B(H) is
a completely positive map, then there exists a Hilbert space K, a unital
*-homomorphism π : A → B(K) and a bounded operator V : H → K
with ‖Φ(1)‖ = ‖V ‖2 such that Φ(a) = V ∗π(a)V , a ∈ A. In the case where

[π(A)V H] = K, we say that (π, V,K) is a minimal Stinespring represen-
tation for Φ (see [24]). Our aim in this section is to prove an unbounded
version of Stinespring’s Theorem for maps defined on pre-C*-algebras, and
apply it in the special case where the C*-completion of the domain coincides
with the C*-algebra of all compact operators acting on a Hilbert space.

Let A be a ∗-algebra, X be a linear (not necessarily closed) subspace of
a Hilbert space H and L(X ) be the space of all linear mappings on X . A
linear mapping Φ : A → L(X ) will be called completely positive if

n∑
k,l=1

(Φ(a∗kal)ξl, ξk) ≥ 0
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for arbitrary n ∈ N, a1, . . . , an ∈ A and ξ1, . . . ξn ∈ X .
We denote by M(B) the multiplier algebra of a C*-algebra B. We recall

that, if B is identified with a subalgebra of its enveloping von Neumann
algebra (that is, its second dual) B∗∗, then M(B) ∼= {x ∈ B∗∗ : xB ⊆
B,Bx ⊆ B}.

Theorem 2.1. Let B be a C*-algebra and A ⊆ B be a dense *-subalgebra of
the form A = ∪∞k=1pkApk, where (pk)k∈N ⊆M(B) is an increasing sequence
of projections with pnA ⊆ A and Apn ⊆ A, n ∈ N. Let H be a Hilbert space,
(qk)k∈N be an increasing sequence of projections on H with strong limit I,
and X = ∪k∈NqkH. Assume that Φ : A → L(X ) is a completely positive
map such that Φ(pkapm) = qkΦ(a)qm, k,m ∈ N, a ∈ A. The following are
equivalent:

(i) the restriction Φ|pkApk is bounded for each k ∈ N;
(ii) there exist a Hilbert space K, a bounded *-representation

π : A → B(K) and an operator V : X → K, such that V |qkH is bounded
for every k ∈ N, and

(Φ(a)ξ, η) = (π(a)V ξ, V η), a ∈ A, ξ, η ∈ X .

Moreover, the operator V appearing in (ii) can be chosen to be closable.

Proof. (i)⇒(ii) Let Ak = pkApk, Hk = qkH, and write Φk for the restriction
of Φ to Ak. Since Φk is bounded, it can be extended to a bounded map from

Bk
def
= Ak into B(Hk) (where the closure is taken in the norm topology of

B), which we also denote by Φk. Let Φ∗∗k : B∗∗k → B(Hk)
∗∗ be the second

dual of Φk and Ek : B(Hk)
∗∗ → B(Hk) be the canonical projection (we point

out that Ek is the dual of the inclusion of B(Hk)∗ into B(Hk)
∗ and is hence

weak* continuous). We note that if k ≤ m then pk ∈ M(Bm) ⊆ B∗∗m . Set

Φ̃k = Ek ◦Φ∗∗k ; thus, Φ̃k is a weak* continuous completely positive map from

B∗∗k into B(Hk) extending Φk. We note that if k ≤ m then Φ̃m|B∗∗k = Φ̃k. By

weak* continuity, Φ̃k(plxpm) = qlΦ̃k(x)qm whenever l,m ≤ k and x ∈ B∗∗k .
We now modify the well-known Stinespring construction. Let L be the lin-

ear space generated by A⊗X and all vectors of the form 1⊗ξ, ξ ∈ X . We de-
fine a sesquilinear form 〈·, ·〉1 on L: if ζ =

∑s
i=1 ai⊗ξi and θ =

∑t
j=1 bj ⊗ ηj ,

set

〈θ, ζ〉1 =

s∑
i=1

t∑
j=1

(
Φ̃k(pka

∗
i bjpk)ηj , ξi

)
,

where k is such that ξi, ηj ∈ Hk, for all i = 1, . . . , s and all j = 1, . . . , t.
We note that 〈·, ·〉1 is well-defined; indeed, if ξi and ηj ∈ Hm for some m,
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assuming that m ≤ k, we have(
Φ̃k(pka

∗
i bjpk)ηj , ξi

)
=

(
qmΦ̃k(pka

∗
i bjpk)qmηj , ξi

)
=

(
Φ̃k(pkpma

∗
i bjpmpk)ηj , ξi

)
=

(
Φ̃k(pma

∗
i bjpm)ηj , ξi

)
=

(
Φ̃m(pma

∗
i bjpm)ηj , ξi

)
.

Since Φ is completely positive, 〈·, ·〉1 is a semidefinite inner product on L.
Let N := {ζ ∈ L : 〈ζ, ζ〉1 = 0} and let

ρ(a)

(
n∑
k=1

ak ⊗ ϕk

)
=

n∑
k=1

aak ⊗ ϕk, a ∈ A;

ρ is a well-defined ∗-homomorphism. A standard application of the Cauchy-
Schwartz inequality shows that N is invariant under ρ(A). Let i : L → L/N
be the quotient map. Then (i(ξ), i(η))

def
= 〈ξ, η〉1 defines a scalar product

on L/N and π(a)i(η) = i(ρ(a)η) is a well-defined ∗-representation of A on
L/N . Let H be the Hilbert space completion of L/N .

We claim that π is bounded. In fact, for ζ =
∑n

i=1 ai ⊗ ξi ∈ L, there
exists k such that ξi ∈ Hk and if ai 6= 1, ai ∈ Ak, for all i = 1, . . . , n. Since

Φ̃k is completely positive, we obtain, for a ∈ Ak,

‖π(a)i(ζ)‖2 = 〈ρ(a)ζ, ρ(a)ζ〉1 =

〈
n∑
i=1

aai ⊗ ξi,
n∑
i=1

aai ⊗ ξi

〉
1

=
n∑

i,j=1

(
Φ̃k(pka

∗
i a
∗aajpk)ξi, ξj

)
≤ ‖a∗a‖

n∑
i,j=1

(
Φ̃k(pka

∗
jaipk)ξi, ξj

)

= ‖a‖2
〈

n∑
i=1

ai ⊗ ξi,
n∑
i=1

ai ⊗ ξi

〉
1

= ‖a‖2‖i(ζ)‖2,

giving the statement.
Define V : X → H by V ξ = i(1⊗ ξ). If ξ, η ∈ Hk then

‖V ξ‖2 =
∣∣∣(Φ̃k(pk)ξ, ξ

)∣∣∣ ≤ ‖Φk‖‖ξ‖2,

showing that V |Hk is bounded for each k. Moreover,

(Φ(a)ζ, θ) = 〈ρ(a)(1⊗ ζ), 1⊗ θ〉1 = (π(a)i(1⊗ ζ), i(1⊗ θ))(1)

= (π(a)V ζ, V θ).
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We show that V is closable. If ηn → 0 and i(1 ⊗ ηn) → f then, for each
a⊗ ξ ∈ L with a ∈ A ∪ {1}, ξ ∈ ∪∞k=1Hk, we have that

(i(a⊗ ξ), i(1⊗ ηn))→ (i(a⊗ ξ), f).

On the other hand, if ξ ∈ Hk and ηn ∈ Hln , ln ≥ k, then

(i(a⊗ ξ), i(1⊗ ηn)) =
(

Φ̃ln(plnapln)ξ, ηn

)
=
(

Φ̃ln(pkapk)ξ, ηn

)
=

(
Φ̃k(pkapk)qkξ, qkηn

)
→n→∞ 0.

It follows that (i(a⊗ ξ), f) = 0, for all a⊗ ξ ∈ L. As i(L) is dense in H, we
conclude that f = 0.

(ii)⇒(i) is trivial. �

Theorem 2.2. Let H be a Hilbert space, (pn)∞n=1 be an increasing sequence
of projections on H such that ∨∞n=1pn = I and let Hn = pnH, n ∈ N. Let
A := ∪∞n=1C2(Hn) and X = ∪∞n=1Hn. Assume that Φ : A → L(X ) is a
completely positive map such that Φ(pnxpm) = pnΦ(x)pm for all n,m ∈ N,
and Φn = Φ|C2(Hn) is bounded with respect to the operator norm on B(Hn).

(i) There exists a family (Vi)
∞
i=1 of closable linear maps from X into H

such that

(2) (Φ(a)ξ, η) =
∞∑
i=1

(aViξ, Viη), a ∈ A, ξ, η ∈ X .

(ii) If D ⊆ B(H) is a unital C∗-subalgebra, (pn)∞n=1 ⊆ D and Φ is D-
bimodular, then Vi, i ∈ N, can be chosen to be closable operators affiliated
with D′.

Proof. In the notation of Theorem 2.1, B = K(H), and hence the represen-
tation π arising in Theorem 2.1 is unitarily equivalent to an ampliation of
the identity representation. At the expense of changing the operator V , we
may thus assume that π(a) = a⊗ 1, a ∈ ∪∞k=1C2(Hk). Let

V = (V1, . . . , Vn, . . .)
t

be the corresponding matrix of V ; identity (2) follows now trivially from
Theorem 2.1. The fact that the operators Vi are closable follows easily from
the closability of V .

We show that we can choose Vi to be affiliated with D′ when Φ satis-
fies condition (ii). The arguments that follow are similar to the ones in
[7, Corollary 5.9]. The modularity of Φ gives

((a⊗ 1)V ξ, (r ⊗ 1)V η) = ((a⊗ 1)V ξ, V rη) for all r ∈ D, a ∈ A, ξ, η ∈ X .

Let ea be the projection onto (a⊗ 1)V X , a ∈ A. Then ea(r⊗1)V η = eaV rη,
r ∈ D, η ∈ X . If e = ∨a∈Aea then

e(r ⊗ 1)V η = eV rη, r ∈ D, η ∈ X .
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As (r⊗ 1)(a⊗ 1)V η = (ra⊗ 1)V η and ra ∈ A (r ∈ D, a ∈ A), we obtain
that e(r ⊗ 1)e = (r ⊗ 1)e for each r ∈ D and hence e commutes with r ⊗ 1,
r ∈ D. This implies

(r ⊗ 1)(eV )η = (eV )rη, η ∈ X , r ∈ D,
and

(Φ(a)ξ, η) = ((a⊗ 1)eV ξ, eV η), ξ, η ∈ X .
The only thing that is left to prove is that if eV = (V ′1 , . . . , V

′
n, . . .)

t then V ′i
is closable and its closure is affiliated with D′, for every i.

