Elevated trimethylarsine oxide (TMAO) and inorganic arsenic in northern hemisphere summer monsoonal wet deposition

Published in: Environmental science & technology

Document Version: Peer reviewed version

Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal

Publisher rights © 2017 American Chemical Society. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Elevated trimethylarsine oxide (TMAO) and inorganic arsenic in northern hemisphere summer monsoonal wet deposition.

Laurie Savage, Manus Patrick Carey, Mahmud Hossain, M. Rafiqul Islam, P. Mangala C.S. de Silva, Paul Nicholas Williams, and Andrew A. Meharg

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.7b04356 • Publication Date (Web): 04 Oct 2017

Downloaded from http://pubs.acs.org on October 12, 2017

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Elevated trimethylarsine oxide (TMAO) and inorganic arsenic in northern hemisphere summer monsoonal wet deposition.

Laurie Savage¹, Manus Carey¹, Mahmud Hossain², M. Rafiqul Islam², P. Mangala C.S. de Silva³, Paul N. Williams¹, Andrew A. Meharg¹*

1. Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone Road, Belfast, BT9 5BN, Northern Ireland.
2. Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
3. Department of Zoology, Faculty of Science, University of Ruhuna, Matara, 81170, Sri Lanka.

* Corresponding author.

Abstract

Arsenic speciation, their inputs, for wet deposition are not well understood. Here we demonstrate that trimethylarsine oxide (TMAO) and inorganic arsenic are the dominant species in monsoonal wet deposition in summer Indian subcontinent, Bangladesh, with inorganic arsenic dominating, accounting for ~80% of total arsenic in this medium. Lower concentrations of both species were found in monsoonal wet deposition in the winter Indian subcontinent, Sri Lanka. The only other species present was dimethylarsinic acid (DMAA), but this was usually below limits of detection (LoD).

We hypothesize that TMAO and inorganic arsenic in monsoonal wet deposition is predominantly of marine origin. For TMAO, the potential source is the atmospheric oxidation of marine derived trimethylarsine. For inorganic arsenic, our evidence suggests entrainment of water column inorganic arsenic into atmospheric particulates. These conclusions are based on weather trajectory analysis, and to the strong correlations with known wet deposition marine derived elements: boron, iodine and...
selenium. The finding that TMAO and inorganic arsenic are widely present, and elevated in monsoonal wet deposition identifies major knowledge gaps that need to be addressed regarding understanding arsenic’s global cycle.

Introduction

Atmospheric fluxes, with respect to the global cycling, of arsenic are poorly characterized (1). Arsenic species in wet deposition have been particularly neglected, with the exception of studies of Huang and Matzner (2) who systematically quantified inorganic and methylated arsenic species inputs into terrestrial systems, whereas, with most wet (and dry) deposition studies simply determining total arsenic inputs (3-7). Huang and Matzner found that the only organic species detected in in bulk deposition for a German forest catchment was trimethylarsine oxide (TMAO), but with the majority of measurements below limits of detection (<LoD) (2). Monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) were below LoD for bulk deposition, but with some samples detected above LoD in throughfall, which was attributed to phylosphere microbes methylating inorganic arsenic. Inorganic arsenic was measured in much higher concentrations than methylated species, by 10-20-fold, both in bulk deposition and in throughfall. TMAO and DMAA have been better studied in atmospheric particulates where they are routinely detected (8-10). The origin of these species in particulate samples is attributed to the biovolatilization of trimethylarsine (TMA) and dimethylarsine (DMA) from soils (10), mediated by arsenic methylating bacteria and fungi (11), with subsequent UV oxidation of these atmospherically unstable arsines to their corresponding oxides, TMAO and DMAA (12). Recently, using online atmospheric pressure chemical ionization, TMA, along with inorganic arsenic, was shown to be the dominant gaseous arsenic species in remote Finnish ecosystems, showing a strong
relationship to melting of snow cover and stimulated activity of arsenic-methylating

microorganisms (13).

Inorganic arsenic is also not widely characterized in wet deposition, again with the most
detailed study conducted by Huang and Matzner (2). Studies on total arsenic deposition,
historically (1, 3-6), and more recently (5,7), conclude that arsenic is predominantly from
industrial sources. Historically, starting from when arsenic in deposition was first measured,
this may have been the case, but inputs of total arsenic in wet deposition have been falling
rapidly at long-term monitoring sites (5), attributed to less base and precious metal mining in
historic areas of activity and to stricter environmental regulations (14). Source appointment
of total arsenic in deposition is normally complex due to multiple potential inputs and to
shifting weather trajectories (15). However, the fact that the industrial baseline input is
declining (14) should make the study of natural geogenic or biogenogenic arsenic inputs into
the atmosphere easier to address. This study of geogenic/biogeogenic inputs is also aided by
the analytical advances that have enabled arsine effluxes from habitats to be quantified (16).

