
Demonstrating State-based Security Protection Mechanisms in
Software Defined Networks

Arumugam, T., & Scott-Hayward, S. (2018). Demonstrating State-based Security Protection Mechanisms in
Software Defined Networks. In NOF 2017 Conference Proceedings Institute of Electrical and Electronics
Engineers (IEEE). https://doi.org/10.1109/NOF.2017.8251231

Published in:
NOF 2017 Conference Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:07. May. 2021

https://doi.org/10.1109/NOF.2017.8251231
https://pure.qub.ac.uk/en/publications/demonstrating-statebased-security-protection-mechanisms-in-software-defined-networks(bcb03e64-3793-4c01-9ef5-6ad962e497cc).html


Demonstrating State-based Security Protection
Mechanisms in Software Defined Networks

Thianantha Arumugam and Sandra Scott-Hayward
Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast, BT3 9DT, N. Ireland

Email: t.arumugam@qub.ac.uk, s.scott-hayward@qub.ac.uk

I. INTRODUCTION

Software Defined Networking (SDN) has been well-adopted
on a local scale; within organizations such as Google, Face-
book, and Microsoft, and by telecommunications operators
such as AT&T, Deutsche Telekom, and SK Telecom. The
benefits of SDN to implement changes quickly and thereby
accelerate service provisioning and reduce operational costs
have been well documented [1]. From a security perspective,
the global network view and programmability of the data
plane fundamental to SDN support enhanced network security
services. This is achieved by the ability to export network
traffic statistics from the data plane (collection), analyse these
via SDN controller security applications (analysis), and re-
programme the network with the appropriate remediation
mechanism in response to the network threat (control). The
security opportunity with SDN has been of interest to both
the academic and industry security research communities for
a number of years. For example, Radware’s DefenseFlow [2],
released in 2013, was one of the first SDN-based Distributed
Denial-of-Service (DDoS) attack defence systems. With the
drive to deploy SDN on a global scale, security is even more
important today.

However, despite the potential with SDN/NFV (Network
Functions Virtualization) for automated and adaptive network
security services e.g. [3], [4], a clear limitation on the perfor-
mance of these network security solutions is the control com-
munication introduced in the process. For efficient, real-time
attack detection and protection, the latency to exchange data
between the network elements and a remote SDN controller
is impractical. This also assumes that the control channel is
available for the required communication. The vulnerability of
the control channel to communication overload and the ability
for an attacker to exploit this has been highlighted in [5].
Finally, linked to the performance challenge is the issue of
scalability. There is a limit on the number of switches that a
controller can support, which is linked to the controller flow
processing capacity and the specific network configuration and
operation. The introduction of security applications and their
associated processing requirements adds a further load.

Given the performance and scalability challenges linked to
the controller interaction, a reasonable solution would be to
provision these network security services in the data plane
i.e. directly on the switches. This immediately introduces
a different challenge. The current concept of SDN and the

OpenFlow switch specification [6], is of stateless switches. As
shown in Figure 1, the OpenFlow protocol matches packets on
L2-L4 fields, while for network security functions, information
on the flow state is required. This could be, for example, to
detect a TCP SYN Flood attack, for which information on
the state of the network connection is required, or to provide
network security functions such as port-knocking to add a
layer of authentication. It should be noted that in OF Switch
specification v1.5, L2-L4 support was extended to include L4
TCP flag matching, which would enable TCP connection state
identification. Unfortunately, OpenFlow support in hardware
switches does not directly follow the specification update.

Application

Presentation

Session

Transport

Network

Datalink

Physical

  S
ta

te
fu

l_
   

  S
ta

te
le

ss
_

  

O
p

e
n

Flo
w

 Su
p

p
o

rt

Fig. 1. OpenFlow relationship with the OSI model

A number of switch-level stateful data-plane approaches
have been proposed [7]–[9]. The connection tracking mod-
ule from Linux has been added to OpenvSwitch to support
stateful tracking of flows [7]. OpenFlow extensions have been
introduced to support this. SDPA [8] proposes a Match-State-
Action paradigm by introducing three additional tables; State
table, State Transition table and Action table. Although SDPA
provides a switch-level design to detect and prevent, for ex-
ample, Denial-of-Service (DoS) attacks, continuous interaction
with the controller is required to initiate the state tables and
to create and update state entries. OpenState [9] uses two
distinct tables; the State table and the eXtended Finite State
Machine (XFSM) table, along with packet handling mecha-
nisms to support stateful packet forwarding inside OpenFlow-
enabled switches. The port knocking application and a DDoS
application have been demonstrated leveraging the OpenState
features [10].



