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Abstract

Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason
a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we
infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide
a structural and a functional analysis of this network and also connect its molecular interaction structure with the
chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we
investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain
insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon
cancer network.

Background
Colon cancer is one of the leading causes of cancer related
mortality in the western world [1]. It is a complex disease
that is thought to mainly arise from polypoid lesions in
the intestines as a result of inherited or somatic genetic
alterations. These precursor lesions acquire further aberra-
tions as they progress from adenoma to adenocarcinoma
to metastatic disease, which in a simplified view can be
described as a successive cascade of genetic changes [2,3].
The most common gene mutations occurring in colorectal
cancer effect APC (tumor supressor), MLH1, TP53,
SMAD4, KRAS and BRAF [4]. While significant progress
has recently been made in characterizing the heterogeneity
of the resulting disease subtypes and the effects of different
combinations of these common mutations, a better under-
standing of the underlying gene networks is required, par-
ticularly, since the identification of general biomarkers has
been unsuccessful as the disease stages and forms are
highly specific to individuals. One reason for this observa-
tion is that genes are organized in non-linear overlapping
pathways and act in a complex cellular network. Such an

organizational structure allows alternative regulatory
mechanisms to differentially control similar biological pro-
cesses. Hence, multiple combinations of genes can result
in similar phenotypic outcomes. As a result, cancer can be
considered a pathway disease, which cannot be well char-
acterized by individual marker genes [5,6]. For example, in
colorectal cancer, activation of Wnt signaling is observed
in nearly all tumors. However this can be mediated by
inactivating mutation of the APC gene or hyper-activation
of beta-catenin, or through mutation of genes with func-
tions analogous to APC [7].

Due to experimental limitations, our knowledge of the
underlying network in the cancer specific context is lim-
ited. Rather gene regulatory networks are inferred from
large-scale gene expression data and provide a descrip-
tion of the mutual dependency structure between indivi-
dual genes. The relationships represent different
interaction types within the gene network that involve
transcriptional regulatory interactions, (e.g. transcription
factor target gene interactions); protein-protein interac-
tions (e.g. between units of a protein complex) or more
transient protein modifying interactions (e.g. phosphory-
lation events).

There are many factors that are thought to influence
the regulation and explain changes of gene expression
or signaling pathways that govern growth and differen-
tiation processes. In sporadic colon cancer chromosomal
instability [8] and microsatellite instability have been
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well described as phenotypes associated with subclasses
of tumor types. In addition, epigenetic alterations such
as methylation that affect gene expression of genes
responsible for processes related to cancer progression
have been shown to play important roles in disease
development and progression [9]. Consequently, genetic
and epigenetic events can lead to deregulation of multi-
ple adjacent genes. For example, overexpression of mul-
tiple genes on Chromosome 13q is frequently observed
in colorectal cancer [10-14].

In our study, we perform a systems analysis of the
colon cancer gene regulatory network with respect to
functional properties of the network structure and
known cancer genes. To this end, we infer a BC3Net
[15] gene regulatory network from a large-scale colon
cancer gene expression data set (GSE2109) provided by
the International Genomics Consortium (IGC). Further-
more, we explore the role of interactions between genes
co-located on the same or on different chromosomes.
We call these different interaction types cis- and trans-
interactions. Finally, we study close neighborhoods on
the chromosomes with respect to the connectivity of
genes they contain as well as their biological function.
The goal of our study is to identify and analyze co-regu-
lated subnetworks that may allow to identify regions
under major regulatory programs on the chromosome
level that could help to understand the general princi-
ples of colon cancer.

This paper is organized as follows: In the next section,
we describe all methods and data we are using for our
analysis. In the ‘Results’ section, we present our findings
and in the section ‘Discussion’ we interpret our results.
The paper finishes with the section ‘Conclusions’ with a
summary.

Methods
Gene expression data set
For our study, we use gene expression data from colon
cancer tissue samples from the Expression Project for
Oncology (expO) (http://www.intgen.org/expo/) micro-
array database maintained by the International Geno-
mics Consortium (IGC). The data are obtained from the
GEO NCBI repository (GSE2109 ) [16] containing a
total of 289 Affymetrix samples in CEL format from the
platform hgu133plus2. The 289 samples correspond to a
number of different histologies, as shown in Table 1,
and 149 samples are from female and 139 are from
male patients.

