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Video Person Re-Identi�cation for Wide Area
Tracking based on Recurrent Neural Networks

Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller,

Abstract�In this paper we propose a video-based person re-
identi�cation system for wide area tracking based on a recurrent
neural network architecture. Given short video sequences of
a person, generated by a tracking algorithm, our video re-
identi�cation algorithm links these tracklets in full trajectories
across a network of non-overlapping cameras in an open-world
scenario. In our system, features are �rst extracted from each
frame using a convolutional neural network. Then, a recurrent
layer combines information across time-steps. The features from
all time-steps are �nally combined using temporal pooling to give
an overall appearance feature for the complete sequence. Our
system is trained to perform re-identi�cation using a Siamese
network architecture. Experiments are conducted on the iLIDS-
VID and PRID-2011 video re-identi�cation datasets as well as in
the DukeMTMC multi-camera tracking dataset.

Index Terms�Deep Learning, Re-identi�cation, Recurrent
Neural Networks, Wide Area Tracking.

I. INTRODUCTION

IN recent decades, more and more cameras have been
installed in public and private spaces for monitoring ac-

tivities and behaviours. While some computer vision systems
have been deployed to perform automated analysis and video
surveillance [49], [15], such deployment has been scarce,
as few systems allow for automatic large scale wide-area
monitoring [44]. This is due to a number of dif�cult problems
that must be overcome in order to extend video surveillance
from a single camera to a large network of cameras, including:
different camera con�guration, different appearance of targets
between cameras, unknown camera layout and unknown build-
ing topology, to name but a few [7], [58].

Given the above context, this paper addresses the problem of
wide area tracking with the aim of tackling the aforementioned
challenges. We de�ne wide-area tracking as the capability
to track every subject of interest through a camera network,
where the cameras have non-overlapping �elds of view and are
distributed over an unknown and arbitrary layout. By reformu-
lating the wide area tracking problem as a re-identi�cation
problem, association between the tracks of people moving
between cameras can be established regardless of changes of
in the person’s appearance caused by viewpoint and camera
con�gurations. Our proposed re-identi�cation system can be
used in conjunction with a multi-target tracking framework
to associate tracklets between non-overlapping cameras while
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incorporating spatial and temporal priors, should they be
available, to mitigate the challenges of the unknown camera
layout.

The video re-identi�cation problem entails associating
different tracks of a person as they move between non-
overlapping cameras [11]. This occurs when the video of
a person as seen in one camera must be matched against
a gallery of videos captured by a different non-overlapping
camera. The dif�culties of person re-identi�cation are due
to large appearance changes caused by environmental and
geometric variations as a person moves between cameras.

While re-identi�cation has been extensively studied for
single still images, the video-based re-identi�cation problem
has been much less studied despite its wide applicability in
multi-person, multi-camera tracking. This could be due to
several reasons including, the lack of large-scale video re-
identi�cation datasets available until recently [59], which has
made it challenging to train effective video re-identi�cation
systems.

Using video data for re-identi�cation has several important
advantages over using single images. Firstly, the video setting
is more natural since in realistic situations where person re-
identi�cation would be used, a person’s image will normally
captured by a video camera, which produces a sequence of
images rather than a single frame. More importantly, video
sequences contain person-speci�c temporal information related
to motion and gait, which has been proved to be useful for
differentiating between people or even being used as a soft
biometric [45]. By recording and making use of this temporal
information, the system may be able to disambiguate cases
that would be dif�cult given only a single image. Finally,
sequences of images contain a larger pool of samples for
each target, where each sample may have slightly different
poses, viewpoint, and background. This allows a better model
of the person’s appearance to be learned and makes training
machine learning algorithms easier. This is specially relevant
when using neural networks, which can be highly demanding
in terms of the number of training samples required.

On the other hand, the use of video for re-identi�cation also
creates new challenges, such as comparing video sequences of
arbitrary length and/or different frame-rates, the presence of
unknown partial or full occlusions within the sequences, and
the possibility of partial and cropped views rather than full-
body images due to tracking inaccuracy during video sequence
extraction.

The last problem can be mitigated by using an accurate
multi-target tracker [30] to generate accurate tracklets. These
tracklets can then be used by the video re-identi�cation
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system, assuming that the multi-target tracker has discarded
associations that are likely to be physically impossible.

The integration of re-identi�cation and trackers also allows
for the study of the open-world re-identi�cation problem,
where the probe subject may not necessarily be present in
the gallery and vice versa. While dealing with this problem is
crucial for real applications of wide-area tracking, it has been
largely ignored in the re-identi�cation literature.

II. RELATED WORK

While wide-area tracking and video re-identi�cation have
been scarcely studied, person re-identi�cation for still im-
ages has been extensively investigated. Proposed methods
for person re-identi�cation broadly fall into two categories.
The �rst of these aims to de�ne, extract and use features
that are both discriminative and invariant to environmental
and view-point changes [29], [4], [8]. The second category
employs supervised learning based methods that learn to
automatically map the raw features into a new space with
greater discriminative power [20], [18], [60]. Among the most
promising and better performing techniques in this category,
deep learning techniques [65], [6], [12] may be advantageous
as they remove the need for hand-crafted features, and give
state-of-art performance provided there is suf�cient training
data.

After features have been extracted, metric learning is widely
used in person re-identi�cation to learn a metric that empha-
sises inter-personal distance and de-emphasises intra-person
distance. The learnt metric is used to make the �nal decision
as to whether a person has been on the re-identi�ed or
not. Various methods have been proposed based on this idea
such simple Mahalanobis distance, Relaxed Pairwise Learning
(PRLM) [20], Large Margin Nearest-Neighbour (LMNN) [60],
and Relevance Component Analysis (RCA) [2].

Only a few methods for video and/or multi-shot re-
identi�cation have been described in the literature. These
include collecting interest-point descriptors over time [13],
or training classi�ers using features collected over multiple
frames [43]. Furthermore, supervised learning based methods
have also been used, such as learning a distance preserving
low-dimensional manifold [5], or learning to map between
the appearances in sequences by taking into account the dif-
ferences between speci�c camera pairs [31]. Other approaches
that explicitly model video include using a conditional random
�eld (CRF) to ensure similar images in a video sequence re-
ceive similar labels [24], or extracting space-time features [27],
[1] and then learning a ranking function that is robust to
partially corrupted sequences [59].

Deep neural networks (DNN) have been applied in most
areas of computer-vision [50], [28], [48], [55], and have
largely replaced traditional computer vision pipelines based
on hand-crafted features. Deep networks have also made an
impact in image based person re-identi�cation. Thus, DNNs
have been used to learn ranking functions based on pairs [65],
or triplets of images [6]. Specialised network architectures
have been developed for directly comparing pairs of images.
Network architectures such as the ‘Siamese network’ [12], are

used to learn a direct mapping from the raw image pixels
to a feature space where images from the same person are
close, while images from different persons are as separated.
The approach in [32] also allows comparing image pairs
while taking into account deformation. Another DNN-based
approach to re-identi�cation uses auto-encoders to learn an
invariant colour feature, whilst ignoring spatial features [57].
To address the large amount of training data inherent to
DNNs, several approaches have been proposed for improving
generalisation given limited training data [16], by using data
augmentation [38], multi-task learning [52], [3] or unsuper-
vised training [37], [9].