These state table mechanisms enable some traditional net-
work attack protections. However, SDN-specific attacks in-
clude the threat of a compromised application or malicious
network elements. As a result, the SDN is exposed to threats
such as exfiltration, bypassing specific network components,
eavesdropping and man-in the-middle attacks [11]. These
threats arise from the implementation of SDN control func-
tions such as link reconfiguration and switch identification, the
protection from which have not been considered in [7]–[9].

The OpenState framework is leveraged in this work to
introduce state-based SDN security protection mechanisms.
Several extensions are required for this design and these
are outlined in Section II based on description of a SDN
configuration-based attack. The demonstration of the attack
protection mechanism is described in Section III.

II. STATE-BASED SECURITY PROTECTION MECHANISMS

A. SDN Configuration-based Attack

As described in Section I, SDN configuration-based attacks
target the topology and path update network control functions.
The normal host mobility process is illustrated in Figure 2 with
H1 relocating from port 1 to port 6. When H1 is disconnected
from port 1 and connected to port 6, the switch identifies that
the host has moved (1) and a relocation message is sent to the
controller (2). In response, the controller updates the flow rules
corresponding to H1 in switch SW1 to reflect the new network
connection (3), and H1 traffic is processed via port 6 (4). A
malicious host can use this host relocation process to send a
fake relocation message to the controller triggering network
reconfiguration. A successful attack can isolate a legitimate
host from the network.

Fig. 2. Configuration update/attack - No Protection Mechanism

B. SDN Configuration (CFG) Security Protection Mechanism

The configuration attack is initiated from the data plane
but the configuration update originates from the control plane.
We therefore propose to isolate the SDN controller (control
path) and introduce intelligence to the data path to self-monitor
relocation messages. There are two functions introduced to
support this process; the Host Connection State Table, and the
Configuration Request Module (CRM).

Fig. 3. Host Connection States

1) Host Connection State Table: The connection state table
to monitor host-switch connections is shown in Figure 3. This
captures the active/inactive connection state. In order to reach
the active state, an authentication process is required to gain
full access to the routing logic specified by the switch flow
tables. Based on the OpenFlow match-action paradigm, an L2-
4 packet-based authentication process is proposed. The state
machine describing the connection and authentication logic is
illustrated in Figure 4.

Fig. 4. Connection Authentication State Machine

In state S1, host H1 is connected to switch SW1, as shown
in Figure 3. In this state, H1 is active and normal network
operation can proceed. Host H2 is disconnected from switch
SW1, as shown in Figure 3, so that the connection state of
H2 is inactive, and H2 is in state S2 in Figure 4. From state
S2, in order to reconnect to the network via switch SW1,
H2 must present a sequence of authentication messages e.g.
key sequence ‘1’ to ‘n’. When in state S2, if the first key
sequence is correct, H2 moves from state S2 to S3. From state
S3, further correct sequences will be processed until the last
correct sequence is reached and H2 is restored to state S1 with
the link activated. However, at any point in the sequence, if
the wrong sequence is detected by SW1, the connection state
for H2 will revert to state S2.

Note: An authentication key sequence can be shared with
devices at the point of registration to the network. In the
complete CFG security solution, secrecy is not required.
However, this mechanism could also be used for PHY security
in a controlled environment to protect against a compromised
device attempting to connect to the switch. In such a scenario,
the key sequence is secret and programmed by a network
operator to a controlled set of devices.



2) Configuration Request Module: The layered CFG secu-
rity protection mechanism is illustrated in Figures 5 and 6. In
the proposed architecture for CFG security, a relocation mes-
sage from the switch (1) will be processed by a configuration
request module (CRM) that determines whether the message
is genuine and valid, or not (2). The CRM will make this
decision based on the host connection state (3). Following the
FSM in Figure 4, if a relocation message is received and the
host is in state S1, the message will be treated as malicious
and dropped by the CRM, as shown in Figure 5. The fake H1
connection to port 6 will be prevented. However, if a relocation
message is received while the host is in either state S2 or S3,
the message will be considered to be valid and the CRM will
pass the request to the controller, as shown in Figure 6.