Preprocessing and normalization of the data
We normalize the microarray samples for the selected
tissue types using RMA and quantile normalization [17]
using log2 expression intensities for each probe set.
Because a gene can be represented by more than one

probe set, we use the median expression value as sum-
mary statistic for different probe sets. Entrez gene ID to
Affymetrix probe set annotation is obtained from the
“hgu133plus2.db” R package. If a probe set is unmapped,
we exclude it from our analysis. After these preproces-
sing steps, we have 19, 738 genes and 289 samples we
use for our analysis.

Inference of the colon cancer gene regulatory network
In recent years many network inference methods have
been introduced [18-21]. In this paper, for inferring the
colon cancer network from gene expression data, we use
the BC3Net algorithm [15], because it has been demon-
strated that BC3Net does not only lead to meaningful bio-
logical results but it possess also a favorable computational
complexity making a large-scale analysis feasible [15,22].

Briefly, BC3Net is a bagging version of C3Net [23,24]
that generates from one dataset, D, an ensemble of B inde-
pendent bootstrap datasets, {Db

k}
B
k=1 , by sampling from D

with replacement by using a non-parametric bootstrap with
B = 100. Then, for each generated data set Db

k in the
ensemble, a network Gb

k is inferred by using C3Net [23,24].
From the ensemble of networks {Gb

k}
B
k=1 we construct one

aggregate network, Gb
w , which is used to determine the

statistical significance of the connection between gene
pairs. Then we test the significance of each edge using
a binomial test. This results in the final network BC3Net.

Census cancer and colon cancer specific genes
The Cancer Gene Census (CGC) [25] (Version 2011 � 03
� 22) (http://www.sanger.ac.uk/genetics/CGP/Census/)

Table 1 Overview of the histologies of the 289 colon
cancer samples provided by Expression Project for
Oncology (expO).

Histology Number of
Samples

Adenocarcinoma 218

Mucinous Adenocarcinoma 36

Adenocarcinoma arising in a villous adenoma 15

Metastatic Papillary Serous Adenocarcinoma 3

Carcinoma in situ arising in a villous adenoma 2

Metastatic Mucinous Adenocarcinoma 2

Adenocarcinoma In situ 1

Clear cell adenocarcinoma 1

Colloid Carcinoma 1

Medullary Carcinoma 1

Metastatic Adenocarcinoma 1

Metastatic Papillary Serous Carcinoma 1

Metastatic Serous adenocarcinoma (papillary
serous)

1

Signet Ring Cell Carcinoma 1

Undifferentiated Carcinoma 1

Missing 4
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provides information about genes that are frequently
observed within tumors of different types of cancer. The
CGC list comprises a total of 457 cancer genes, from these
457 genes, 440 are present in the colon cancer gene
expression data set.

CSPNN: Connected shortest path neighbor network
In order to analyze subnetworks of the whole colon can-
cer gene regulatory network, we extract a connected
shortest path neighbor network (CSPNN) in the following
way. First, we define a set of genes, L1, e.g., by using can-
cer genes. Then we determine all shortest paths between
these genes using the Dijkstra distance [26]. This results
in a second set of genes that contains all genes on these
shortest paths, including the genes in L1, we call L2. Map-
ping L2 onto the network BC3Net gives us a connected
subnetwork. To thissubnetwork we add all next neigh-
bors of the genes in L1 resulting in the CSPNN.

GPEA: Gene pair enrichment analysis
It has been shown that genes that cluster together in a
co-expression network share a common biological func-
tion [27]. We extend this analysis to take the connectiv-
ity structure of a gene regulatory network into more
detailed account. Specifically, for testing the statistical
enrichment of GO-terms in the inferred colon cancer
network, we are applying a hypergeometric test that is
based on ‘interactions’ (edges). Due to the fact that
‘interactions’ always involve a ‘pair of genes’ this test is
called gene pair enrichment analysis (GPEA) [15,28].
For our analysis, we obtain information from the Gene
Ontology database for entrez IDs of genes from the Bio-
conductor [29] annotation packages org.Hs.eg.db (v2.9.0)
and GO.db (v2.9.0).