Within the video re-identi�cation �eld a handful of recent
architectures have been proposed to learn a feature represen-
tation for persons, based not only on spatial or appearance
features, but also on some form of temporal information.
Recurrent networks and temporal pooling [40], [62], [61],
[64] have been shown to improve performance by mod-
elling temporal information within a end-to-end trained DNN
approach. A similar idea is presented in [34], where the
spatial and temporal information is separated during learning
using a double-stream recurrent network. However, all these
approaches have been only tested in a closed-world scenario.

In this paper we propose a novel neural network archi-
tecture for wide area tracking and video based person re-
identi�cation. The network architecture uses appearance and
motion information to extract a feature representation for each
person that is invariant to illumination, angle of view, and
pose. This means that given a short video clip of a person
as seen in one camera, that person can be reacquired by
a separate non-overlapping camera. The network receives as
input a video of the colour and optical �ow information from
the cropped bounding box of a person, produced by an existing
multi-target tracker in one camera. Temporal information is
extracted using a recurrent layer and the information from
the whole input video combined using temporal pooling to
produce a �xed-size feature-representation for the whole input
sequence. The network is trained using a contrastive loss
function i.e., a Siamese architecture, to produce this invariant
feature representation. Moreover, our network is tested in the
context of open-world re-identi�cation and integrated in a
multi-target tracking framework to evaluate its potential for
wide-area monitoring.

This paper builds on the work in [40] by investigating
different recurrent network architectures such as standard
RNN, Long Short Term Memory, Gated Recurrent Unit and
con�gurations with and without residual connections, which
may allow a better representation of the temporal infor-
mation required for video re-identi�cation. In addition, a
more thorough evaluation, including results on the newly
proposed MARS dataset [66], is performed, and a broader
and more up-to-date comparison with the state of the art in
video re-identi�cation is provided. Furthermore, the video re-
identi�cation network is integrated within a single and multi-
camera tracking framework to demonstrate its value for wide
area tracking in realistic scenarios.
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Fig. 1. Our proposed video-based re-identi�cation system.

III. VIDEO RE-IDENTIFICATION METHODOLOGY

A diagram of our proposed feature extraction architecture
is shown in Fig. 1. In our architecture each frame is �rst
processed by a convolutional neural network to produce a
feature vector representing the person’s appearance at a par-
ticular instant in time. We then allow information to �ow
between time-steps by using a recurrent layer, before the
outputs from all time-steps are combined using temporal
pooling. Temporal pooling allows the network to summarise
an arbitrarily long video sequence into a single feature vector,
while the recurrent layer may allow the network to better
exploit temporal information within the sequence, before the
outputs from all time-steps are combined.

In order to train the feature extraction network to perform
re-identi�cation, we use a Siamese network architecture [12]
as shown in Fig. 1. Given a pair of sequences from the same
person, the Siamese architecture is trained to produce sequence
feature vectors that are close in feature space, while given
a pair of sequences from different persons, the network is
trained to produce sequence feature vectors that are separated
by a margin. This objective function mirrors the structure
of the re-identi�cation problem, where it must be decided
whether two images depict the same person or not. In the
following section we will explain each of the components of
our proposed network in greater detail.

A. Input
The input to the convolutional network consists of both

optical �ow and colour channels. Thus, images are converted
to the YUV colour space, before being passed to the network,
and each colour channel is normalised to have zero mean and
unit variance. Horizontal and vertical optical �ow channels
are calculated between each pair of frames using the Lucas-
Kanade algorithm [36]. The optical �ow channels are then
normalised to fall within the range -1 to 1. As a consequence,
the �rst layer of the neural network used �ve input channels,
three for colour and two for optical �ow.

While colour encodes details of a person’s appearance and
clothing, optical �ow directly encodes short-term motion,
which may include details of a person’s gait as well as

Fig. 2. The structure of our proposed CNN and recurrent layer, where r(t)

is the RNN’s state at time t and o(t) is the sequence vector output at time t.
See Section III-B and Section III-C for details.

other motion cues. By using both colour and optical-�ow
together, the network should be better able to exploit short-
term temporal information in order to improve re-identi�cation
accuracy compared with using colour alone.

B. Convolutional Network
As shown in Fig. 1, at each time-step the image is processed

by a convolutional neural network (CNN). The CNN involves
many individual processing steps, therefore for notational
simplicity we refer to the complete CNN as a function,
f = C(x), that takes an image x as input and produces
a vector f as output. In general, a CNN processes an im-
age using a series of layers, where each individual layer is
composed of convolution, pooling, and non-linear activation-
function steps. In our case, we use max-pooling and the
hyperbolic-tangent (Tanh) activation-function. Each layer of
the convolutional network therefore performs the operation
C 0(s(t)) = Tanh(Maxpool(Conv(s(t)))), where in the �rst
layer, the input, s(t), is the original image, and in deeper layers
the input is the output feature maps from the previous layer
of the CNN.

Let s = s(1):::s(T ) be a video sequence, of length T ,
consisting of whole-body images of a person, where s(t) is
the image at time t. Each image, s(t), is passed through the
CNN to produce a vector, f (t) = C(s(t)), where f (t) is the
vectorised representation of the CNN’s �nal layer activation
maps. The vector f (t) is then passed forward to the recurrent
layer (see Section III-C), where it is projected into a low-
dimensional feature-space and combined with information
from previous time-steps. Note that the parameters of the
CNN are shared across all time-steps meaning that each input
frame is processed by the same feature-extraction network.
Dropout [51] is used between the CNN and the recurrent layer
in order to reduce over-�tting. Complete details of the CNN
architecture are given Fig. 2.

C. Recurrent Network
Recurrent neural networks (RNN) address the problem

of processing an arbitrarily long time-series using a neural
network, which can be problematic for standard architectures
with a �xed number of input and output nodes. In contrast,
a RNN has feedback connections, allowing it to remember
information over time. At each time-step the RNN receives a
new input and produces an output based on both the current
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input, and information from the previous time-steps. During
training of a RNN using back-propagation-through-time, the
recurrent connections are ‘unrolled’ to create a very deep
feed-forward network [42], as shown in Fig. 1. Given the
unrolled network, the lateral connections can be seen to act as
memory, allowing information to �ow between a potentially
inde�nite number of time-steps. It is commonly accepted that
the performance of deep networks is due to hierarchical feature
extraction that takes place over many layers [17], therefore we
use a CNN to pre-process each input image into a higher-level
representation before the recurrent layer.