In order to show that V ′i is closable, it suffices to show that eV is closable.
Suppose that ξn → 0 and eV ξn → y, for some y ∈ H∞. Then (Φ(a)ξ, ξn)→
0. On the other hand, given a ∈ A, ξ ∈ X ,

(Φ(a)ξ, ξn) = ((a⊗ 1)V ξ, V ξn) = ((a⊗ 1)V ξ, eV ξn)→ ((a⊗ 1)V ξ, y).

Thus ((a⊗ 1)V ξ, y) = 0 and hence (eη, y) = 0 for any η ∈ H, giving ey = 0.
As eV ξn → ey, we have ey = y = 0, showing that eV is closable.

We have rV ′i η = V ′i rη, for all r ∈ D and η ∈ X . By the previous
paragraph, the operator V ′i is closable as an operator defined on X ; let
us denote its closure again by V ′i . Then clearly rdom(V ′i ) ⊆ dom(V ′i ) and
rV ′i = V ′i r. As V ′i is closed, the equality holds for each r in the strong closure
of D. Since ∨∞n=1pn = I and pn ∈ D, the C*-algebra D is non-degenerate
and hence rV ′i = V ′i r for all r ∈ D′′. Thus, V ′i is affiliated with D′. �

3. Lifting for Stinespring’s representations

Our aim in this section is to obtain a lifting for Stinepring’s representa-
tions of maps defined on the algebra of compact operators. The result will
be used in Section 4 to obtain a lifting for positive Schur multipliers, but
we believe that it is interesting in its own right as well. It also provides an
independent route to Theorem 2.2.

Let H be a Hilbert space and Φ : K(H)→ B(H) be a completely positive
map. Then there exists a Stinespring representation

(3) Φ(x) = V ∗(x⊗ 1α)V =
α∑
i=1

a∗ixai, x ∈ K(H),

where 1 ≤ α ≤ ∞ and V = (a1, a2, . . . )
t ∈Mα,1(B(H)). We will say in this

case that V implements the representation (3). If Φ is moreover modular
over a C*-algebra A ⊆ B(H), then the entries of V can be chosen from D′.

We start by characterising the minimal representations of the map Φ
in terms of the operator V (Lemma 3.1). Note that given any element
(λi)

α
i=1 ∈ `2α, the series

∑α
i=1 λiai is norm convergent in B(H). Following

S. D. Allen, A. M. Sinclair and R. R. Smith [2], we say that the set {ai}αi=1
is strongly independent if

∑α
i=1 λiai = 0 implies that λi = 0, for all i. It was

established in [2, Lemma 2.2] that, for the case α = ∞, the family {ai}αi=1
is strongly independent if and only if the set K = {(ω(a1), ω(a2), . . . ) : ω ∈
B(H)∗} is norm dense in `2α.
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Lemma 3.1. Let Φ : K(H) → B(H) be a completely positive map and
V = (ai)

α
i=1 ∈Mα,1(B(H)), where α is an at most countable cardinal, im-

plement a representation of Φ. The following are equivalent:
(i) The operator V implements a minimal representation of Φ;
(ii) The set

F = {(ω(a1), ω(a2), . . . ) : ω is a vector functional on B(H)}
has norm dense linear span in `2α;

(iii) The set J = {(ω(a1), ω(a2), . . . ) : ω ∈ B(H)∗} is norm dense in `2α;
(iv) The set {ai}αi=1 is strongly independent.

Proof. (i)⇒(ii) Suppose that the linear span of F is not dense and let
0 6= (λi)

α
i=1 ∈ F⊥. Then

0 =

α∑
i=1

λi(aiξ, x
∗η) =

α∑
i=1

(xaiξ, λiη), ξ, η ∈ H, x ∈ K(H).

Thus, if η is a non-zero vector in H, then (λiη)αi=1 ∈ Hα is non-zero and
orthogonal to (xaiξ)

α
i=1 for all ξ in H and all x in K(H). As a result, the

representation implemented by V cannot be minimal.
(ii)⇒(i) Suppose that the representation is not minimal. Then

E = [(K(H)⊗ 1α)V H] 6= Hα. Let Q be the projection from Hα onto E ;
since E is invariant for K(H) ⊗ 1α, we have that Q ∈ (K(H) ⊗ 1α)′ and
hence Q = IH ⊗Q0, where Q0 is a projection in B(`2α). Thus we have that
E⊥ = H ⊗ (Q⊥0 `

2
α). Choose a non-zero (λi)

α
i=1 ∈ Q⊥0 `

2
α. Then for every

η ∈ H we have η ⊗ (λi)
α
i=1 ∈ E⊥ and hence

0 =

α∑
i=1

(x∗aiξ, λiη) =

α∑
i=1

λi(aiξ, xη) =

(
α∑
i=1

λiaiξ, xη

)
,

for all x ∈ K(H) and all ξ ∈ H. It follows that
∑α

i=1 λi(aiξ, η) = 0 for

every η ∈ H. Hence (λi)
α
i=1 is orthogonal to ((aiξ, η))αi=1, for all ξ, η ∈ H.

It follows that the linear span of F is not dense in `2α.
(ii)⇒ (iii) is trivial.

(iii)⇒(ii) follows from the inclusion J ⊆ [F ]
‖·‖

whose verification is
straightforward.

(iii)⇔(iv) The set J is not dense in `2α if and only if there exists a non-
zero element (λi)

α
i=1 ∈ `2α lying in the orthogonal complement of J ; that is,

such that

ω

(
α∑
i=1

λiai

)
=

α∑
i=1

λiω(ai) = 0, ω ∈ B(H)∗.

This is equivalent to the existence of a non-zero (λi)
α
i=1 ∈ `2α such that∑α

i=1 λiai = 0, that is, to the {ai}αi=1 not being strongly independent. �

Lemma 3.2. Let H be a separable Hilbert space, Ψ : K(H) → B(H) be
a completely positive map, and suppose that A ∈ M∞,1(B(H)) implements
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a representation of Ψ. Then there exists an at most countable cardinal α
and Λ ∈ B(`2, `2α), such that the operator (IH ⊗ Λ)A implements a minimal
representation of Ψ.

Proof. Let E = [(K(H)⊗ 1)AH]. As in the proof of Lemma 3.1, the projec-
tion Q from H∞ onto E is of the form IH ⊗Q0, where Q0 is a projection in
B(`2). Since E is reducing for K(H) ⊗ 1, the map ρ : K(H) → B(E) (resp.
ρ′ : K(H) → B(E⊥)) given by ρ(x) = x ⊗ 1|E (resp. ρ′(x) = x ⊗ 1|E⊥) is a
*-representation of K(H). Thus, there exists an (at most countable) cardi-
nal α and a unitary operator S : E → Hα such that ρ(x) = S∗(x ⊗ 1α)S.
Consider the operator T : H∞ → Hα given by Tξ = SQξ, ξ ∈ H∞. Then

T (x⊗ 1)T ∗ =
(
S 0

)( ρ(x) 0
0 ρ′(x)

)(
S∗

0

)
= Sρ(x)S∗ = x⊗ 1α.

In addition,

T ∗T =

(
S∗

0

)(
S 0

)
=

(
S∗S 0

0 0

)
=

(
IE 0
0 0

)
= IH ⊗Q0.

Thus, T (x⊗ 1)(IH ⊗Q0) = (x⊗ 1α)T . Also,

T (x⊗ 1)(IH ⊗Q⊥0 ) =
(
S 0

)( ρ(x) 0
0 ρ′(x)

)(
0 0
0 IE⊥

)
= 0;

so

T (x⊗ 1) = T (x⊗ 1)(IH ⊗Q0) = (x⊗ 1α)T, x ∈ K(H).

It follows that T = IH ⊗ Λ, for some Λ ∈ B(`2, `2α). We thus have

Ψ(x) = A∗(x⊗ 1)A = A∗ρ(x)A = A∗S∗(x⊗ 1α)SA = A∗T ∗(x⊗ 1α)TA.

Moreover,

Hα = SE = S(K(H)⊗ 1)AH = S(K(H)⊗ 1)|EAH
= (K(H)⊗ 1α)SAH = (K(H)⊗ 1α)TAH

and thus the representation of Ψ implemented by TA is minimal. �

Remark 3.3. As part of the proof of Lemma 3.2, it was shown that
T ∗T = IH ⊗Q0. This fact will be used in the sequel.

The main result of this section is the following.

Theorem 3.4. Let H2 be a separable Hilbert space, D2 ⊆ B(H2) be a unital
C*-subalgebra, H1 ⊆ H2 be a closed subspace such that the projection p from
H2 onto H1 belongs to D2, and D1 = pD2p. Let Φ : K(H2) → B(H2) be
a completely positive D2-bimodule map, and let Ψ : K(H1) → B(H1) be
the map given by Ψ(x) = Φ(x)|H1 , x ∈ K(H1). Suppose that the operator
V ∈Mβ,1(D′1) implements a minimal representation of Ψ. Then there exist
an at most countable cardinal γ ≥ β and an operator W ∈Mγ,1(D′2), which
implements a minimal representation of Φ, such that W |H1 = V .
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We note that throughout the statement and the proof of the theorem, we

identify Hβ
1 with Hβ

1 ⊕0 ⊆ Hγ
1 ; under this assumption, it will be shown that

W |H1 has range in Hβ
1 and is equal to V .

Proof. Let Φ(x) = A∗(x ⊗ 1)A, x ∈ K(H2), be any representation of Φ,
where A ∈M∞,1(D′2). Then Ψ(x) = A∗(x⊗ 1)A|H1 , x ∈ K(H1). By Lemma
3.2, there exists a minimal representation

Ψ(x) = A∗T ∗(x⊗ 1α)TA|H1 , x ∈ K(H1),

where T = IH1 ⊗ T0 = (λijIH1) for some T0 = (λij) ∈ B(`2, `2α). Since
the representation Ψ(x) = V ∗(x⊗ 1β)V is also minimal, there exists [24] a

unitary operator U : Hα
1 → Hβ

1 such that UTA|H1 = V and U(x ⊗ 1α) =
(x⊗ 1β)U , x ∈ K(H1). Hence U = IH1 ⊗U0, where U0 is a unitary operator

in B(`2α, `
2
β), and thus α = β. Let Ũ = IH2 ⊗ U0, T̃ = IH2 ⊗ T0 and

B = Ũ T̃A ∈ B(H2, H
α
2 ). Then

B|H1 = Ũ T̃A|H1 = Ũ T̃ (p⊗ 1)A|H1 = UTA|H1 = V.