In the following, we briefly describe a GPEA. In this
description, we use the terms ‘interaction’, ‘edge’ and
‘gene pair’ synonymously. For p genes there is a total of
N = p(p � 1)/2 different gene pairs. If there are pGO genes
for a particular GO-term then the total number of gene
pairs for this GO-term is mGO = pGO (pGO � 1)/2.
Furthermore, if we suppose that the inferred colon can-
cer network BC3Net contains n interactions, of which k
interactions are among genes from the given GO-term,
then a p-value for the enrichment of gene pairs of this
GO-term can be calculated from the following hypergeo-
metric distribution

p(k�GO - term) =
mGO�

i=k

P(X = i�GO - term) =
mGO�

i=k

�
mGO

i

� �
N � mGO

n � i

�

�
N
n

� (1)

This p-value gives an estimate for the probability to
observe k or more interactions between genes from the
given GO-term.

Chromosome cooperativity analysis
For analyzing the ‘cooperativity’ among chromosomes,
we define a statistical test that estimates if there are
chromosome pairs that contain a statistically significant
number of interactions between them [30]. For instance,
for chromosome i and j we calculate the number of
interactions, si,j, from the colon cancer network BC3Net
and apply a statistical hypothesis test to see if this num-
ber is larger than expected by chance, i.e., srand|i,j

We obtain the sampling distribution for the null
hypothesis

H0 : si,j = srand�i,j for i, j � {1, 2, • • • , X, Y} (2)

from gene label randomizations in the colon cancer
network. For our analysis we used E = 100, 000.

For each randomization, e � E, we calculate the num-
ber of interactions se

i,j between each chromosome pair

(i, j � {1, 2, • • • , 22, X, Y} from which we estimate the
p-values by

pi,j =

�E
e=1 I(se

i,j > si,j)
E

(3)

Here, I(), is the indicator function that gives a value of
‘1’ if its argument is true and ‘0’ otherwise. We would
like to emphasize that by utilizing the connectivity
structure of the colon cancer network BC3Net in com-
bination with a gene label resampling will conserve not
only the total number of interactions among genes, but
also the structural properties of the network. Also the
uneven number of genes on the 24 chromosomes is
accommodated by our resampling procedure. In total,
we perform 300 = (242 � 24)/2 + 24 tests and adjust for
multiple testing by applying a Benjamini & Hochberg
[31] correction controlling the FDR for a significance
level of a = 0.05. This guarantees a false discovery rate
of FDR � a [32].

Results
Colon cancer gene regulatory network
Using the gene expression data set from expO and the
BC3Nnet algorithm, we infer a colon cancer gene regu-
latory network (GRN), briefly denoted as BC3Net.This
regulatory network consists of 19, 738 genes and con-
tains 135, 194 interactions (edges) among these genes.
With the exception of 14 genes the overall colon cancer
network is connected. Technically, this means that the
giant connected component (GCC) [33] of our colon
cancer network has a size of 19, 724 genes. For this net-
work, we find an average shortest path length of 4.52
(measured with the Dijkstra distance [34]) and an edge
density of �= 6.9 • 10�4 . The degree distribution of the
colon cancer network follows a power law distribution
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with an exponent of a = 3.22 indicating that the result-
ing network is scale-free [35], as has been previously
found for many different types of biological networks
[36-38], including GRNs [30,39].

Functional GPEA of biological processes
We evaluate our colon cancer GRN network based on
functional knowledge about genes that are involved in
similar biological processes as defined in the Gene
Ontology (GO) database [40]. On the assumption that
functionally related genes are likely to interact with each
other, we sought to identify the functional modules that
are most prominently represented in our inferred colon
cancer GRN network. For this reason, we perform a
GPEA analysis for GO-terms with a term size larger
than 2 and less than 1000 genes and a significance level
ofa = 0.001 with a Bonferroni multiple testing correc-
tion. Furthermore, in order to study the relevance of the
identified functional modules for cancer hallmarks, we
test for the enrichment of cancer census genes [25].

In total, we test 7, 989 GO-terms from the category
Biological Process and find 430 (5.38%) statistically sig-
nificant terms. The 50 most significant terms of the
GPEA analysis are shown in Table 2. The significant
GO-terms describe a variety of biological processes such
as cell cycle phase (938 edges), translational initiation
(155 edges), elongation (156 edges) and termination
(130 edges), organelle fission (318 edges), viral transcrip-
tion (137 edges), cellular respiration (122 edges), type I
interferon-mediated signaling pathway (62 edges) and
regulation of immune system process (609 edges).