As video re-identi�cation involves recognising a person
from a time-series of images, the use of recurrent connections
may help to improve re-identi�cation performance by allowing
information to be passed between time-steps. By incorporating
recurrent connections between the CNN and temporal pooling
layers, we aim to better capture temporal information present
in the video sequence.

Three different recurrent networks architectures are studied
as candidates for our recurrent layer: Long Short Term Mem-
ory (LSTM) [61], Gated Recurrent Unit (GRU) [62] and our
proposed RNN layer with residual connections (RNN-r). We
also considered variants of the LSTM and GRU with residual
connections [63]. The use of residual connections has shown
promise in both conventional feed-forward networks [14] and
with recurrent networks [63].

As described in Section III-B, f (t) is the vectorized output
of the CNN’s �nal layer activation maps, for the image s(t)

observed at time t. Our proposed RNN layer is de�ned as
follows:

o(t) = Wif (t) +Wsr(t�1) (1)
r(t) = Tanh(o(t)) (2)

The output, o(t) 2 Re�1, at each time-step is a linear com-
bination of the vectors, f (t) 2 RN�1, containing information
on the current input image, and, r(t�1) 2 Re�1, containing
information on the RNN’s state at the previous time-step.
The output is computed using the fully-connected layers,
Wi 2 Re�N and Ws 2 Re�e, respectively, where e is the
dimensionality of the feature embedding-space, and N is the
dimension of the vectorised representation of the CNN’s �nal
layer activation maps. Note that the parameter matrix Wi
is non-square, meaning that the CNN’s �nal-layer activation
maps are projected to a vector in a lower-dimensional feature
embedding space. The RNN state, r(t), is initialised to the
zero-vector during the �rst time-step, r(0), and between time-
steps is passed through the Tanh non-linear function.

We note that our proposed RNN layer has some similarities
to residual networks. There is a direct path, with no non-
linearities, only a single linear layer, for information to �ow
from the CNN’s �nal layer activation maps, through the
temporal-pooling layer, to the feature representation used for
re-identi�cation. The recurrent connections are only used to
modify this information �ow additively, as appropriate.

In general, at each time-step the RNN produces two outputs:
the vector r(t) 2 Re�1, containing the RNN’s current state,
which will be used during the next time-step, and, o(t), the

RNN’s output at time t, which is passed to the temporal-
pooling layer. Note that Dropout [51] is used between the
CNN and the recurrent layer in order to reduce over-�tting.

D. Temporal Pooling
As a �nal step, our re-identi�cation architecture adds a

temporal pooling layer. The purpose of this layer is two-fold.
Firstly, it allows for the aggregation of information across all
time steps, thus avoiding bias towards later time-steps [54],
[21]. This is specially relevant in re-identi�cation, since it
may reduce the RNN’s effectiveness when used to summarise
the relevant information over a full sequence. Discriminative
frames may appear anywhere in the sequence, not just near the
end, in particular if occlusions or partial views appear when
the target leaves the scene. Secondly, the temporal pooling
layer aims to capture longer-term information present in the
sequence to the one encoded in the optical �ow or recorded
by the RNN.

In the temporal pooling layer, after forward propagation
of a sequence of images, the appearance features produced
by the combined CNN and recurrent layer for all time-
steps, fo(1) : : : o(T )g, are aggregated to give a single feature
representing the whole sequence. We propose two approaches
to temporal pooling: In the �rst, mean-pooling is used over
the temporal dimension to produce a single feature vector v
representing the person’s appearance averaged over the whole
input sequence, as follows:

vs =
1
T

TX

t=1

o(t) (3)

In the second, max-pooling over the temporal dimension is
used to select the maximum activation of each element of the
appearance feature vector:

vi
s = max([o(1);i; o(2);i; :::; o(T );i]) (4)

where vi
s is the i’th element of the vector vs and

[o(1);i; o(2);i; :::; o(T );i] are i’th elements of the appearance vec-
tor across the temporal dimension. We now write the complete
feature extraction network as a function R(s) = vs, that takes
as input a time-series of person images, s, and produces a
feature vector vs as output, representing the person’s appear-
ance over the whole input sequence. This architecture allows
sequences of arbitrary length to be compared by comparing
each sequence’s feature vector, rather than comparing the
individual images at each time-step.

E. Training Strategy
In this section we explain how the previously described

network can be trained to act as a feature extractor, suitable
for re-identi�cation and wide area tracking.

1) Metric Learning: The proposed network is trained to
act as a feature extractor using the Siamese network archi-
tecture [12]. The Siamese network architecture consists of
two sub-networks with identical weights. When the network
is presented with a pair of inputs, the sub-networks map
the pair of inputs to a pair of feature vectors, which are
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then compared using Euclidean distance. During training the
Siamese network is shown similar and dissimilar input pairs,
and it must learn to map those inputs to a feature space where
similar inputs are close and dissimilar inputs are separated by
a margin. Concretely, for video-based person re-identi�cation
we would like to map image-sequences from the same person
to feature vectors that are close, and map sequences from
different people to feature vectors that are widely separated.

Given a pair of sequences (si; sj), where each sequence has
been processed using the feature extraction network to give
sequence feature vectors, vi = R(si) and vj = R(sj), we can
write the Siamese network training objective as a function of
the feature vectors vi and vj as follows:

E(vi; vj) =

(
1
2 jjvi � vj jj2 i = j
1
2 [max(m� jjvi � vj jj; 0)]2 i 6= j

(5)

where jjvi�vj jj2 is the Euclidean distance between the feature
vectors. When the sequences are from the same person i.e.,
i = j, the objective encourages the features vi and vj to be
close, as measured by Euclidean distance, while for sequences
from different persons i.e., i 6= j, the objective encourages
the features to be separated by a margin m. During testing,
features can be extracted for novel sequences, not observed
during training, and whose identity is new and unknown,
and these features can be compared using Euclidean distance,
where a lower Euclidean distance indicates the sequences are
more similar.

2) Joint Identi�cation and Veri�cation: Similar to the ap-
proach suggested in [53] for face recognition and in [41], [3]
for full-body re-identi�cation, we train the feature extraction
network to satisfy both the Siamese objective and to predict
the person’s identity. Using the sequence feature vector, v,
output by the feature extraction network, R, we can predict
the identity of the person in the sequence using the standard
cross-entropy loss, or softmax function, which is de�ned as
follows:

I(v) = P (q = cjv) =
exp(Wc v)P
k exp(Wk v)

(6)

where there are a total of K identities, q is the identity of the
person, and Wc and Wk refer to the cth and kth column of
W , the softmax weight matrix, respectively. As an aside, we
have found that jointly training for identi�cation and Siamese
cost is crucial for convergence. We can now de�ne the overall
training objective Q for a single pair of sequences, which
jointly optimizes the Siamese cost and the identi�cation cost
as follows:

Q(s1; s2) = E(R(s1); R(s2)) + I(R(s1)) + I(R(s2)) (7)

Where taking a similar approach to [53], we weight the iden-
ti�cation cost and Siamese cost equally. The above network
can be trained end-to-end using back-propagation-through-
time (details of our training parameters can be found in
section V). During training with back propagation through
time, all recurrent connections are unrolled to create a deep
feed-forward graph, where the weights of the recurrent layer
and CNN are shared between all time-steps [42]. After training

we discard the Siamese and identi�cation cost functions and
retain R() for use as a feature extractor, where the feature
vectors extracted by R() can be directly compared using
Euclidean distance.