Let Φ′ : K(H2)→ B(H2) be given by

Φ′(x) = B∗(x⊗ 1α)B, x ∈ K(H2),(4)

and let E = (K(H1)⊗ 1)AH1. As in Lemma 3.1, the projection Q from H∞1
onto E has the form IH1 ⊗ Q0, where Q0 is a projection in B(`2). Since
Ap = (p⊗ 1)Ap, it follows that

(IH2 ⊗Q⊥0 )Ap = (p⊗Q⊥0 )Ap = (IH1 ⊗Q⊥0 )Ap = 0,

where the last equality follows from the fact that ApH2 ⊆ E . We thus have

(IH2 ⊗Q⊥0 )A = (IH2 ⊗Q⊥0 )Ap⊥.(5)

Define Φ′′ : K(H2)→ B(H2) by

Φ′′(x) = A∗(IH2 ⊗Q⊥0 )(x⊗ 1)(IH2 ⊗Q⊥0 )A, x ∈ K(H2).(6)

Then for every x in K(H2), we have that

Φ′(x) + Φ′′(x)

= A∗T̃ ∗Ũ∗(x⊗ 1α)Ũ T̃A+A∗(IH2 ⊗Q⊥0 )(x⊗ 1)(IH2 ⊗Q⊥0 )A

= A∗(x⊗ 1)T̃ ∗Ũ∗Ũ T̃A+A∗(x⊗ 1)(IH2 ⊗Q⊥0 )A

= A∗(x⊗ 1)(IH2 ⊗Q0)A+A∗(x⊗ 1)(IH2 ⊗Q⊥0 )A

= A∗(x⊗ 1)A = Φ(x),

where the third equality follows from Remark 3.3 and the fact that Ũ is
unitary.

Now let Φ′′′ be the restriction of Φ′′ to K(H2 	 H1) so that, for x ∈
K(H2 	H1), we have

Φ′′′(x) = A∗(IH2 ⊗Q⊥0 )(x⊗ 1)(IH2 ⊗Q⊥0 )A|H2	H1

= A∗(IH2 ⊗Q⊥0 )(x⊗ 1)(IH2 ⊗Q⊥0 )A.
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Using Lemma 3.2 , find a minimal representation

Φ′′′(x) = A∗(IH2 ⊗Q⊥0 )R∗(x⊗ 1δ)R(IH2 ⊗Q⊥0 )A,

where R is a bounded operator from (H2 	H1)∞ into (H2 	H1)δ that can
be expressed as R = IH2	H1 ⊗ R0 for some R0 in B(`2, `2δ), δ being an at
most countable cardinal. By construction, R(x ⊗ 1)R∗ = x ⊗ 1δ. Letting
C = R(IH2 ⊗Q⊥0 )A, equation (5) implies that

Cp⊥ = C(7)

and hence we have that for each x ∈ K(H2),

C∗(x⊗ 1δ)C = p⊥C∗(x⊗ 1δ)Cp
⊥ = C∗(p⊥xp⊥ ⊗ 1δ)C

= Φ′′(p⊥xp⊥) = A∗(IH2 ⊗Q⊥0 )(p⊥xp⊥ ⊗ 1)(IH2 ⊗Q⊥0 )A

= p⊥A∗(IH2 ⊗Q⊥0 )(x⊗ 1)(IH2 ⊗Q⊥0 )Ap⊥

by (5)
= A∗(IH2 ⊗Q⊥0 )(x⊗ 1)(IH2 ⊗Q⊥0 )A = Φ′′(x).

The operators B : H2 → Hα
2 and C : H2 → (H2 	H1)δ can be expressed

as columns of length α and δ, respectively; say, B = (b1, b2, . . . )
t and C =

(c1, c2, . . . )
t, where bi, cj ∈ D′2 for all i, j. Let U be the column operator

with entries B and C, that is,

U = (Bt, Ct)t.(8)

Suppose that
∑α

i=1 λibi+
∑δ

j=1 µjcj = 0 for some (λi)
α
i=1 ∈ `2α, (µj)

δ
j=1 ∈ `2δ .

Then
∑α

i=1 λipbi+
∑δ

j=1 µjpcj = 0. Since Cp = 0, we have that
∑α

i=1 λipbi =

0 and since B|H1 = V implements a minimal representation, we have by
Lemma 3.1 that the entries of Bp are strongly independent and hence λi = 0

for all i. Consequently,
∑δ

j=1 µjcj = 0 and the minimality of the represen-
tation associated with C implies, again by Lemma 3.1, that µj = 0 for all
j.

Let

b′i =

{
bi, 1 ≤ i ≤ α,
0, i > α,

c′i =

{
ci, 1 ≤ i ≤ δ,
0, i > δ,

and set W = (b′1, c
′
1, b
′
2, c
′
2, . . . )

t — note that in the case in which both
cardinals are finite the sequence has finitely many non-zero terms. In the
case where both α and δ are infinite, the series

∑∞
i=1 b

∗
ixbi + c∗ixci is easily

seen to converge weak* to
∑∞

i=1 b
∗
ixbi +

∑∞
i=1 c

∗
ixci. It now follows that

Φ(x) = W ∗(x⊗ 1α+δ)W , x ∈ K(H2). By Lemma 3.1, the representation of
Φ implemented by W is minimal. We note that

W |H1 = (b′1, c
′
2, b
′
2, c
′
2, . . . )

t|H1 = (b1, 0, b2, 0, . . . )|H1 = B|H1 = V,

where we used (7) to obtain the second equality and the third equality
follows as a result of the identification made at the start of the proof. �

Next we show how Theorem 3.4 can be applied to obtain a result closely
related to Theorem 2.2.
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Theorem 3.5. Let D ⊆ B(H) be a unital C*-subalgebra, (pn)∞n=1 ⊆ D be an
increasing sequence of projections such that ∨n∈Npn = IH , Hn = pnH and
Dn = pnDpn. Let Φ : ∪∞n=1K(Hn)→ ∪∞n=1B(Hn) be a map such that Φ|K(Hn)

is completely positive and Dn-bimodular. Then there exists a family (ai)
∞
i=1

of closed operators affiliated with D′ such that Hn ⊆ dom(ai), n, i ∈ N and

Φ(x) =

∞∑
i=1

a∗ixai, x ∈ ∪∞n=1K(Hn),

where the series converges in the weak∗-topology.

In the course of the proof we will encounter operators Vn : Hn → (Hn)αn

and Vn+1 : Hn+1 → (Hn+1)αn+1 for cardinals αn ≤ αn+1; we will identify
throughout the proof (Hn)αn with the subspace (Hn)αn ⊕ 0 of (Hn)αn+1 .

Proof. Let H0 = ∪∞n=1Hn and Φn : K(Hn) → B(Hn) be the map given by
Φn(x) = Φ(x)|Hn for x ∈ K(Hn). Using analogous notation and repeating
the process used to obtain the operator U in identity (8), we can form an
operator Un : Hn → ⊕ni=1(Hn	Hi−1)δi , where δi is at most countable, such
that Φn(x) = U∗n((x⊗ 1δ1)⊕ (x⊗ 1δ2)⊕ · · · ⊕ (x⊗ 1δn))Un, x ∈ K(Hn), and
Un|Hm = Um for all m ≤ n. By construction, Un is equal to(

b
(n)
1,1 , b

(n)
1,2 , · · · , b

(n)
2,1 , b

(n)
2,2 , · · · , · · · , b

(n)
n,1, b

(n)
n,2, · · ·

)t
,

where b
(t)
r,s ∈ D′pt. Since b

(n)
r,s |Hn−1 = b

(n−1)
r,s , we can form a densely defined

operator br,s by letting br,s|Hn = b
(n)
r,s . Standard arguments show that br,s is

closable and its closure is affiliated with D′. Define an operator V : H0 →
(H0)∞ by

V = (a1, a2, . . . )
t def= (b1,1, b1,2, b2,1, b1,3, b2,2, b3,1, b1,4, . . . )

t ,

where we have, if necessary, extended V to an infinite column operator.
From this we can obtain an operator Vn : Hn → (Hn)αn by observing that
when restricted to Hn, all terms bi,j for which i > n vanish, and each of
the remaining αn terms is such that bi,j |Hn = bni,j . This also implies that

Vn|Hm = Vm for all m ≤ n (in the sense described before the start of the
proof). It can easily be seen that Vn is a bounded column operator and

V ∗n (x⊗ 1αn)Vn = U∗n(x⊗ 1αn)Un.

Finally, given x ∈ ∪∞n=1K(Hn), fix n such that x ∈ K(Hn) and notice that

Φ(x) = Φn(x) = U∗n(x⊗1αn)Un = V ∗n (x⊗1αn)Vn = V ∗(x⊗1)V =

∞∑
i=1

a∗ixai.

In particular, since Vn is bounded, this series indeed converges in the weak∗

topology. �
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Remark 3.6. In the course of the proof of Theorem 3.5 it was shown that

br,spn = b
(n)
r,s ∈ D′pn for all r, s ∈ N, n ≥ r; thus, aipn ∈ D′pn for all i, n ∈ N.

It is easily observed that Hn ⊆ dom a∗i and that a∗i pn = (aipn)∗. This will
be used in the sequel.

4. Positive local Schur multipliers

In this section we examine positive local Schur multipliers. The main
results of the section are the characterisation contained in Theorem 4.4,
the lifting established in Corollary 4.7 and the characterisation result of
Theorem 4.11.

We begin by recalling some definitions, known results and notational con-
ventions. We assume throughout the section that (X,µ) and (Y, ν) are
standard (σ-finite) measure spaces, equip X × Y with the product measure
and denote by B(X) the linear space of all measurable functions on X. If
f ∈ L∞(X), we write Mf for the operator of multiplication by f acting on
L2(X), and let D = {Mf : f ∈ L∞(X)}. The characteristic function of a
measurable subset α ⊆ X will be denoted by χα. For each k ∈ L2(X × Y ),
we let Tk ∈ C2(L2(X), L2(Y )) be the operator given by

(Tkξ)(y) =

∫
X
k(x, y)ξ(x)dµ(x), ξ ∈ L2(X)

and Sϕ : C2(L2(X), L2(Y )) → C2(L2(X), L2(Y )) be the map given by
Sϕ(Tk) = Tϕk, k ∈ L2(X × Y ). Recall that the map Sϕ is called a (measur-
able) Schur multiplier if Sϕ is bounded in ‖ · ‖op.

We next recall some notions from [1] and [29]. Two subsets E,F ⊆ X are
called equivalent (written E ∼ F ) if their symmetric difference is a null set.
A subset of X × Y is said to be a rectangle if it has the form α× β, where
α ⊆ X and β ⊆ Y are measurable. A subset E ⊆ X×Y is called marginally
null if E ⊆ (X0 × Y ) ∪ (X × Y0), where µ(X0) = ν(Y0) = 0. We call two
subsets E,F ⊆ X×Y marginally equivalent (and write E ' F ) if their sym-
metric difference is marginally null. A measurable function ϕ : X × Y → C
is called ω-continuous if ϕ−1(U) is marginally equivalent to a countable
union of rectangles, for every open subset U ⊆ C. A countable family of
rectangles is called a covering family for X × Y if its union is marginally
equivalent to X ×Y . We say that a function ϕ ∈ B(X ×Y ) is a local Schur
multiplier if there exists a covering family {κm}∞m=1 of rectangles in X × Y
such that ϕ|κm is a Schur multiplier, for all m ∈ N.