From the 457 defined cancer census genes 440 are pre-
sent in our colon cancer GRN. In Table 2, we show for
each GO-term the number of cancer census genes (col-
umn seven - CG). For these, we perform a cancer census
gene enrichment analysis using a hypergeometric test with
a significance level of a = 0.05 and a Benjamini & Hoch-
berg correction. Overall, from the 50 most significant GO-
terms in Table 2, we find 23 to be enriched with cancer
genes (indicated in Table 2 by “+”). Overall, the 50 most
significant GO-terms comprise in total 4, 197 genes, of
which 228 are cancer genes (51.81% = 228/440 of all cen-
sus genes present in the colon cancer network).

In Additional file 1, we show a table with all 458 sig-
nificant GO-terms.

Core subnetwork of colon cancer genes
In order to learn about the immediate interactions
between well known colon cancer genes, we extract a con-
nected shortest path neighbor network (CSPNN - see
‘Methods’ section) from our colon cancer network in the
following way. For the 6 known colon cancer genes L1 =
{APC, MLH1, TP53, SMAD4, KRAS and BRAF}, we deter-
mine all shortest paths between these genes in BC3Net.

This results in the gene set L2 containing all genes on
these shortest paths. Mapping L2 back onto BC3Net gives
us a connected subnetwork to which we add the next
neighbor genes of L1. This results in the CSPNN contain-
ing in total 107 genes and 184 interactions. Among the
107 genes are 7 known cancer genes (in addition to the
6 colon cancer genes it contains PRDM16 from the cancer
census gene list).

Figure 1 shows a graphical visualization of this network.
Its average shortest path length is 4.6 and from a func-
tional GPEA, we find as most significant biological process
‘macromolecular complex assembly’ (GO:0071363), with
a nominal p-value of pnominal = 4.3e � 5. It is interesting to
observe the interaction between the tumor supressor APC
and the motor protein KIF3B. KIF3B belongs to a micro-
tuble dependent motor protein complex (KIF3A-KIF3B
-KAP3 ) that is a suggested transport mechanism of the
APC protein along microtubles [41]. The interaction
between the tumor supressor TP53 and the SUMO-speci-
fic protease SENP3 was reported in [42]. SENP3 is sug-
gested as a regulator of the p53-Mdm2 pathway. We also
observe an interaction between SMAD2 and SMAD4.
SMAD2 and SMAD4 are both members of the SMAD
protein complex [43]. Further, SMAD4 shows a direct
connection to CEACAM8. CEACAM8 belongs to the CEA
gene family and is involved in cell adhesion and migration.
The measurement of CEA levels in serum is used in
the clinic for monitoring the recurrence of colorectal
cancer [44].

Linking interactions in the colon cancer network with
their genetic origin
Next, we study the relation between the genetic context
and the structural connectivity of our colon cancer net-
work BC3Net in the following way. Interactions between
genes on separate or the same chromosome can be seen as
trans-interactions and cis-interactions, analogous to the
trans- and cis-regulation of genes [45]. However, we would
like to emphasize that there is a crucial difference between
both types of connections. For ‘regulation’, the transcrip-
tion of a gene is controlled by a cis- or trans-acting tran-
scription factor, whereas an ‘interaction’ means any type of
biochemical binding, not limited to transcription regula-
tion, but also including protein-protein interaction, phos-
phorylation, ubiquitination or others. For our colon cancer
network, we find that in total 27, 345(21.01%) interactions
are cis-interactions and 102, 806(78.99%) edges correspond
to trans-interactions.

In the following, we study three questions that address
different chromosomal levels. First, we study the coop-
erativity of chromosomes in form of the enhancement of
their interactions. This identifies pairs of chromosomes
that are more cooperative with each other. Second, we
study the inferrability of interactions in the colon cancer
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Table 2 Biological Process GPEA analysis showing the 50 most significant terms.