IV. WIDE AREA TRACKING FRAMEWORK

A multi-target tracking algorithm based on network �ow and
linear programming, ELP [39], is used as baseline to evalu-
ate the performance of our video re-identi�cation algorithm
within a conventional tracking framework. ELP is a two-stage
tracking framework, where individual detections dk 2 D are
merged to create tracklets �i 2 T in the �rst stage, and then
tracklets T = [�1:::�i:::�N ] are merged in the second stage
to deal with occlusions, gaps, and other detection problems.
In this formulation, a tracklet is de�ned as an ordered set of
detections �i = [d1:::dk:::dK ], and the goal of the ELP tracker
is to �nd the optimal set of N tracklets T � = [�1:::�N ] which
best explain the detections i.e. the set of tracklets with the
maximum posterior probability given the detection set:

T � = arg max
T

P (T jD) = arg max
T

Y

k

P (dkjT )
Y

i

P (�i)

(8)
The ELP tracker formulation translates Eq. 8 into an equiv-

alent minimum-cost network-�ow problem, where detections,
in the �rst ELP stage, and tracklets in the second ELP stage,
are modelled as graph nodes, and the cost of associating nodes
i ad j is modelled as graph edges with associated costs Ci;j .
Thus, the optimal set of tracklets can be found by solving:

T � = arg max
T

X

i

Cifi+
X

i

Ci;jfi;j+
X

i

Cs;ifs;i+
X

i

Ci;rfi;r

(9)
where s and r are the source and sink vertexes of the graph and
fi;j 2 [0; 1] are �ags along the edges that allow introducing
constraints to ensure valid tracking solutions, such as mutual
exclusion at the starting and ending detections of each tracklet:

fs;i + fi � 1 fi;r + fi � 1 (10)

and enforce conservation of �ow at each detection:

fs;i + fi =
X

j

fi;j fi;r + fi =
X

j

fj;i (11)

Two modi�cations are performed to the original ELP track-
ing system. Firstly, the cost function of the second stage is
modi�ed to use primarily the dissimilarity between the video
re-identi�cation feature vectors generated by our network vs
associated to tracklet �s. This modi�cation aims to validate
the performance of our features for tracklet association within
a single camera �eld of view c. Given two tracklets � c

i and � c
j

that have been generated by the �rst stage and observed by the
same camera c, their feature vectors vi and vj are generated by
feeding the bounding boxes associated to the tracklets into our
video re-identi�cation network. Thus, the linking cost between
both tracklets is measured by the Euclidean distance between
their corresponding feature vectors:

E(vi; vj) = jjvi � vj jj2 (12)
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Secondly, we add a third stage to the ELP tracker that allows
tracklets to be linked between non-overlapping cameras. To
achieve this aim, tracklets observed by different cameras are
modelled as nodes of a new graph and a third minimum-cost
network �ow problem is solved. Given two tracklets � c1

i and
� c2

j that have been generated by the �rst stage and observed
by different cameras c1 and c2, the association cost Ci;j can
also be computed by the Euclidean distance between their
respective feature vectors vi and vj .

However, unlike the standard re-identi�cation problem for-
mulation, where all probe sequences have a corresponding
gallery sequence, wide area tracking is an open-world prob-
lem. This means it is possible that the probe sequence will
have no correspondence in the gallery and vice versa. To cope
with this possibility two extra terms are added to the cost
function. Firstly, tracklets will not be associated if the time
gap between them �Ti;j is larger than a temporal threshold
� ~Tmax. Secondly, association between tracklets from different
cameras will only be considered if their appearance similarity
is smaller than a con�dence threshold Emax. As a result,
the �nal cost functions can be formulated using the linear
programming notation as follows for the second stage:

C2nd
i;j = C(E(vi; vj); 1) + C(�Ti;j ;� ~Tmax) (13)

and for the third stage:

C3rd
i;j = C(E(vi; vj); Emax) + C(�Ti;j ;� ~Tmax) (14)

being

C(x; y; ) = 1� exp�
r
x
y

(15)

Since no modi�cation is performed to the ELP �rst stage,
the cost function to link detections into tracklets is kept the
same as in the original proposal [39]:

C1st
i;j = C(E(di; dj); Dmax) + C(�Ti;j � 1;�Tmax) (16)

V. EXPERIMENTS

A. Video Re-identi�cation
In this section we evaluate our approach to video re-

identi�cation on two different datasets: iLIDS-VID [59] and
PRID-2011 [18]. The iLIDS-VID dataset contains 300 per-
sons, where each person is represented by two video sequences
captured by non-overlapping cameras. The sequences range in
length from 23 to 192 frames. The PRID-2011 dataset contains
749 persons, captured by two non-overlapping cameras, with
sequences lengths of 5 to 675 frames. Following the protocol
used in [59], we only consider the �rst 200 persons, who
appear in both cameras.

For these experiments each dataset was randomly split into
50% of persons for training and 50% of persons for testing. All
experiments were repeated 10 times with different test/train
splits and the results averaged to ensure stable results. The
hyper-parameters of the convolutional network were set to
the same values as in [38], [41], optimised for single-shot re-
identi�cation on the Viper re-identi�cation dataset [11]. And
based on [38], the margin in the Siamese cost function was set
to 2, and the feature embedding-space dimension was set to

128, which is equal to the resulting dimensionality given by
the last convolutional layer. The network was trained for 500
epochs using stochastic gradient descent with a learning rate
of 1e-3, and a batch size of one, alternating between showing
the Siamese network positive and negative sequence pairs. A
full epoch consisted of showing all positive sequence pairs and
an equal number of negative pairs, random sampled from all
training persons.

Given 150 persons with a maximum sequence length of 192
frames, training for 500 epochs takes approximately one day
using an Nvidia GTX-980 GPU. Re-identi�cation can then be
performed ef�ciently, as only the new sequence must be passed
through the network to produce a feature vector. Passing a
single image through our network to produce a feature vector
takes 0.0012s i.e. �830 images per second can be processed.
The appearance of a person after their full video sequence
has been processed by the network is represented by a single
vector of length 128. This means a large gallery can be stored
with a small memory footprint.

Pre-computed feature vectors are stored for all gallery se-
quences and can be ef�cient compared with the new sequence
(i.e. a new vector of size 128) using a single matrix vector
product. Assuming a gallery of 1000 persons, stored as a
matrix of size 1000x128, comparison of a new feature vector
with the gallery requires only 0.1ms.