A request for relocation under an invalid connection state
can also be treated as a first alert to identify a compromised
switch. The CRM can send an alert to the network adminis-
trator for further action.

Fig. 5. CFG Security Protection Mechanism - Attack Scenario

Fig. 6. CFG Security Protection Mechanism - Update Scenario

III. DEMONSTRATION

We use a Mininet 2.2.1 VM on Ubuntu 14.04.1 (64-bit) to
demonstrate the security mechanisms presented in Section II.

A single switch, multiple host topology is created using the
CPqD/ofsoftswitch13, which has been adapted to implement
OpenState [10]. The SDN Controller is Ryu version 3.29,
which has also been modified to support OpenState.

a) No CFG Security: The configuration-based attack is
first demonstrated with no protection mechanism in place.
The network is initialized with the endpoints connected (H1
connected to port 1). H1-Attacker then fakes a connection to
port 6. With no protection in place, this relocation request will
be processed as normal and traffic destined for H1 will be
directed to port 6. The legitimate H1 connection is effectively
disconnected from the network, as shown in Figure 2.

b) CFG Security - Legitimate relocation: Once the net-
work is initialized with the endpoints connected and in active
state, host H1 disconnects from port 1 and connects to port
6 (see Figure 6). This represents a legitimate connection.
On disconnection, the H1 entry in the connection state table
will transition to inactive. On H1 connection to port 6, a
configuration request message is sent to the CRM. The CRM
then checks the connection states of the end points of the
request. As the connection state is inactive, the CRM will
pass the relocation message to the controller.

c) CFG Security - Malicious connection: The network
is re-initialized. With H1’s connection active on port 1, an
attacker spoofing H1 now attempts to connect to port 6. This
represents a malicious connection. The configuration request
message for H1-Attacker is sent to the CRM. The CRM checks
the connection states of the end points of the request and
identifies that there is a current active H1 connection. The
CRM will drop this configuration request from the switch and
the H1-attacker will not be allowed to connect to the network.

REFERENCES

[1] “AT&T: SDN is Slashing Provisioning Cy-
cle Times by up to 95%.” [Online]. Avail-
able: http://www.lightreading.com/carrier-sdn/sdn-architectures/atandt-
sdn-is-slashing-provisioning-cycle-times-by-up-to-95-/d/d-id/717582

[2] “Radware DefenseFlow.” [Online]. Available: http://www.radware.com/
Products/DefenseFlow/

[3] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan, “Psi: Precise
security instrumentation for enterprise networks,” in Proc. NDSS, 2017.

[4] T. Koulouris, M. Casassa Mont, and S. Arnell, “SDN4S: Software
Defined Networking for Security,” 2017. [Online]. Available: https:
//www.labs.hpe.com/publications/HPE-2017-07

[5] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A
survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN
For. IEEE, 2013, pp. 1–7.

[6] “OpenFlow Switch Specification Version 1.5.1,” Open Networking
Foundation. [Online]. Available: https://www.opennetworking.org/sdn-
resources/technical-library

[7] J. Pettit and T. Graf, “Stateful connection tracking & Stateful NAT,”
OpenvSwitch, 2014. [Online]. Available: http://openvswitch.org/support/
ovscon2014/17/1030-conntrack nat.pdf

[8] S. Zhu, J. Bi, C. Sun, C. Wu, and H. Hu, “SDPA: Enhancing stateful
forwarding for software-defined networking,” in Network Protocols
(ICNP), 2015 IEEE 23rd International Conference on. IEEE, 2015,
pp. 323–333.

[9] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
programming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 44–51, 2014.

[10] “OpenState SDN Project.” [Online]. Available: http://openstate-sdn.org/
[11] K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network security

with SDN teleportation,” in Security and Privacy (EuroS&P), 2017 IEEE
European Symposium on. IEEE, 2017, pp. 563–578.