GOID GO-term #Genes #Interactions p-value GCC CG

GO:0022403 cell cycle phase 853 938 5.8e-238 349 60/+

GO:0000278 mitotic cell cycle 776 818 7.1e-221 343 54/+

GO:0006414 translational elongation 108 156 3.0e-181 72 1

GO:0006415 translational termination 91 130 9.0e-160 67 1

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 105 136 4.6e-153 67 2

GO:0045047 protein targeting to ER 107 137 2.1e-152 67 2

GO:0072599 establishment of protein localization to endoplasmic reticulum 108 137 2.6e-151 67 2

GO:0006613 cotranslational protein targeting to membrane 107 136 7.4e-151 67 2

GO:0000279 M phase 537 462 4.1e-149 196 33/+

GO:0000087 M phase of mitotic cell cycle 374 321 3.6e-144 159 20/+

GO:0070972 protein localization to endoplasmic reticulum 121 140 2.2e-142 67 2

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 118 137 6.0e-141 70 2

GO:0000280 nuclear division 363 305 7.2e-138 155 20/+

GO:0007067 mitosis 363 305 7.2e-138 155 20/+

GO:0006413 translational initiation 153 155 7.4e-134 78 4

GO:0048285 organelle fission 388 318 4.0e-133 161 20/+

GO:0006412 translation 469 355 5.2e-115 183 16

GO:0000956 nuclear-transcribed mRNA catabolic process 171 150 1.1e-113 73 7

GO:0006612 protein targeting to membrane 154 139 7.9e-113 67 4

GO:0019080 viral genome expression 152 137 7.7e-112 70 10/+

GO:0019083 viral transcription 152 137 7.7e-112 70 10/+

GO:0016071 mRNA metabolic process 614 463 4.2e-109 301 21

GO:0006402 mRNA catabolic process 183 152 1.2e-107 73 7

GO:0043624 cellular protein complex disassembly 157 131 5.9e-101 67 2

GO:0043241 protein complex disassembly 162 132 9.1e-99 67 2

GO:0006401 RNA catabolic process 210 157 5.1e-96 74 7

GO:0072594 establishment of protein localization to organelle 212 156 7.8e-94 74 4

GO:0022904 respiratory electron transport chain 111 97 4.0e-90 62 5

GO:0019058 viral infectious cycle 228 158 7.2e-87 81 14/+

GO:0032984 macromolecular complex disassembly 183 133 7.8e-87 67 7

GO:0045333 cellular respiration 163 122 1.3e-86 80 9/+

GO:0006259 DNA metabolic process 880 655 2.9e-85 334 75/+

GO:0051301 cell division 480 310 2.2e-81 126 35/+

GO:0022900 electron transport chain 151 105 2.0e-74 66 5

GO:0006396 RNA processing 656 428 1.1e-73 249 18

GO:0060337 type I interferon-mediated signaling pathway 73 62 3.2e-67 29 5

GO:0071357 cellular response to type I interferon 73 62 3.2e-67 29 5

GO:0034340 response to type I interferon 74 62 1.7e-66 29 5

GO:0002682 regulation of immune system process 893 609 1.2e-63 265 83/+

GO:0051320 S phase 148 89 2.7e-58 40 8

GO:0045087 innate immune response 544 308 1.8e-56 151 25/+

GO:0051325 interphase 405 218 8.8e-56 116 34/+

GO:0022411 cellular component disassembly 295 156 3.7e-55 69 12

GO:0016032 viral reproduction 701 419 1.5e-54 150 46/+

GO:0044764 multi-organism cellular process 703 420 2.5e-54 150 46/+

GO:0022415 viral reproductive process 547 305 4.6e-54 107 44/+

GO:0051329 interphase of mitotic cell cycle 399 210 3.8e-53 114 34/+

GO:0050776 regulation of immune response 564 313 2.2e-52 146 43/+

GO:0030198 extracellular matrix organization 209 110 5.5e-52 54 11/+

GO:0043062 extracellular structure organization 210 110 1.4e-51 54 11/+

Significant enrichment of cancer census genes is indicated by a ‘+’ (column seven). GCC denotes the size of the giant connected component corresponding to
the genes of a GO-term; CG number of census cancer genes in the GCC.
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network with respect to their cis- or trans-acting role.
This allows to us to learn about the heterogeneity of
these interaction types. Third, we investigate chromoso-
mal neighborhoods with respect to their functional
enrichment of GO-terms of the structural connectivity in
the colon cancer network.