Positive and negative sequence pairs consist of two full
sequences of arbitrary length from different cameras, showing
the same person or different persons respectively. During
training, sub-sequences of k = 16 consecutive frames were
used for computational reasons, where a different subset of 16
consecutive frames over the full sequence length was randomly
selected at each epoch. During testing we consider the �rst
camera as the probe and the second camera as the gallery, as
in [59].

Data augmentation in the form of cropping and mirroring
was applied to increase the diversity of the training sequences,
and for a given sequence the same augmentation was applied
to all frames during each presentation to the network. During
testing data augmentation was also applied to the probe and
gallery sequences, and the similarity scores between sequences
averaged over all the augmentation conditions, as in [22].

1) Feature Type and Recurrent Connections: In this exper-
iment we investigate some of the main architectural choices of
our proposed system: the use of recurrent connections, and the
choice of input channels. Training and testing of the network
was performed with recurrent connections either disabled or
enabled, and with either colour features only, or colour and
optical �ow features together. The results of this experiment
are presented in Fig. 3 as CMC curves for the iLIDS-VID and
PRID-2011 datasets.

The results show that the use of recurrent connections
improves performance on both datasets regardless of the
features types used, compared to the network without recurrent
connections. For both datasets the best performance occurs
when recurrent connections are enabled, and optical �ow and
colour features are used together. Performance is lowest for
both datasets when recurrent connections are disabled and
colour features are used alone. This suggests that our choice
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Fig. 3. CMC curves for iLIDS-VID and PRID-2011 datasets, comparing the network trained and tested on with/without recurrent connections, and with
colour and optical �ow input, or colour input only. Note, the vertical axis in each �gure have different scales.

to explicitly embed short term and medium term temporal
information into the network architecture through the use of
optical �ow and a recurrent layer respectively, improves re-
identi�cation performance. For the iLIDS-VID dataset this
bene�t is more obvious, as there is a clear separation be-
tween the performance of different methods, while for PRID-
2011 dataset the performance tends to be similar, as well
as very high, after rank �ve. Qualitative examination of the
data suggests that the iLIDS-VID dataset has more cluttered
backgrounds and occlusion, showing a higher complexity than
PRID-2011, where the subjects are more distinct. This lower
complexity may explain why all variants of our proposed
method perform similarly on the PRID-2011 dataset after the
candidates with similar appearance, who are more likely to
be confused, are grouped together in the �rst �ve ranks and
upwards.

2) Temporal Pooling: In section III-D we proposed two
methods for temporal-pooling of appearance information over
a sequence to give a representation of the sequence as a single
feature vector: mean-pooling and max-pooling.

In this experiment we compare re-identi�cation performance
when the network has been trained and tested with either
mean-pooling or max-pooling, and with the recurrent con-
nections disabled to make the effect of the different pooling
methods clearer. We also consider a baseline method [38] for
computing a similarity-score between sequences that processes
each frame individually using a single-frame CNN trained
using a Siamese architecture and whose individual frame
outputs are combined into a single decision without mean-
pooling: The similarity between the sequences is then taken as
the average Euclidean distance between corresponding frames.
This single-shot CNN is exposed to all the data from the video
sequences available in training, and trained using pairs of still-
images, rather than sequence pairs, where a different single
frame over the full sequence length was randomly selected at
each epoch. In this experiment training and testing was carried
out using the iLIDS-VID dataset.

The CMC curves of the two pooling methods and the
baseline approach are shown in Fig. 4. It can be seen that
mean-pooling performs better than both max-pooling and the
baseline method. These results are interesting as they show

that using mean-pooling to represent the whole sequence as
a single feature vector leads to better performance than the
baseline method which considers each frame individually.
They also shows the utility of considering all the time steps
equally important in the decision by using mean pooling, as
opposed to max-pooling where only the feature value in the
temporal step with the largest activation is employed. These
results suggest that using mean-pooling over the temporal
sequence of features may allow the network to better cope with
noise and/or occlusions, and produces a single robust feature
vector to compress and represent the person’s appearance over
a period of time.

Fig. 4. CMC curves comparing different methods of computing the similarity
between sequences. Two temporal pooling architectures, mean-pooling and
max-pooling, are compared with a baseline method without temporal pooling.

3) Recurrent Network Type: In this section the choice
of recurrent network architecture is explored. Six different
recurrent networks were tested: our proposed RNN with
residual connections (RNN-r), a linear layer with no recurrent
connections (no RNN), Long Short Term Memory (LSTM),
Long Short Term Memory with a residual connection (LSTM-
r), a Gated Recurrent Unit (GRU) and a Gated Recurrent Unit
with residual connection (GRU-r).

Three-fold cross-validation was used as the evaluation
strategy on the two video re-identi�cation datasets at two
different learning rates, 10�2 and 10�3, given the importance
of this parameter in the recurrent network performance. The
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performance is measured using both the rank 1 and the area
under the CMC curve (AUC). Results are averaged �rst over
cross validation folds and datasets.

Fig. 5 shows the comparative results between different
recurrent networks. It is important to note the crucial role
of the learning rate in achieving good performance. Contrary
to what has been reported for other applications [47], [10],
we �nd that the conventional LSTM did not give improved
performance compared with no using RNN or our RNN-r.
This suggests that the LSTM was not able to properly ex-
tract relevant temporal information for video re-identi�cation
and the increased number of parameters to be learned in
this architecture damages the performance. The GRU shows
inconsistent results and dependency on the learning rate.

We �nd that adding residual connections to the LSTM
and GRU improves their performance. The LSTM and GRU
with residual connections show a similar performance to the
standard RNN, and give better results than not using a recur-
rent layer. Overall the GRU with residual connections gives
the best performance, although the difference in performance
compared to our standard RNN architecture is small.

We hypothesise that the use of residual connections im-
proves performance by making it easier to train the network
to perform re-identi�cation. This is because the residual con-
nections provide a direct path for information to �ow from
the CNN to the feature representation. Therefore the recurrent
layer with residual connections only needs to learn how to
modify the feature representation with temporal information
where appropriate. This contrasts with a more conventional
recurrent architecture where all information must pass through
the recurrent layer. In this case the recurrent layer must learn
to both faithfully represent the appearance information at its
output, while also augmenting it with appropriate temporal in-
formation. Architectural modi�cations to make learning easier
could be especially important for re-identi�cation given that
there is relatively limited data available for training.

4) Probe and Gallery Sequence Lengths: In this experiment
we investigate how re-identi�cation accuracy varies depending
on the lengths of the probe and gallery sequences during
the test phase, assuming a pre-trained network. Testing was
performed on the iLIDS-VID dataset, and the lengths of
the probe and gallery sequences were varied between 1 and
128 frames, in steps corresponding with the powers-of-two.
Training lengths were �xed to 16 time steps as indicated at the
start of this section. For some cases, where the desired gallery
or probe length is greater than the real sequence length, we
simply use the whole sequence. Probe sequences of length k
are taken from the �rst k frames of the sequence recorded
by �rst camera, and the gallery sequences of length k are
taken from the last k frames of the sequence recorded by the
second camera, since those are the farther temporal instants
respectively.