Proposition 4.1. For a function ϕ ∈ B(X ×X), the following are equiva-
lent:

(i) ϕ is a local Schur multiplier;
(ii) there exists an increasing sequence (Xn)∞n=1 of measurable subsets of

X such that X \ (∪∞n=1Xn) is null and ϕ|Xn×Xn is a Schur multiplier
for each n.
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Proof. (i)⇒(ii) Suppose that ϕ is a local Schur multiplier and let {κm}m∈N
be a covering family for X × X such that ϕ|κm is a Schur multiplier. By
[29, Lemma 3.4], there exists a pairwise disjoint family {Yi}∞i=1 ⊆ X such
that ∪∞i=1Yi is equivalent toX and each Yi×Yj is contained in a finite union of
sets from {κm}∞m=1. By [29, Lemma 2.4 (ii)], ϕ|Yi×Yj is a Schur multiplier.
Let Xn = ∪ni=1Yi; then (Xn)n∈N is an increasing sequence, Xn × Xn =
∪ni,j=1Yi × Yj and ∪∞n=1Xn ∼ ∪∞i=1Yi ∼ X. Again by [29, Lemma 2.4 (ii)],

ϕ|Xn×Xn is a Schur multiplier.
(ii)⇒(i) The collection (Xn×Xn)∞n=1 is a covering family and thus ϕ is a

local Schur multiplier. �

We will denote by C2(H)+ the cone of all positive operators in C2(H). In
view of Proposition 4.1, it is natural to introduce the following notions.

Definition 4.2. Let (X,µ) be a standard measure space and ϕ be a mea-
surable function on X ×X. We say that ϕ is a

(i) positive Schur multiplier if the map Sϕ is bounded in ‖ · ‖op and leaves
C2(L2(X))+ invariant;

(ii) positive local Schur multiplier if there exists an increasing sequence
(Xn)∞n=1 of measurable subsets of X such that X \ (∪∞n=1Xn) is null and
ϕ|Xn×Xn is a positive Schur multiplier for every n.

It is immediate that every positive Schur multiplier is a Schur multiplier
and that every positive local Schur multiplier is a local Schur multiplier.

R. R. Smith has established an automatic complete boundedness result
for maps, modular over C*-algebras with a cyclic vector [30, Theorem 2.1].
We will need the following automatic complete positivity result; we omit its
proof since it follows closely the ideas in Smith’s proof.

Lemma 4.3. Let H be a Hilbert space, E ⊆ B(H) be an operator system,
and B ⊆ B(H) be a C*-algebra with a cyclic vector such that BEB ⊆ E.
Then every positive B-bimodule map Φ : E → B(H) is completely positive.

We can now formulate and prove one of the main results of this section.

Theorem 4.4. A function ϕ ∈ B(X×X) is a positive local Schur multiplier
if and only if there exists a measurable function a : X → `2 such that
ϕ(x1, x2) = (a(x1), a(x2))`2 almost everywhere on X ×X.

Proof. We let H0 = ∪∞n=1L
2(Xn). Suppose that ϕ is a positive local Schur

multiplier and let (Xn)∞n=1 be the sequence of subsets of X from Def-
inition 4.2 (ii). We can, moreover, assume that µ(Xn) < ∞. Recall
that D = {Mf : f ∈ L∞(X)}. The projection pn from L2(X) onto L2(Xn),
n ∈ N, is given by pn = MχXn . We identify C2(L2(Xn)) with a subspace of

C2(L2(Xn+1)) in the natural way. Let

Sϕ : ∪∞n=1C2

(
L2(Xn)

)
→ ∪∞n=1C2

(
L2(Xn)

)
be the map given by Sϕ(Tk) = TχXn×Xnϕk, k ∈ L2(Xn × Xn). We have
that the restriction Sϕ|C2(L2(Xn)) is positive, bounded and Dn-bimodular.
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Hence Sϕ satisfies the conditions of Theorem 2.2 (or those of Theorem
3.5), and thus there exists a linear operator V : H0 → H∞0 of the form
V = (Ma1 ,Ma2 , . . . )

t, where ai ∈ B(X), i ∈ N, such that

Sϕ(Tk) = V ∗(Tk ⊗ 1)V =
∞∑
i=1

M∗aiTkMai for all Tk ∈ ∪∞n=1C2

(
L2(Xn)

)
.

Fix n ∈ N. We have that esssupx∈Xn
∑∞

i=1 |ai(x)|2 = ‖
∑∞

i=1M|aiχXn |2‖ =

‖V pn‖2. It follows that
∑∞

i=1 |ai(x)|2 < ∞ for almost all x ∈ X. Thus the
function a : X → `2 given by a(x) = (ai(x))∞i=1, x ∈ X, is well-defined up to
a null set.

Let ψ =
∑∞

i=1 ai ⊗ ai. Then

Tϕk = Sϕ(Tk) =

∞∑
i=1

M∗aiTkMai = Tψk, k ∈ L2(Xn ×Xn), n ∈ N,

This implies ϕ = ψ almost everywhere on Xn ×Xn; as a consequence,

ϕ(x1, x2) =
∞∑
i=1

ai(x1)ai(x2) = (a(x1), a(x2))`2 ,

for almost all (x1, x2) ∈ ∪∞n=1(Xn×Xn), and hence for almost all (x1, x2) ∈
X ×X.

Conversely, suppose that there exists a function a : X → `2, say a(x) =
(ai(x))i∈N, x ∈ X, such that ϕ(x1, x2) = (a(x1), a(x2))`2 almost everywhere
on X×X. Let Xn = {x ∈ X : ‖a(x)‖22 ≤ n} and observe that ∪∞i=1Xn ∼ X.
For k ∈ L2(Xn × Xn), we have that Sϕ(Tk) =

∑∞
i=1M

∗
aiχXn

TkMaiχXn and

hence Sϕ|C2(L2(Xn)) is a bounded positive map. Consequently, ϕ is a positive
local Schur multiplier. �

Remark. Let (X,µ) be a standard measure space and µ′ be a measure
defined on the same σ-algebra and absolutely continuous with respect to
µ. If ϕ is a positive local Schur multiplier with respect to µ then it is so
with respect to µ′. Indeed, this follows immediately from the representation
given in Theorem 4.4.

Following the proof of Theorem 4.4 and using Stinespring’s theorem, we
also note the following, rather well-known, description of positive Schur
multipliers.

Corollary 4.5. A function ϕ ∈ L∞(X ×X) is a positive Schur multiplier
if and only if there exists a measurable function a : X → `2 such that
esssupx∈X ‖a(x)‖ < ∞ and ϕ(x1, x2) = (a(x1), a(x2))`2 almost everywhere
on X ×X.

Let ϕ ∈ L∞(X ×X) be a positive Schur multiplier. Then there are po-
tentially many functions a : X → `2 satisfying the conclusion of Theorem
4.5; we call them representing functions for ϕ. For each such function, say,
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a(x) = (ai(x))i∈N (x ∈ X), we have a corresponding Stinespring representa-
tion of the completely positive map Sϕ:

(9) Sϕ(T ) =

∞∑
i=1

M∗aiTMai , T ∈ K(L2(X)).

Let us call a a minimal representing function for ϕ if the representation (9)
of Sϕ is minimal.

Proposition 4.6. Let ϕ ∈ L∞(X ×X) be a positive Schur multiplier and
a : X → `2 be a representing function for ϕ. The following are equivalent:

(i) a is minimal;
(ii) for each null set M ⊆ X, the set {a(x) : x ∈ X \M} has dense linear

span in `2.

Proof. Suppose that ai, i ∈ N, are the coordinate functions of a. By Lemma
3.1, a is not a minimal representing function for ϕ if and only if {Mai}i∈N
is not strongly independent, if and only if there exists 0 6= (λi)i∈N ∈ `2 such
that

∑∞
i=1 λiMai = 0, if and only if there exists a null set M ⊆ X such that∑∞

i=1 λiai(x) = 0 for all x ∈ X \M , if and only if there exists a null set
M ⊆ X such that the linear span of {a(x) : x ∈ X \M} is not dense in
`2. �

The following lifting result for positive Schur multipliers now follows from
Theorem 3.4.

Corollary 4.7. Let ϕ ∈ L∞(X × X) be a positive Schur multiplier, and
let Y ⊆ X be a measurable subset. Suppose that a : Y → `2 is a minimal
representing function for ϕ|Y×Y . Then there exists a minimal representing
function b : X → `2 ⊕ `2 for ϕ such that b(x) = a(x)⊕ 0 for all x ∈ Y .

Let X be a set and ϕ : X × X → C be a function. We recall that
ϕ is called positive definite if (ϕ(xi, xj))

N
i,j=1 is a positive matrix for all

x1, x2, . . . , xN ∈ X and all N ∈ N. In the proof of the following proposition,
we will use the following well-known fact: If X is a locally compact Hausdorff
space, µ is a regular Borel measure on X, K ⊆ X is compact and k ∈
L2(X ×X) is continuous and positive definite on K ×K then the (Hilbert-
Schmidt) operator Tk is positive on L2(K,µ).

The motivation behind part (ii) of the next theorem is [22, Theorem 9.3],
where a relation between ω-continuous measurable Schur multipliers and
classical Schur multipliers is established.

Theorem 4.8. Let ϕ ∈ B(X ×X).
(i) ϕ is a positive local Schur multiplier if and only if ϕ is a local Schur

multiplier and ϕ is equivalent to a positive definite function.
(ii) Suppose that ϕ is ω-continuous. Then ϕ is a positive local Schur

multiplier if and only if there exist a null set X0 and an increasing sequence
{Yk} of measurable subsets of X such that X \X0 = ∪∞k=1Yk and ϕ|Yk×Yk is
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a positive Schur multiplier with respect to the counting measure on Yk, for
every k.

Proof. (i) Suppose that ϕ is a positive local Schur multiplier. By Theorem
4.4, there exists a measurable function a : X → `2 such that ϕ(x1, x2) =
(a(x1), a(x2))`2 almost everywhere on X×X. On the other hand, a straight-
forward verification shows that the function (x1, x2) → (a(x1), a(x2))`2 is
positive definite.