Chromosome cooperativity
To enhance insight about the chromosome cooperativ-
ity, we conduct a statistical test as described in the

Methods section ‘Chromosome cooperativity analysis’.
As a result, we find that 4 of the 300 chromosome pairs
are statistically significant, shown in the table in Figure
2B. It is interesting to note that chromosome 22 is
involved in two of these four connections. This is high-
lighted in Figure 2A by the link color green for Chr 22.

Our analysis also sheds light on the cooperation of
genes as measured by the prevalence of significant inter-
actions between chromosome pairs. From this perspec-
tive, visualized in Figure 2A, one sees that only a rather

Figure 1 CSPNN for the 6 colon cancer genes APC, MLH1, TP53, SMAD4, KRAS and BRAF (red). Genes on shortest paths and next neighbor
genes are shown in gray besides if they are present in the census cancer gene list (PRDM16 (blue)). In total, this network contains 107 genes,
including 7 census cancer genes, and 184 interactions.
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limited number of chromosomes contribute to this coop-
eration on the chromosome level.
Heterogeneity of cis- and trans-interactions
To investigate the heterogeneity of cis- and trans-inter-
actions in the colon cancer network, we utilize a mea-
sure called the ensemble consensus rate (ECR).
Specifically, the colon cancer network inferred by
BC3Net is aggregated from a bootstrap ensemble of
individual networks {Gb

k}
B
k=1 ; see Figure 3A. This aggre-

gation step is based on the ensemble consensus rate
(ECR) that measures how often an interaction is
observed in the individual networks in the bootstrap
ensemble. Formally, the ensemble consensus rate, ecr
(i, j), is estimated for each potential interaction between
gene i and gene j, as the following probability,

ecr(i, j) = Pr
�
�nding an interaction between genes i and j in {Gb

k}
B
k=1

�
. (4)

Due to the symmetry of the mutual information values
utilized by C3Net, each of the bootstrap ensemble net-
works in {Gb

k}
B
k=1 is undirected and it holds, ecr(i, j) =

ecr(j, i).
In the following, we want to zoom-in potential effects of

the chromosomal position of interacting genes on the
structure of the colon cancer network. In order to accom-
plish this, we utilize the ECR from which this network is
inferred. Specifically, for each chromosome, we determine

the ECR of cis-interactions, between co-located genes on
the same chromosome, and trans-interactions, between
genes located on different chromosomes. This means, for
each pair of chromosomes, m, n � {1, 2, • • • X, Y} , we
determine the following set,

ECSmn = {ecr(i, j)�gene i is on chromosome m, and gene j is on chromosome n}. (5)

We call the set ECSmn the ensemble consensus set for
chromosome m and n, because it contains all ECR
values of the corresponding interacting genes that are
located on chromosome m and n. As a consequence of
symmetry of the ECR also the ensemble consensus sets
are symmetric,

ECSmn = ECSnm. (6)

For m = n these sets correspond to cis-interactions
and for m � n to trans-interactions. This means, in
total, we have 24 ensemble consensus sets for cis-
interactions, {ECS1,1, ECS2,2, • • • ECSY ,Y}, and 276
ensemble consensus sets for trans-interactions,
{ECS1,2, ECS1,3, • • • ECSY ,22, ECSY ,X} .

The above separation in cis- and trans-interaction types
allows a basic understanding of the wiring of the colon
cancer network, conditioned on the chromosomes. We
start our analysis by presenting results for integrated

Figure 2 A: Statistically significant chromosome cooperations are highlighted by a link. B: The table shows the Benjamini & Hochberg
(BH) adjusted p-values for these links.
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ensemble consensus sets, for a simplified overview. Here
by integrated we mean an union over chromosomes. For
the cis- and trans-interactions that means

ECScis =
�

m�{1,•••Y}

	
ECSm,m


(7)

ECStrans(n) =
�

m�{1,•••Y}

	
ECSn,m


for n � {1, • • • Y} (8)

In Figure 3B, we show a boxplot of the distributions of
the average ECR rates for the 25 ensemble census sets;
ECScis in red and the ECStrans(n) in blue. We observe

Figure 3 A: Connection between the ensemble consensus rate and BC3Net. B: Integrated ensemble consensus rate (ECR) for cis-interactions
(red) and trans-interactions (blue). C: Median values of the individual ensemble consensus sets ECSmn for m, n � {1, • • • X, Y} .
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