Fig. 6 shows the achieved improvement in accuracy when
the sum of both sequences’ length increases. The thick blue
line represent the improvement when both sequences are
lengthened symmetrically, i.e. when the ratio between the
length of probe and gallery sequences is 1. The descending
thin colour lines represent the improvements obtained when

the relative training to testing length ratios are varied from
2:1 to 64:1, resulting in more unbalanced probe and gallery
sequence lengths. Each colour line is the result of averaging
the two possible ratios X:1 and 1:X.

The results show that increasing either the probe or gallery
sequence lengths improves re-identi�cation accuracy. This
accuracy increases logarithmically with the number of im-
ages. This conclusion matches the logical intuition that us-
ing a larger number of samples for each person results in
an improvement in re-identi�cation accuracy. However, this
improvement is not only due to the larger amount of available
images, since having similar length sequences also plays a
crucial role in performance. Increasing both sequence lengths
simultaneously gives the greatest improvement in accuracy, as
it can be seen by the thick blue line in Fig. 6, while only
increasing the length of the longer sequence has progressively
less of an effect, as shown by the thin colour lines. The bigger
the unbalance between the sequences compared, the smaller
the improvement from using a single longer sequence, which
moves from logarithmic towards linear improvement.

Results are also reported in Fig. 7 as a matrix showing
the rank 1 re-identi�cation accuracy as a function of the
probe and gallery sequence lengths. It can be observed that,
when different sample lengths are used, there seems to be
approximate symmetry in performance when increasing either
the probe sequence length or the gallery sequence length, with
a slight bene�t to having longer gallery sequences than probe
sequences. This could prove useful for practical applications
where it may be easier to collect large amounts of gallery
data but where only a short probe sequence is available.
When only one sample is available for each person in the
gallery, increasing the probe length does not signi�cantly
improve accuracy, while if only one sample is available for the
probe, increasing gallery length has a much greater effect on
accuracy. This is of particular interest for those applications,
such as watch-lists, where image to video re-identi�cation is
desired.

5) Comparison with the state of the art: We now compare
the performance of our proposed video-based re-identi�cation
system against state-of-art methods from the literature. We
also include results for the baseline DNN [38], described in
Section V-A2, to put our results in context and to measure
the improvement when using temporal information, as in our
proposed network architecture. To ensure a fair comparison,
the baseline system was trained and tested using the same
datasets and same test/training split as the video-based system.

In Table I we compare the CMC results for our system,
trained and tested on the iLIDS-VID and PRID-2011 datasets,
with other state-of-the-art video re-identi�cation systems.
Comparing the CMC results of our proposed system with the
baseline (still image based) system we can see that the video
re-identi�cation system performs better for both datasets.
When we compare our results with the literature, our system
shows superior performance against most other video re-
identi�cation systems, including those based on similar RNN
architectures. Only AMOC [34] shows a superior performance,
which is understandable since they use our system [40] as
baseline. Their great improvement is achieved by using a
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a) Learning rate: 10�2 b) Learning rate: 10�3

Fig. 5. Comparison of the different RNN architectures for re-identi�cation accuracy, where results have been averaged over i-LIDS-VID and PRID2011. Top:
Area under the curve (AUC). Bottom: Rank 1 CMC.. Results are separated by learning-rate.

Fig. 6. Accuracy improvement in video re-identi�cation versus the length
of the compared sequences. The coloured lines represent different ratios of
probe to gallery sequence length.

better (but of�ine) optical �ow algorithm and a two-stream
architecture where motion and appearance features are better
modelled by learning them separately, fusing them before
the RNN layer. Superior performance in PRID, but not in
ILIDS, is also achieved in [37] and [66] by combining their
unsupervised features with another state of art supervised
features and using the novel XQDA metric learning method.

Furthermore, a �nal comparison was done using the recently
proposed MARS dataset [66], which contains 1261 identities
and around 20,000 tracklets. We follow the experimental setup
proposed in [66], and our results are shown in Table II. For

Fig. 7. iLIDS-VID rank 1 CMC re-identi�cation accuracy as the lengths of
the probe and gallery sequences are varied.

comparison purposes, we also tested a version of our system
combined with XQDA, and a version of our system using a
CNN pretrained on a large number of single-shot reid datasets
(see last paragraph in Section V-B2 for details). It can be seen
that [66] surpasses our system mainly due to a better metric
learning, i.e. XQDA. Their bigger network size may also be
able to better utilise the larger MARS dataset.

6) Cross-Dataset Testing: Cross-dataset testing may be a
better way to estimate a system’s real-world performance than
evaluating performance on the same dataset used for training,
which may lead to over-�tting to a particular scenario. This is
due to dataset bias [38], [56], which is a form of over-�tting
where the performance of a machine-learning based system,
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Dataset PRID-2011 iLIDS-VID
CMC Rank 1 5 10 20 1 5 10 20
Ours 70 90 95 97 58 84 91 96
Baseline 55 85 94 97 38 62 71 79
LSTM [61] 47.8 77.4 90.7 94.6 41.6 70.2 86.4 92.3
LSTM+KISSME [61] 69 88.4 93.2 96.4 46.1 76.8 89.7 95.6
GRU [62] 49.8 77.4 90.7 94.6 42.6 70.2 86.4 92.3
RFA [64] 58.2 85.8 93.4 97.9 49.3 76.8 85.3 90.0
AMOC [34] 83.7 98.3 99.4 100 68.7 94.3 98.3 99.3
CNN+Euc [66] 58.2 82.7 90.6 98.2 40.5 70.0 78.9 84.7
CNN+XQDA [66] 74.8 92.1 95.7 99.1 51.3 79.1 87.2 94.3
STA [35] 64 87 90 92 44 72 84 92
VR [59] 42 65 78 89 35 57 68 78
SRID [25] 35 59 70 80 25 45 56 66
AFDA [33] 43 73 85 92 38 63 73 82
DTDL [26] 41 70 78 86 26 48 57 69
DVR [37] 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4
XQDA+DVR [37] 77.4 93.9 97.0 99.4 51.1 75.7 83.9 90.5

TABLE I
COMPARISON OF OUR PROPOSED APPROACH WITH THE LITERATURE ON ILIDS-VI AND PRID-2011 IN TERMS OF RANK CMC (%). METHODS 3 TO 7

ARE BASED ON RNN ARCHITECTURES.