Conversely, suppose that ϕ is a local Schur multiplier and a positive def-
inite function. We may assume that X is a σ-compact metric space and
µ is a regular Borel measure. Let (Xn)n∈N be the increasing sequence of
measurable sets arising from Proposition 4.1. Let k =

∑m
i=1 fi⊗ fi for some

f1, . . . , fm ∈ L2(Xn), so that the operator Tk is a positive and of finite rank.
Fix ε > 0. A successive application of Lusin’s Theorem shows that there
exists a compact subset Kε ⊆ Xn, whose complement in Xn has measure
less than ε, such that fi|Kε is continuous, for each i = 1, . . . ,m. On the other
hand, by [29, Proposition 3.2], ϕ is ω-continuous and by Lusin’s Theorem
for ω-continuous functions [22, Theorem 8.3], there exists a compact set
Lε ⊆ X, whose complement has measure less than ε, such that ϕ is continu-
ous on Lε×Lε. It follows that ϕk is positive definite on (Kε∩Lε)×(Kε∩Lε),
and by the result stated before the statement of the theorem, PεTϕkPε ≥ 0,
where Pε is the projection of multiplication by the characteristic function
of Kε ∩ Lε. Letting ε tend to zero, we get that Tϕk ≥ 0. Since ϕ|Xn×Xn
is a Schur multiplier, it follows that ϕ|Xn×Xn is a positive Schur multiplier.
Thus, ϕ is a positive local Schur multiplier.

(ii) Let a : X → `2 be the measurable function from Theorem 4.4 such that
ϕ(x, y) = (a(x), a(y))`2 almost everywhere. Since both functions in the last
equation are ω-continuous, we have [29] that they are equal marginally al-
most everywhere. Hence, there exists a null set Z0 such that ϕ is positive def-
inite on (X\Z0)×(X\Z0). Letting Zk = {x ∈ X \ Z0 : ‖a(x)‖2 ≤ k}, by [22,
Theorem 9.3] we can find null sets Z0

k ⊆ Zk such that that ϕ|(Zk\Z0
k)×(Zk\Z0

k)

is a Schur multiplier with respect to the counting measure. Then, setting
Y0 = ∪∞k=1Z

0
k , Yk = Zk\Y0 and X0 = Z0∪Y0, the sequence (Yk)k∈N is increas-

ing with union X\X0. Finally, by part (i) of the present theorem, ϕ|Yk×Yk is
a positive Schur multiplier when Yk is equipped with the counting measure.

The converse follows from part (i) and [22, Theorem 9.3]. �

Example 4.9. Let ϕ(x, y) = 1/(x + y), x, y ∈ R+, (x, y) 6= (0, 0). Then
ϕ ∈ B(R+ × R+, λ× λ), where λ is the Lebesque measure. We have

ϕ(x, y) =

∫ +∞

0
e−sxe−syds = (e−·x, e−·y)L2(R+)

and ‖e−sx‖2L2(R+) = 1/(2x). Expressing the function e−·x in terms of an

orthonormal basis of L2(R+), we can find a measurable function a : R+ → `2

such that ϕ(x, y) = (a(x), a(y))`2 almost everywhere and ‖a(x)‖`2 < ∞ for
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almost all x ∈ R+. Hence ϕ(x, y) is a positive local Schur multiplier. It is
not a Schur multiplier since ϕ /∈ L∞(R+ × R+).

The previous example is taken from the theory of operator monotone
functions. It is known that if a function f is continuously differentiable
on an interval (a, b) then f is operator monotone on (a, b) if and only if
the divided difference f̌ , given by f̌(x, y) = (f(x) − f(y))/(x − y), x 6= y
and f̌(x, y) = f ′(x), x ∈ (a, b), is positive definite on (a, b) × (a, b) (see,
for example, [14], where a proof of this fact is given using Schur multiplier
techniques). Operator monotonicity is related to positivity of local Schur
multipliers in the following way.

Proposition 4.10. Let f : (a, b) → C be a continuously differentiable
function. The divided difference f̌ is a positive local Schur multiplier on
(a, b) × (a, b) with respect to any choice of a standard Borel measure on
(a, b) if and only if f is operator monotone.

Proof. Suppose that f̌ is a positive local Schur multiplier on (a, b) × (a, b)
with respect to every standard Borel measure. Let F ⊆ (a, b) be a finite set
and let µF be the measure given by µF (α) = |α ∩ F | for a Borel set α. Our
assumption implies that there exists a Borel set Y ⊆ (a, b) with F ⊆ Y such
that f̌ |Y×Y is a positive Schur multiplier with respect to µF . It follows that
f̌ |F×F is a positive Schur multiplier (with respect to µF ), and hence f̌ |F×F
is a positive matrix. Since this is true for all finite sets F ⊆ (a, b), we have
that f̌ is a positive definite function. By [14], f is operator monotone.

Conversely, suppose that f is operator monotone and let µ be a standard
Borel measure on (a, b); by [14], f̌ is positive definite. Let Un = {x ∈ (a, b) :
f ′(x) < n}; then ∪n∈NUn = (a, b). Let n ∈ N and F ⊆ Un be a finite
subset. Since f̌ |F×F is a positive matrix, the norm of its corresponding
Schur multiplication is bounded by maxx∈F f

′(x), which does not exceed n.
It follows that f̌ |Un×Un is a Schur multiplier with respect to the counting
measure. By [22, Theorem 9.3], f̌ |Un×Un is a Schur multiplier with respect
to µ. Hence, f̌ is a local Schur multiplier with respect to µ. Now Theorem
4.8 shows that f̌ is a positive local Schur multiplier with respect to µ. �

4.1. Positive Multipliers of Toeplitz type. We conclude this section
by considering positive multipliers of Toeplitz type. Let G be a locally
compact group equipped with left Haar measure and N be the map sending
a measurable function f : G → C to the function Nf : G × G → C, given
by Nf(s, t) = f(st−1); we call the functions of the form Nf functions of
Toeplitz type. It was shown in [6] that if f ∈ L∞(G) then Nf is a Schur
multiplier if and only if f is equivalent to an element of M cbA(G) (the latter
being the set of all completely bounded multipliers of the Fourier algebra
A(G) of G). On the other hand, it was proved in [29] that if G is abelian
then Nf is a local Schur multiplier if and only if f is equivalent to a function
that belongs locally to A(G) at every point of the group G. In particular,
examples were given of local Schur multipliers ϕ of Toeplitz type that are not
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Schur multipliers. The following proposition shows that this cannot happen
with the additional assumption that ϕ be positive, provided G is amenable.

Theorem 4.11. Let G be an amenable locally compact group, f : G → C
be a measurable function and ϕ = Nf . The following are equivalent:

(i) ϕ is a positive Schur multiplier;
(ii) ϕ is a positive local Schur multiplier;
(iii) f is equivalent to a positive definite function from B(G).

Proof. (i)⇒(ii) is trivial.
(ii)⇒(iii) By [29, Corollary 4.5], ϕ is equivalent to an ω-continuous func-

tion. By [29, Proposition 7.3], f is equivalent to a continuous function
g : G→ C. We may thus assume that f is itself continuous.

Let T (G) = L2(G)⊗̂L2(G), where by ⊗̂ we denote the projective tensor
product. The space T (G) can be naturally identified with the trace class on
L2(G). We let T (G)+ be the cone in T (G) corresponding to the positive trace
class operators under this identification; we have that T (G)+ consists of all
elements of the form

∑∞
i=1 ξi ⊗ ξi, with

∑∞
i=1 ‖ξi‖22 < ∞. Let P : T (G) →

A(G) be the contraction given by P (ξ ⊗ η)(s) = (λsξ, η), ξ, η ∈ L2(G).
Since Nf is a positive local Schur multiplier, there exists an increasing

sequence (Xn)n∈N of measurable subsets of G such that the set G\(∪n∈NXn)
is null and Nf |Xn×Xn is a positive Schur multiplier. Clearly, ∪n∈NL2(Xn)
is dense in L2(G). Since G is amenable, [23, Lemma 7.2] shows that there
exists a net (uα)α, with uα = P (ξα ⊗ ξα), ‖ξα‖ ≤ 1, which converges to the
constant function 1 uniformly on compact subsets. Since P is contractive
and the uniform norm is dominated by the norm of A(G), we can replace
uα by a function of the form vα = P (ηα ⊗ ηα), with ηα having support in
some Xn, n ∈ N.

We have that (Nf)(ηα ⊗ ηα) ∈µ×µ T (G)+ for each α. Applying the
mapping P , we obtain that fvα ∈ A(G)+ for each α. Let K = {s1, . . . , sn} ⊆
G. We have that

(f(sis
−1
j )vα(sis

−1
j ))i,j →α (f(sis

−1
j ))i,j .

Since the matrix (f(sis
−1
j )vα(sis

−1
j ))i,j is positive for each α, it follows that

(f(sis
−1
j ))i,j is positive as well. Thus, f is a positive definite function. Since

f is continuous, we have that f ∈ B(G) (see [11]).
(iii)⇒(i) Since G is amenable, B(G) coincides with the algebra of all com-

pletely bounded multipliers of A(G). The fact that Nf is a Schur multiplier
follows from [6] (see also [32]). The proof of Theorem 4.8 now shows that
Nf is a positive Schur multiplier. �

Corollary 4.12. (i) The space of all local Schur multipliers coincides with
the linear span of the cone of all positive local Schur multipliers.

(ii) The space of all local Schur multipliers of Toeplitz type is strictly
larger than the linear span of the cone of all positive local Schur multipliers
of Toeplitz type.
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Proof. (i) follows from [29, Theorem 3.6], Theorem 4.4 and a standard po-
larisation argument.

(ii) follows from Theorem 4.11 and the fact that the space of local Schur
multipliers of Toeplitz type is strictly larger than that of Schur multipliers
of Toeplitz type (see [29, Remark 7.11]). �

It was shown in [16] that if a continuous function ϕ of Toeplitz type,
defined on the direct product G × G, where G is a locally compact group,
is a Schur multiplier, then the functions a, b : G → `2 in the representation
ϕ(x, y) = (a(x), b(y))`2 , can be chosen to be continuous. It is thus natural
to ask the following questions:

Question 4.13. Let X be a locally compact topological space equipped with
a regular Borel measure. Suppose that ϕ : X×X → C is a continuous Schur
multiplier.

(i) Do there exist continuous bounded functions a, b : X → `2 such that
ϕ(x, y) = (a(x), b(y))`2 for all x, y ∈ X?

(ii) If ϕ is moreover positive, can one choose a continuous bounded func-
tion a : X → `2 such that ϕ(x, y) = (a(x), a(y))`2 for all x, y ∈ X?

(iii) Assuming that ϕ is a local (resp. positive local) Schur multiplier, can
a similar choice be made with a and b (resp. a) not necessarily bounded?