Dataset MARS-2106
CMC Rank 1 5 10 20
Ours 43 61 67 73
Ours+XQDA 52 67 73 77
Ours Pretrained CNN 51 64 68 72
Ours Pretrained CNN+XQDA 56 69 73 77
CNN+Euc [66] 58.7 77.1 - 86.8
CNN+XQDA [66] 65.3 82.0 - 89.0

TABLE II
COMPARISON OF OUR PROPOSED APPROACH WITH THE LITERATURE ON

MARS IN TERMS OF RANK CMC (%).

trained on a particular dataset, is much worse when evaluated
on a different dataset. One cause of this problem is that any
given dataset represents only a small fraction of all real-world
data, making it dif�cult for the system to learn which aspects
of the training data are essential to the problem, and which
are just artefacts of the dataset.

System Trained On 1 5 10 20
Ours iLIDS-VID 28 57 69 81
Ours* iLIDS-VID 14 38 51 70
Ours MARS 18 46 61 74
Baseline Viper 17 36 48 68
Baseline* Viper 14 31 45 61
CD [23]* Shinpuhkan 2014 17 - 43 52
CNN+Euc [66] MARS 7.6 24.6 39.0 51.8

TABLE III
CROSS-DATASET TESTING ACCURACY TESTED ON PRID 2011 IN TERMS
OF RANK CMC (%), WHERE * INDICATES ONLY ONE IMAGE WAS USED

FOR GALLERY AND PROBE I.E. SINGLE-SHOT RE-IDENTIFICATION.

Therefore to better understand how well our proposed sys-
tem generalises, we also perform cross-dataset testing, where
the large and diverse iLIDS-VID and MARS datasets were
used for training, and testing was performed on 50% of the
PRID 2011 dataset, so that the results of this experiment
can be compared with the results in Section V-A5. We also
include results for the baseline system comparison trained on
the Viper dataset (for details of the baseline system please
see Section V-A2) as one of the most popular still-image re-

identi�cation datasets to provide a context for the results and
to provide a reference point for single-shot re-identi�cation
systems in the cross-dataset setting. Testing was performed
either using both the full sequences available, and to facilitate
fair comparison with the literature, using a single still-image
for both the probe and gallery for each person.

We can compare the results in the cross-dataset scenario
with those in Table III, when the system was trained and tested
on PRID 2011 dataset. The results in the cross-dataset scenario
are worse, as expected, probably due to dataset bias. However
it should be noted that the rank 1 performance is not much
below [25] (see Table I), and is well above other single-shot
re-identi�cation systems, such as [23], even those speci�cally
trained in PRID, such as [19] with a rank 1 CMC scores of 28.
It can also be noticed there is a 100% improvement when us-
ing video re-identi�cation that includes temporal information,
which shows that our architecture is exploiting this temporal
information to achieve better performance than the baseline.
We include these results in the hope that others will also
perform cross-dataset testing and improve the generalisation
performance of re-identi�cation systems. The best performing
method in the previous section AMOC [34] did not report
result in a cross-dataset set-up in order to evaluate if previous
performance is due to over-�tting or real improvement. The
system presented in [66], which reported better results in
MARS and PRID-2011 in the previous section, exhibits worse
results than our system in the cross-dataset setting, where
no training or �ne tuning of the CNN, nor additional metric
learning is allowed to be used in the testing dataset.

B. Video Re-identi�cation for Wide Area Tracking

In this section we validate our re-identi�cation approach
with a realistic experiment in wide area tracking. To do this
we �rstly integrate our video re-identi�cation system with
an existing multi-target tracking system in order to validate
the use of video re-identi�cation features for linking tracklets
within the same camera. Secondly, we evaluate the use of
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video re-identi�cation features for person tracking over a
network of non-overlapping cameras with unknown layout.

To ensure that our results are robust and re�ect the system’s
expected real-world behaviour, the dataset used for testing
wide-area tracking performance is completely different from
the datasets used for training the re-identi�cation system. This
means that these experiments are essentially performed in the
cross-dataset setting, which is similar to how a wide-area
tracking system deployed in a real scenario would be used.

In these experiments on wide area tracking, our video re-
identi�cation system was trained using both the iLIDS-VID
and PRID 2011 datasets ( 500 people), with colour and optical
�ow inputs. Note that unlike previous experiments, all persons
from both datasets were used for training the system, giving
around 480 training persons.

As baseline, we compare the performance of our re-
identi�cation features within the wide-area tracking framework
against the same system using colour histograms h features.
The cost function for calculating the dissimilarity between
the colour histogram features for tracklets i and j using
Bhattacharyya distance is de�ned as:

E(hi; hj) = 1�
X p

hi � hj (17)

1) Within-camera re-identi�cation: To test within camera
tracking performance the ELP-tracker was used [39]. This
tracker was modi�ed so that either colour histogram or re-
identi�cation features could be used for calculating the ap-
pearance similarity between tracklets. All the other tracking
system’s parameters were kept constant. The tracker’s perfor-
mance with either feature type was evaluated in the MOTChal-
lenge (2D MOT 2015) training and validation set [30], and the
MOTA was used as main evaluation metric.

Table IV shows the tracking results for both the colour
histogram based ELP tracker and ELP tracker using re-
identi�cation features, in each dataset as well as the global
average. The parameter gap, is de�ned as the maximum tem-
poral threshold � ~Tmax allowed when linking tracklets. This
parameter was varied between 1 and 5 seconds, which gives
the tracker a greater opportunity to correctly link tracklets at
the cost of also increasing the chances of making a mistake.

We note that the video re-identi�cation features are as
effective as the conventional colour histogram features, for
successfully link tracklets. Although there is no signi�cant
performance difference when tracklet linking is constrained to
the most obvious links (gap=1), video re-identi�cation features
shows better performance and less tendency to introduce errors
when the linking constraints are relaxed, as well as better
consistency independently of the chosen parameters and the
gap threshold.

2) Inter-camera re-identi�cation: Two experiments were
performed to compare the performance of video re-
identi�cation features for linking tracklets between non-
overlapping cameras in a realistic scenario. This differs from
standard person re-identi�cation experiments as there are out-
of-sample persons i.e., this is an open-world scenario, making
the association task more dif�cult.

A two minute sequence from the DukeMTMC [46] dataset
training and validation-set [30] was �rst chosen. The sequence
contained a total of 51 people, where 10 people transited be-
tween cameras. The ELP-tracker was used to track all persons
in camera 5 and camera 2, producing a set of tracklets for each
camera. The goal of this experiment was to correctly associate
the tracklets of persons appearing in both cameras. Note that
the re-identi�cation system did not have prior knowledge of
which persons appeared in both cameras, and which persons
only appeared in one camera.

As in the previous experiment, our video re-identi�cation
system, trained on the complete iLIDS-VID and PRID 2011
datasets, was compared against a baseline re-identi�cation
using colour histogram features. A threshold Emax was used
to prevent mismatches, and the threshold value was set using a
preliminary experiment on the MOTChallenge dataset. Given
the different similarity scales used by video re-identi�cation
features and normalised colour histograms, the optimal result-
ing threshold was set to Emax = 5 for the former and to
Emax = 0:1 for the later.

In order to test the importance of the sequence length for the
re-identi�cation between cameras, we additionally varied the
number of frames that were used to calculate the appearance
features. For video re-identi�cation features this parameter
controls how many video frames were passed to the recurrent
network. For colour histogram features we calculated the
average colour histogram features over the speci�ed number
of time-steps.

Fig. 8 shows the results of both systems as percentages
normalising by the number of targets in the ground-truth
and by the number of links attempted by each system. Note
that in the left image the percentage can be greater than
100% as the system can attempt a number of links up to
the real number of people appearing in either camera. The
results show that the video re-identi�cation features do a much
better job of correctly linking tracklets between cameras, while
avoiding mismatches. The colour histogram features are not
capable of reliably linking tracklets between cameras. We
can additionally see that using longer tracklets signi�cantly
improves the results, and it is more effective than conventional
single-frame re-identi�cation. This is to be expected as the
video re-identi�cation system can make use of additional
motion information to produce better matches, as well as
integrating evidence over the whole sequence.

In a second experiment, the full 50-minute long
DukeMTMC training and validation sequence [46], [30], con-
taining a total of 1233 people during the sequence (436 in
camera 5 and 797 in camera 2), is used to validate the previous
conclusions. Among the 1233 subjects, 271 people transit
between cameras 2 and 5. The number of frames used to
calculate the appearance features was �xed to a maximum of
512 frames, when available, as per the previous experiment.

Three systems were compared using the ELP tracker and
different cost functions for linking tracklets between cam-
eras in the third stage of the tracker: cost based on colour
histograms, ELP + colour hist. (see Eq. 17), cost based on
our video re-identi�cation features, ELP + video reID (see
Eq. 12), and �nally cost based on single frame re-identi�cation
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Tracking System Gap ADL- ADL- ETH- ETH- ETH- KITTI- KITTI- PETS09-
Rundle6 Rundle8 Bahnhof Pedcross2 Sunnyday 13 17 S2L1

1 59.3 38.4 77.4 35 33.3 7.8 30.6 20.9
ELP + video reID 2 60.6 38.4 77.5 34.5 33.5 7.8 31 20.6

5 60.6 38.4 77.9 33.9 33.5 8 30.3 20.6
1 59.4 38.4 77.6 34.3 34 8.3 31.7 21.2

ELP + colour hist. 2 59.4 39.6 77.6 33.3 35.4 8.3 31.7 20.8
5 59.4 39.6 77.9 32.1 35.8 8.3 31.7 20.8

Tracking System Gap TUD- TUD- Venice- Average
Campus Stadtmitte 2

1 27 57.8 16.2 30.1
ELP + video reID 2 27 57.8 16.3 30.1

5 27 61.5 15.4 29.9
1 27 58.4 15.4 30.2

ELP + colour hist. 2 27 61.6 13.6 29.8
5 27 61.1 12.6 29.5

TABLE IV
COMPARISON OF SINGLE CAMERA TRACKING PERFORMANCE IN THE MOTCHALLENGE DATASET USING THE ELP TRACKING FRAMEWORK. TRACKING

PERFORMANCE WITH COLOUR HISTOGRAM FEATURES AND OUR VIDEO RE-IDENTIFICATION FEATURES IS COMPARED.

Fig. 8. Re-identi�cation matches and mismatches for the selected two minute sequence from the DukeMTMC training and validation set. Results are shown
for the system using our video re-identi�cation features and colour histograms, with respect to (left) the total amount of targets transiting cameras, and (right)
the total number of attempted links.

system, ELP + image reID. The third system is implemented
by removing the RNN layer and optical �ow input from our
system but keeping the same CNN architecture and temporal
pooling layers.

The �rst three rows of Table V show the results of our
proposed system, using either video re-identi�cation features
or using colour histograms features in the third stage cost
function of the EPL tracker. It can be seen that there is a
drastic improvement in rank-1 re-identi�cation accuracy, from
13.3% using colour histogram features, to 47.2% using image-
only re-identi�cation, and to 52.8% using our full video re-
identi�cation system. These results are especially remarkable
given the length of the DukeMTMC training and validation
sequence and the open-world setting.

Finally, as an indication of the potential of our wide area
tracking approach, a different single image re-identi�cation
network was also tested, ELP + image reID (large training).
Note that this network is not directly comparable with our
proposed video re-identi�cation approach due to the use of
different training datasets. This network used the same CNN
architecture but no recurrent layer. Mean pooling was used
during testing to summarise the appearance features from each

tracklet sequence, but was not used during training of this
network. The network was trained with a total of �70,000
training images from �6000 different persons, resulting from
the combination the following re-identi�cation datasets: Viper,
i-LIDS, CAVIAR4REID, 3DPeS, PRID, TownCentre, GRID,
SARC3D, CUHK, CUHK03, Market1501, Raid and ETHZ.
Our results with this network show that moving to a much
larger training set improves the network’s generalisation abil-
ity, resulting in a 19.2% performance improvement with re-
spect to the similar single image reID network. Since this per-
formance improvement was achieved without the advantages
of adding a recurrent layer or other temporal information, we
hypothesize that the future availability of signi�cantly larger
and more diverse video re-identi�cation datasets will allow
our system to further improve.

VI. CONCLUSION

In this paper we have introduced a novel temporal deep
neural network architecture for video re-identi�cation applied
to wide area tracking. The use of optical �ow, recurrent layers
and mean-pooling allows us to embed the temporal hierar-
chy inherent to the re-identi�cation problem in the form of
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System Matches Mismatches Linking Total
Attempts People

ELP + video reID 143 51 194 271
ELP + image reID 128 36 164 271
ELP + colour hist. 36 160 196 271
ELP + image reID 180 35 215 271
(large training)

TABLE V
RE-IDENTIFICATION MATCHES AND MISMATCHES IN THE COMPLETE

DUKEMTMC TRAINING AND VALIDATION SEQUENCE (CAMERAS 2 AND
5) USING: VIDEO REID FEATURES, SINGLE-IMAGE REID FEATURES AND

COLOUR HISTOGRAM FEATURES. ALSO SHOWN ARE RESULTS OF A
STILL-IMAGE REID SYSTEM TRAINED ON SEVERAL DATASETS.

short, middle and long term temporal information respectively.
Results were �rst evaluated in two standard datasets under
a close-world set-up, and surpass almost all other methods
in the video re-identi�cation literature except AMOC [34] in
iLIDS, and AMOC [34] and XQDA-based methods [37], [66]
in PRID, and all methods reporting results in a cross-dataset
setting. The re-identi�cation features extracted by the network
are also integrated into a multi-target tracking framework
for tracking within a non-overlapping camera network. Thus
demonstrating the system’s great potential for true wide area
tracking and achieving an unprecedented performance in a
open-world re-identi�cation experiment. As future work, we
aim to exploit larger datasets such as MARS [66], recently
introduced by the scienti�c community, to create larger ar-
chitectures able to better address the video-reidenti�cation
problem and wide-area tracking.
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