5. Local operator multipliers

In this section we introduce local operator multipliers, a non-commutative
version of local Schur multipliers, and characterise them, generalising the
characterisation of local Schur multipliers given in [29]. The suitable setting
for local operator multipliers is that of von Neumann algebras, as opposed
to the setting of C*-algebras, which was used to define and study universal
multipliers in [22] and [18]. We therefore start by collecting some notions
and results from [18] in a form convenient for our purposes.

Let H and K be Hilbert spaces and let Hd be the dual Banach space of
H; note that Hd is conjugate linear isometric to H via the map ∂ : H → Hd

sending x ∈ H to the element xd ∈ Hd given by xd(y) = (y, x), y ∈ H.
If T ∈ B(H,K), we let T d ∈ B(Kd, Hd) be the dual operator of T . If
M ⊆ B(H) is a von Neumann algebra, we denote by Mo the opposite von
Neumann algebra ofM; we have thatMo ⊆ B(Hd) consists of the elements
of the form ad, where a ∈ M. In particular, B(H)o = B(Hd). By H ⊗K
we denote the Hilbert space tensor product of H and K. If M and N are
von Neumann algebras, we denote byM⊗̄N the (spatial weak* closed) von
Neumann algebra tensor product. Thus, B(Hd ⊗K) = B(H)o⊗̄B(K).

We let θ : Hd ⊗K → C2(H,K) be the canonical isomorphism sending an
elementary tensor xd ⊗ y to the rank one operator given by θ(xd ⊗ y)(z) =
(z, x)y, z ∈ H. This allows us to equip Hd ⊗K with an “operator” norm:

‖ξ‖op
def
= ‖θ(ξ)‖op, ξ ∈ Hd ⊗K.
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For ϕ ∈ B(Hd ⊗ K), we define Sϕ : C2(H,K) → C2(H,K) to be the
mapping given by Sϕ(θ(ξ)) = θ(ϕξ), ξ ∈ Hd ⊗ K. We call ϕ an opera-
tor multiplier if there exists C > 0 such that ‖Sϕ(θ(ξ))‖op ≤ C‖θ(ξ)‖op,
for every ξ ∈ Hd ⊗ K. If ϕ is an operator multiplier, then the map-
ping Sϕ extends by continuity to a mapping (denoted in the same way)
Sϕ : K(H,K) → K(H,K) and, by taking the second dual, to a mapping
S∗∗ϕ : B(H,K) → B(H,K). An element ϕ ∈ B(Hd ⊗ K) will be called a
completely bounded operator multiplier, or a c.b. operator multiplier, if Sϕ
is completely bounded with respect to the operator space structure arising
from the inclusion C2(H,K) ⊆ K(H,K). If M ⊆ B(H) and N ⊆ B(K) are
von Neumann algebras, we will denote by Mcb(M,N ) the collection of all
c.b. operator multipliers inMo⊗̄N and call its elements completely bounded
M,N -multipliers, or c.b. M,N -multipliers. We note that Mcb(M,N ) is a
subalgebra of Mo⊗̄N .

We next recall [5] that the extended Haagerup tensor product B(K) ⊗eh

B(H) consists of the sums of the form
∑∞

i=1 bi ⊗ ai, where (bi)i∈N (resp.
(ai)i∈N) is a bounded row (resp. column) operator. There exists a one-to-
one correspondence between the elements of B(K)⊗ehB(H) and the normal
completely bounded maps on B(H,K): to the element u =

∑∞
i=1 bi ⊗ ai ∈

B(K)⊗ehB(H), there corresponds the map Φu given by Φu(x) =
∑∞

i=1 bixai,
x ∈ B(H,K).

Let ϕ ∈ Mcb(M,N ). The mapping S∗∗ϕ is normal and completely bounded;
by the previous paragraph, there exists a (unique) element uϕ ∈ B(K) ⊗eh

B(H), called the symbol of ϕ [17], such that S∗∗ϕ = Φuϕ . Moreover, [17,
Proposition 5.5] shows that uϕ ∈ N ⊗ehM. In particular, the map S∗∗ϕ is
N ′,M′-modular.

In the next proposition, we describe the elements u ∈ N ⊗ehM that are
symbols of c.b. operator multipliers.

Proposition 5.1. The mapping Λ : ϕ→ Φuϕ is a bijective homomorphism

from Mcb(B(H),B(K)) onto the space of all normal completely bounded
maps on B(H,K)) which leave C2(H,K) invariant.

Proof. Suppose that ϕ ∈ Mcb(B(H),B(K)). The map Φuϕ is the unique
normal extension of Sϕ : C2(H,K) → C2(H,K) to B(H,K). It follows that
Φuϕ preserves C2(H,K).

Conversely, suppose that Φ is a normal completely bounded map which
leaves C2(H,K) invariant. Let ϕ : Hd ⊗K → Hd ⊗K be the map given by
ϕξ = θ−1(Φ(θ(ξ))). Clearly, ϕ is a linear map. We show that it has a closed
graph. Suppose ξk → 0 and ϕξk → η in the norm of Hd ⊗ K. It follows
that ‖θ(ξk)‖op → 0 and hence ‖Φ(θ(ξk))‖op → 0. Thus, ‖θ(ϕξk)‖op → 0 and
hence η = 0.

It follows from the Closed Graph Theorem that ϕ ∈ B(Hd ⊗ K). By
its definition, Sϕ = Φ|C2(H,K) and it follows that ϕ ∈ Mcb(B(H),B(K))
and Φuϕ = Φ. The fact that Λ is a homomorphism is immediate from its
definition. �
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We recall that if A1 and A2 are C*-algebras, then the Haagerup norm of
an element ω of A1 �A2 is defined by

‖ω‖h = inf

{∥∥∥∑ aia
∗
i

∥∥∥ 1
2
∥∥∥∑ b∗i bi

∥∥∥ 1
2

: ω =
∑

ai ⊗ bi
}
.

We also let [22]

‖ω‖ph = inf

{∥∥∥∑ aia
∗
i

∥∥∥ 1
2
∥∥∥∑ bib

∗
i

∥∥∥ 1
2

: ω =
∑

ai ⊗ bi
}
.

Let (ϕν)ν ⊆ B(Hd)� B(K) be a net and ϕ ∈ B(Hd ⊗K). We write ϕ =
m− limν ϕν if the net (ϕν)ν converges semi-weakly to ϕ (that is, 〈ϕν(h1 ⊗
k1), h2 ⊗ k2〉 → 〈ϕ(h1 ⊗ k1), h2 ⊗ k2〉 for every h1, h2 ∈ Hd and k1, k2 ∈ K),
and there exists C > 0 such that ‖ϕν‖ph ≤ C for all ν.

We first note the following fact, whose proof is straightforward.

Remark 5.2. Let M⊆ B(H) and N ⊆ B(K) be von Neumann algebras. If
(ϕν)ν∈J ⊆M�N and ϕ = m− limν ϕν , then ϕ ∈M⊗N .

The following characterisation of c.b. M,N -multipliers follows from [18]
and [17]:

Theorem 5.3. An element ϕ ∈ Mo⊗̄N is a c.b. M,N -multiplier if and
only if there exists a net (ϕν) ⊆Mo �N such that ϕ = m− limν ϕν .

We now introduce local operator multipliers as a non-commutative ver-
sion of local Schur multipliers. To motivate our definition, recall that, in
the commutative case, local Schur multipliers are defined within the class
of all measurable, in general unbounded, functions on the direct product
of two measure spaces. The natural non-commutative analogue of this al-
gebra is the set of all operators affiliated with the tensor product of two
von Neumann algebras. On the other hand, the non-commutative analogue
of measurable subsets are projections. We are thus naturally led to de-
fine an M′,N ′-covering family (where M ⊆ B(H) and N ⊆ B(K) are von
Neumann algebras) as a family {pn ⊗ qm}n,m∈N, where {pn}n∈N ⊆ M′ and
{qm}m∈N ⊆ N ′ are families of pairwise commuting projections, such that
∨n∈Npn = I and ∨m∈Nqm = I.

Suppose that M⊆ B(H) is a von Neumann algebra, p is a projection in
the commutant of M, and a : dom(a) → H is a densely defined operator.
We will consider pa as the operator with domain dom(a) given by (pa)(ξ) =
p(a(ξ)), ξ ∈ dom(a). By writing pa ∈ Mp, we will mean that the operator
pa is bounded on dom(a) and its extension to H, which will again be denoted
by pa, belongs to the von Neumann algebra Mp.

Definition 5.4. Given a von Neumann algebra M⊆ B(H) and projections
{pi}i∈I ⊆ M′, we say that a densely defined operator a : H → H is associ-
ated with M with respect to {pi} if piH ⊆ dom(a) and pia, api ∈ Mpi for
all i ∈ N.
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The set of all such operators will be denoted by AssocM{pi}. It is not
difficult to see that, under the assumptions in Definition 5.4, pia = api,
i ∈ N.

Definition 5.5. Let M⊆ B(H) and N ⊆ B(K) be von Neumann algebras.
An element ϕ ∈ Aff(Mo⊗̄N ) will be called a local M,N -multiplier if there
exists an M′,N ′-covering family {pn ⊗ qm}n,m∈N such that ϕ(pd

n ⊗ qm) ∈
Mcb(Mpn,N qm) for all n,m ∈ N.

Lemma 5.6. LetM⊆ B(H) and N ⊆ B(K) be von Neumann algebras and
ϕ ∈Mo⊗̄N .

(i) If p1, p2 ∈ M′ and q1, q2 ∈ N ′ are projections, p1 ≤ p2, q1 ≤ q2, and
ϕ(pd

2 ⊗ q2) ∈ Mcb(Mp2,N q2) then ϕ(pd
1 ⊗ q1) ∈ Mcb(Mp1,N q1).

(ii) If (ei)
n
i=1 ⊆ M′, (fj)

m
i=1 ⊆ N ′ are sequences of pairwise orthogonal

projections such that ∨ni=1ei = I, ∨mj=1fj = I and ϕ(ed
i⊗fj) ∈ Mcb(Mei,N fj)

for each i, j, then ϕ ∈ Mcb(M,N ).

Proof. (i) follows from the fact that Sϕ(pd1⊗q1) = Sϕ(pd2⊗q2)|C2(p1H,q1K).

(ii) Since Sϕ =
∑

i,j Sϕ(pdi⊗qj)
, we have that ‖Sϕ‖cb ≤

∑
i,j ‖Sϕ(pdi⊗qj)

‖cb.

�

Proposition 5.7. LetM⊆ B(H) and N ⊆ B(K) be von Neumann algebras
and suppose that {ei} ⊆ M′ and {fj} ⊆ N ′ are at most countable families of
pairwise orthogonal projections. Let E be the linear span of ∪i,jfjB(H,K)ei,
and Φ : E → B(H,K) be a linear map. The following are equivalent:

(i) Φ leaves fjB(H,K)ei invariant, and the restriction Φi,j
def
= Φ|fjB(H,K)ei :

fjB(H,K)ei → fjB(H,K)ei is fjN ′fj , eiM′ei-modular, normal and com-
pletely bounded;

(ii) there exist families {ak}k∈N ⊆ AssocM{ei} and {bk}k∈N ⊆ AssocN{fj}
such that (eiak)k∈N defines a bounded column operator for each i, (bkfj)k∈N
defines a bounded row operator for each j, and Φ(x) =

∑∞
k=1 bkxak, for all

x ∈ E.

Proof. (ii)⇒(i) Suppose that x = fjxei for some i, j ∈ N. We have that
ak =

∑∞
i=1 akei, where the sum converges pointwise on ∪∞i=1eiH. A similar

formula holds for bk. By assumption, for every i (resp. j) and for every

k, there exists ãk,i ∈ M (resp. b̃k,j ∈ N ) such that eiak = eiãk,i (resp.

bkfj = b̃k,jfj). Let c ∈ eiM′ei and d ∈ fjN ′fj . We have that

Φ(dxc) =

∞∑
k=1

bk(fjdfjxeicei)ak =

∞∑
k=1

b̃k,j(fjdfjxeicei)ãk,i

=
∞∑
k=1

fjdfj b̃k,jfjxeiãk,i(eicei) = d

( ∞∑
k=1

bkxak

)
c.
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These identities show that Φ leaves fjB(H,K)ei invariant, and that its
restriction to fjB(H,K)ei is a normal completely bounded fjN ′fj , eiM′ei-
modular map.

(i)⇒(ii) For each i and j, let Ai,j = (aki,j)k∈N ∈M∞,1(Mei) be a bounded

column operator and Bi,j = (bki,j)k∈N ∈M1,∞(N fj) be a bounded row oper-
ator such that

Φ(x) =
∞∑
k=1

bki,jxa
k
i,j = Bi,j(x⊗ 1)Ai,j , x ∈ fjB(H,K)ei.

Assume, without loss of generality, that ‖Ai,j‖ = ‖Bi,j‖, and let αi,j =
‖Ai,j‖2. By [29, Lemma 3.5], there exist vectors ri = (ri(l))l∈N, sj =
(sj(l))l∈N ∈ `2 such that (ri, sj)`2 = αi,j .

Let N1, N2, N3 and N4 be copies of N, set Λ = N1 × N2 × N3 × N4 and
equip Λ with the lexicographic order, where each Ns, s = 1, 2, 3, 4, is given
its natural order.

Let A (resp. B) be the column (resp. row) operator given by

A =

(
iri(l)

j
√
αi,j

aki,j

)
(i,j,k,l)∈Λ

(resp. B =

(
jsj(l)

i
√
αi,j

bki,j

)
(i,j,k,l)∈Λ

).

We note that A (resp. B) does not necessarily define a bounded column
(resp. row) operator, but it can be regarded as a linear operator densely
defined on [∪i∈NeiH] (resp. [∪j∈NfjK]). Note that each entry of A (resp.
B) is a bounded operator on H (resp. K).

We have that the non-zero entries of ei0A are the elements of the family(
i0ri0 (l)

j
√
αi0,j

aki0,j

)
j,k,l∈N

, and hence

‖ei0A‖ ≤ i0‖ri0‖2

 ∞∑
j=1

1

j2

1/2

.

Similarly, each non-zero entry of B(fj0 ⊗ 1) lies in N fj0 and

‖B(fj0 ⊗ 1)‖ ≤ j0‖sj0‖2

 ∞∑
j=1

1

j2

1/2

.

Suppose that x = fj0xei0 . Then

Φ(x) =
∞∑
k=1

bki0,j0xa
k
i0,j0 = Bi0,j0(x⊗ 1)Ai0,j0

=

∞∑
i,j=1

∞∑
k=1

ijαi,j
1

i
√
αi,j

bki,jx
1

j
√
αi,j

aki,j

=
∑

(i,j,k,l)∈Λ

jsj(l)

i
√
αi,j

bki,jx
iri(l)

j
√
αi,j

aki,j .
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The claim now follows by choosing any enumeration of Λ. �

Lemma 5.8. Let H and K be Hilbert spaces and ϕ ∈ B(Hd ⊗K). Then

(Sϕ(θ(ξ))h1, h2)K = (ϕξ, hd
1 ⊗ h2)Hd⊗K , ξ ∈ Hd ⊗K,hd

1 ∈ Hd, h2 ∈ K.

Proof. Using the identity

tr
(
Tθ
(
hd

1 ⊗ h2

))
= (Th1, h2)K , T ∈ C2(H,K),

we see that(
ϕξ, hd

1 ⊗ h2

)
Hd⊗K =

(
θ (ϕξ) , θ

(
hd

1 ⊗ h2

))
C2 = tr

(
θ (ϕξ) θ

(
hd

1 ⊗ h2

))
= (θ (ϕξ)h1, h2)K = (Sϕ (θ(ξ))h1, h2)K .

�

We will need the following lemma; since the statement is rather well-
known, the proof is omitted.

Lemma 5.9. Let M ⊆ B(H) be a von Neumann algebra. If ϕ ∈ Aff(M)
and p ∈M′ is a projection such that ϕp is bounded and pϕp = ϕp, then (the
closure of the operator ϕp which is again denoted by) ϕp belongs to Mp.

Theorem 5.10. Let ϕ ∈ Aff(Mo⊗̄N ). Then the following are equivalent:
(i) ϕ is a local M,N -multiplier;
(ii) there exist increasing sequences (pn)n∈N ⊆ M′ and (qn)n∈N ⊆ N ′ of

projections such that ∨pn ⊗ qn = I and ϕ(pd
n ⊗ qn) ∈ Mcb(Mpn,N qn) for

every n ∈ N;
(iii) there exist families (ei)i∈N ⊆ M′ and (fj)j∈N ⊆ N ′ of mutually

orthogonal projections such that ∨i∈Nei = I and ∨j∈Nfj = I, and a net
(ϕν)ν ⊆ AssocMo⊗̄N{edi⊗fj} such that ϕν(ed

i ⊗ fj) ∈ Moed
i � N fj and

ϕ(ed
i ⊗ fj) = m− limν ϕν(ed

i ⊗ fj), for all i, j.

Proof. (i)⇒(iii) Let {pn ⊗ qm}n,m∈N ⊆ M′ ⊗ N ′ be a covering family of

projections such that ϕ(pd
n ⊗ qm) ∈ Mcb(Mpn,N qm) for all n and m. Let

e1 = p1 and ei+1 = pi+1(I − ei), i ≥ 1. Define the projections fj , j ∈ N,
similarly. We have that ∨i∈Nei = I and ∨j∈Nfj = I.

Fix i and j; then ei ⊗ fj ≤ pi ⊗ qj and by Lemma 5.6 (i), ϕ(ed
i ⊗ fj) ∈

Mcb(Mei,N fj) for all i, j. Let E = [∪i,jfjB(H,K)ei] and let Φ : E →
E be the map whose restriction to fjB(H,K)ei coincides with S∗∗

ϕ(edi⊗fj)
.

By Proposition 5.7, there exist operators (ak)k∈N ⊆ AssocM{ei}i∈N and
(bk)k∈N ⊆ AssocN{fj}j∈N such that (eiak)k∈N defines a bounded column

operator for each i, (bkfj)k∈N defines a bounded row operator for each j,
and Φ(x) =

∑∞
k=1 bkxak, for all x ∈ E .

Let ϕN =
∑N

k=1 a
d
k ⊗ bk. Then ϕN (ed

i ⊗ fj) belongs to (Moed
i ) � (N fj)

for all i, j, and

sup
N∈N
‖ϕN (ed

i ⊗ fj)‖ph ≤ sup
N∈N

∥∥∥∥∥
N∑
k=1

bkfj ⊗ eiak

∥∥∥∥∥
h

≤ ‖(eiak)k∈N‖‖(bkfj)k∈N‖.
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For all ξ ∈ (ed
iH

d) ⊗ (fjK) and all hd ∈ Hd, k ∈ K, we have, by Lemma
5.8, that

(10) (Φ(θ(ξ))h, k)K = (ϕ(ed
i ⊗ fj)ξ, hd ⊗ k)Hd⊗K .

On the other hand, if ΦN = S∗∗ϕN , then we have that

(11) ΦN (θ(ξ))→N→∞ Φ(θ(ξ)) weakly, for all ξ ∈ (ed
iH

d)⊗ (fjK).

It follows from (10) and (11) that (ϕN (ed
i ⊗ fj))∞N=1 converges semi-weakly

to ϕ(ed
i ⊗ fj), for all i, j. Thus, ϕ(ed

i ⊗ fj) = m− limN ϕN (ed
i ⊗ fj) and (iii)

is established.
(iii)⇒(ii) By Remark 5.2 and Theorem 5.3, ϕ(ed

i ⊗fj) is a c.b. Mei,N fj-
multiplier for all i, j ∈ N. Let pn = ∨ni=1ei and qn = ∨nj=1fj . The claim now

follows from Lemma 5.9 and Lemma 5.6 (ii).
(ii)⇒(i) We have that (pn⊗qm)n,m∈N is a covering family. By Lemma 5.6

(i), ϕ(pd
n ⊗ qm) ∈ Mcb(Mpn,N qm) for all n,m ∈ N. �

We next include analogous versions of some of the previous results for the
case where the respective projections are central. The first one is a “local”
version of the well-known representation theorem for completely bounded
bimodular maps (see [13,30]).

Proposition 5.11. Let M⊆ B(H) and N ⊆ B(K) be von Neumann alge-
bras, (Pn)n∈N ⊆M∩M′ and (Qn)n∈N ⊆ N ∩N ′ be increasing sequences of
projections, E = ∪n∈NQnB(H,K)Pn and Φ : E → B(H,K) be a linear map.
The following are equivalent:

(i) the restriction of Φ to QnB(H,K)Pn is completely bounded, normal
and (NQn)′, (MPn)′-modular;

(ii) there exist families (ak)k∈N ⊆ M and (bk)k∈N ⊆ N such that
(Pnak)k∈N (resp. (bkQn)k∈N) is a bounded column (resp. row) operator
for every n and Φ(x) =

∑∞
k=1 bkxak, for every x ∈ E.

Proof. (i)⇒(ii) Let e1 = P1 (resp. f1 = Q1) and ei = Pi+1 − Pi (resp.
fj = Qj+1 − Qj), i ≥ 2 (resp. j ≥ 2). It is clear that Φ|fjB(H,K)ei :

fjB(H,K)ei → B(H,K) is completely bounded and N ′fj ,M′ei-modular.
Let

A =

(
iri(l)

j
√
αi,j

aki,j

)
(i,j,k,l)∈Λ

and B =

(
jsj(l)

i
√
αi,j

bki,j

)
(i,j,k,l)∈Λ

be the operators from the proof of Proposition 5.7. Since the projections Pn
and Qn, n ∈ N, are central, we have that the entries of A (resp. B) belong
toM (resp. N ). The estimates from the proof of Proposition 5.7 show that

‖PnA‖2 ≤
n∑
d=1

d2‖rd‖22
∞∑
j=1

1

j2
and ‖B(Qn ⊗ 1)‖2 ≤

n∑
d=1

d2‖sd‖22
∞∑
j=1

1

j2
.

The conclusion follows.
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(ii)⇒(i) is immediately obtained, via the discussion prior to Proposition
5.1, from the observation that akPn ∈ MPn and bkQn ∈ NQn, and conse-
quently

∑∞
k=1(bkQn)⊗ (akPn) ∈ (NQn)⊗eh (MPn). �

Call a localM,N -multiplier central if the covering family {pn⊗qm}n,m∈N
associated with ϕ as in Definition 5.5 can be chosen from the centre of
M′⊗̄N ′.

Corollary 5.12. Let ϕ ∈ AffMo⊗N . Then the following are equivalent:
(i) ϕ is a central local M,N -multiplier;
(ii) there exist a net (ϕν) ⊆ AffMo⊗̄N and increasing sequences of pro-

jections (Pn)n∈N ⊆M∩M′ and (Qn)n∈N ⊆ N∩N ′ such that ∨n∈NPn⊗Qn =
I, ϕν(P d

n ⊗Qn) ∈ MoP d
n �NQn and ϕ(P d

n ⊗Qn) = m− limν ϕν(P d
n ⊗Qn)

for every n ∈ N.

Proof. (ii)⇒(i) follows from Theorem 5.3 and Lemma 5.6.
(i)⇒(ii) It is easy to see that the operators ϕN from the proof of Theorem

5.10 can, under the assumption of the corollary, be chosen from Mo � N .
The conclusion follows by letting Pn = ∨ni=1ei and Qn = ∨nj=1fj , where (ei)

and (fj) are the sequences of projections from Theorem 5.10. �

6. Positive local operator multipliers

In this section, we study completely positive local operator multipliers.
The main result is the characterisation Theorem 6.4. Throughout this sec-
tion, we fix a von Neumann algebra M.

Definition 6.1. Let M ⊆ B(H) be a von Neumann algebra and ϕ ∈
Mo⊗M. We say that ϕ is a completely positive M-multiplier if the map
Sϕ : C2(H)→ C2(H), given by

Sϕ (θ (ξ)) = θ(ϕξ), ξ ∈ Hd ⊗H,

is completely positive and bounded in ‖ · ‖op.

Let

P(M) =

{
N∑
k=1

bdk ⊗ b
∗
k : bk ∈M, N ∈ N.

}
⊆Mo �M.

It is clear that P(M) is a cone, and it is easy to verify that if ψ ∈ P(M)
then the map Sψ is bounded and completely positive; thus, every element of
P(M) is a completely positiveM-multiplier. In the next theorem, we show
that completely positiveM-multipliers can be approximated by elements of
P(M).

Theorem 6.2. Let ϕ ∈ Mo⊗M. Then ϕ is a completely positive M-
multiplier if and only if there exists a net (ϕν)ν∈J ⊆ P(M) such that
ϕ = m− limν ϕν .
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Proof. Suppose that ϕ is a completely positiveM-multiplier. By definition,
Sϕ is bounded and completely positive and thus, by the remarks before
Proposition 5.1, it is M′-bimodular. There exists a family (ai)

∞
i=1 ⊆ M of

operators that defines a bounded column operator V such that

Sϕ(x) =
∞∑
i=1

a∗ixai, x ∈ K(H),

where the series converges in the weak∗ topology. Let ϕN =
∑N

i=1 a
d
i ⊗ a∗i ∈

P(M), N ∈ N. Now

(12) SϕN (θ(ξ))→N→∞ Sϕ(θ(ξ))

weakly for all ξ ∈ Hd ⊗ H. It follows from Lemma 5.8 that (ϕN )N∈N
converges semi-weakly to ϕ. A standard estimate shows that

sup
N∈N
‖ϕN‖ph ≤ ‖V ‖

2.

Thus, ϕ = m− limν ϕν .
Conversely, suppose that there exists a net (ϕν)ν∈J ⊆ P(M) such that

(ϕν)ν∈J converges semi-weakly to ϕ and D = supν ‖ϕν‖ph < +∞. As in
the proof of the implication (iii)⇒(ii) of Theorem 5.10, we can see that
‖Sϕ‖ ≤ D.

To obtain the complete positivity, suppose that (θ(ξij))
l
i,j=1 is a positive

element of C2(H l), where ξij ∈ Hd �H, i, j = 1, . . . , l. If h = (h1, . . . , hl) ∈
H l then

0 ≤
(
S(l)
ϕν

(
(θ (ξij))

l
i,j=1

)
h, h

)
Hn

=
l∑

i=1

 l∑
j=1

Nν∑
k=1

(aνk)∗θ(ξij)a
ν
khj , hi


H

=

l∑
i,j=1

(
θ

(
Nν∑
k=1

(aνk)d ⊗ (aνk)∗ξij

)
hj , hi

)
H

=

l∑
i,j=1

(
θ

(
Nν∑
k=1

(aνk)d ⊗ (aνk)∗ ξij

)
, θ
(
hd
j ⊗ hi

))
C2(H)

=

l∑
i,j=1

(
ϕν (ξij) , hd

j ⊗ hi
)
Hd⊗H

→
l∑

i,j=1

(
ϕ (ξij) , hd

j ⊗ hi
)
Hd⊗H

=
(
S(l)
ϕ ((θ(ξij))

l
i,j=1)h, h

)
H

and hence the map Sϕ is completely positive on the *-algebra F(H) of all
finite rank operators.
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If (θ(ξij))
l
i,j=1 ∈ Ml(C2(H))+ then (θ(ξij)) can be approximated by pos-

itive matrices of finite rank operators in the Hilbert-Schmidt norm, and
hence in the operator norm. It follows from the previous arguments that
Sϕ is completely positive on C2(H). Thus ϕ is a completely positive M-
multiplier. �

We next introduce the non-commutative version of positive local Schur
multipliers.

Definition 6.3. Let M ⊆ B(H) be a von Neumann algebra and ϕ ∈
Aff(Mo⊗M). We say that ϕ is a completely positive localM-multiplier if

(i) there exists an increasing sequence (pn)∞n=1 ⊆M′ of projections such
that ∨n∈Npn = I and ϕ ∈ AssocMo⊗M{pdn⊗pn}n∈N;

(ii) ϕ(pd
n ⊗ pn) is a completely positive Mpn-multiplier.

We note that every completely positive local M-multiplier is a local M-
multiplier. We will call the sequence (pn)n∈N of projections from Definition
6.3 an implementing sequence for ϕ.

Suppose that T : dom(T ) → H is a densely defined, closed operator
affiliated with a von Neumann algebra M ⊆ B(H). We again let T d :
(domT d) → Hd be the Banach space dual of T ; note that T d is closed
and affiliated with the opposite von Neumann algebra Mo, dom(T d) =
(domT ∗)d and T dξd = (T ∗ξ)d.

Given two densely defined, closable operators S and T , we denote by S�T
the linear operator defined on the algebraic tensor product dom(S)�dom(T )
by

(S � T )(h⊗ k) = Sh⊗ Tk, h ∈ dom(S), k ∈ dom(T ).

The operator S � T is closable [20]; by abuse of notation, we denote the
closure again by S � T . If P,Q ∈ B(H) are such that PH ⊆ dom(S) (resp.
QH ⊆ dom(T )), then

(S � T )(P �Q) = SP � TQ
is bounded and coincides with the usual tensor product SP⊗TQ of bounded
operators.

For von Neumann algebras M,N , we define

AffM�AffN =

{
m∑
k=1

Sk � Tk : Sk ∈ AffM, Tk ∈ AffN ,m ∈ N

}
.

Theorem 6.4. Let (pn)n∈N ⊆ M′ be an increasing sequence of projections
such that ∨n∈Npn = IH . An operator ϕ ∈ Aff(Mo⊗M) is a completely
positive local M-multiplier with implementing sequence (pn)n∈N if and only
if there exists a net (ϕν)ν∈J ⊆ AffMo � AffM such that, for each n ∈ N,
ϕν(pd

n � pn) ∈ P(Mpn) and ϕ(pd
n ⊗ pn) = m− limν ϕν(pd

n � pn).

Proof. Suppose that ϕ is a completely positive local M-multiplier with
an implementing sequence (pn)n∈N. By definition, ∨n∈Npn = I and, if
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Hn = pnH, the map Sϕ|C2(Hn) is bounded, completely positive and pnM′pn-
bimodular.

Since the map is bounded on C2(Hn), it can be extended to K(Hn), and
this extension preserves the bimodularity and complete positivity. Thus, by
Theorem 3.5, there exists a family {ak}∞k=1 of closable operators affiliated
withM that, as noted in Remark 3.6, are such that akpn, a

∗
kpn ∈Mpn and

Sϕ(x) =
∑∞

k=1 a
∗
kxak, for x ∈ ∪∞n=1K(Hn). Recall that (a1pn, a2pn, . . . )

t is

a bounded column operator, say Vn. We define ϕN =
∑N

k=1 a
d
k � a

∗
k, n ∈ N.

Clearly, ϕN ∈ AffMo � AffM for each N ∈ N and since akpn ∈ Mpn, it
follows that ϕN (pd

n � pn) ∈ P(Mpn).
Analogously to (12), we see that the sequence

(
SϕN |C2(Hn) (θ (ξ))

)∞
N=1

converges weakly to Sϕ|C2(Hn) (θ (ξ)). By Lemma 5.8, (ϕN (pd
n � pn))N∈N

converges semi-weakly to ϕ (pd
n ⊗ pn). As before, one can easily see that

sup
N∈N

∥∥ϕN (pd
n � pn

)∥∥
ph
≤ ‖Vn‖2.

To prove the converse, observe that Theorem 6.2 and Remark 5.2 show
that, under the stated assumptions, ϕ (pd

n ⊗ pn) is a completely positive
Mpn-multiplier for each n ∈ N. Since ∨n∈Npn = I, we have that ϕ is a
completely positive local M-multiplier. �
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