This study was to investigate wet depositional arsenic species inputs, and to identify the

sources of these inputs, in monsoonal settings. Sites in Bangladesh and Sri Lanka were
chosen because of the relatively unpolluted nature of the Indian Ocean and connected
landmasses, far from the major global anthropogenic sources of arsenic atmospheric pollution
(14,15). Also, monsoonal systems have relatively simple weather trajectories (17), which
enables straightforward source appointment. The findings are interpreted in light of the
current state-of-knowledge regarding atmospheric fluxes within arsenic’s biogeochemical
cycle (1,3), indicating that this is limited and not well understood, and that this cycle needs to
be rethought due to the findings presented here.
Materials and Methods

Details of manufacturers of sampling equipment, instrument manufacturers and reagents are given in Table S1. Sampling took place at Mymensingh, Bangladesh, 24°45’N, 90°24’E (Figure 1) and at Matara, Sri Lanka, 5°57’N, 80°31’E (Figure 1). Bangladesh samples (n=38) were collected during the summer monsoon of 2016, and Sri Lankan samples (n=17) during the winter monsoon that followed. Only wet deposition samples were collected, with sampling undertaken in triplicate, using pre-weighed 56 mm diameter polypropylene containers, over a 24-h period, and immediate freezing until subsequent analysis. The containers were on a small platform 1.5 m above the terrain surface in an open position. Containers were weighed to calculate the volume of water deposited on a surface area basis. For elemental quantification, samples were 0.45 micron filtered, before being acidified with ultra-high purity (Aristar®) nitric acid (0.1 M), with the exception of iodine, where tetramethylammonium hydroxide (0.5%) was added instead. The internal standard added throughout was rhodium, spiked to give a 10 µg/l concentration. For the determination of arsenic species, using a similar ion exchange- ICP-MS approach as Huang and Matzner (2), samples were 0.45 micron filtered before analysis by ion-exchange - ICP-MS, using a Thermo Scientific IC5000 Ion Chromatography system coupled with a Thermo ICAP-Q ICP-MS. A 2x250mm Thermo Scientific AS7 anion-exchange column was used with a 2x50mm AG7 guard column and ammonium carbonate over a linear gradient from 20nM to 200nM was the mobile phase. Authentic standards of arsenobetaine, inorganic arsenic, MMAA, DMAA, and TMAO were run to ascertain retention times. The Thermo Scientific ICAP-Q ICP-MS in helium collision cell mode was used for the analysis of all elements analyzed, with the exception of boron which was run in standard mode (no collision cell). To validate
the AS7 identification, a subset of samples was also analyzed by cation-exchange chromatography and run on a 2x250mm Thermo Scientific CS12A column, with a 2x50mm CG12A guard column. Pyridine mobile phase (20mM) was made up and buffered to pH 2.6 with formic acid for isocratic analysis and TMAO was spiked into authentic samples for both columns.

For all analytical methods, blanks were prepared from >18.2 MΩ.cm (at 25°C) water in the same manner as the samples and included with each instrument batch. LoD was calculated as average concentration of the blank + 3 times standard deviation of a species mix dilution series. For arsenic speciation and total elemental analysis a synthetic surface water CRM was run. Only inorganic arsenic was present to quantify. For a subsample of unknowns, iodine was spiked into samples prepared for TMAH analysis, which could then be compared to the corresponding unspiked samples and a percentage recovery calculated.

To determine either the origin of rain, or the source of air that will form rain through orographic lifting, 72-h backward air trajectories were calculated for each day using Hysplit software and the Global Data Assimilation System (18). All statistical analysis was conducted in IBM SPSS (Version 22). Normality of residuals were checked for parametric analysis, and if not normal, non-parametric analysis, and reporting of medians, was conducted.

Results

Representative chromatograms for monsoonal wet deposition samples for both AS7 and CS12A columns are given in Figure S1, with spikes and authentic samples showing that TMAO was present, along with DMAA and inorganic arsenic. MMAA and AsB were below
LoD. The LoDs for arsenic species were 0.117, 0.128 and 0.278 nM for DMAA, TMAO and inorganic arsenic, respectively, the highest LoD of the two batches of sample runs. Half LoD, was used where samples were <LoD for statistical analysis. For arsenic speciation, average percentage recovery of inorganic arsenic from the CRM’s was 110%, n=5 (Table S2). For the full-scan analysis, the same CRM was prepared in triplicate for each batch with the individual elemental average recoveries ranging from 89 to 122%, with the average iodine recovery from spiked samples being 98%, n=6.

As Bangladesh was sampled through the whole of the monsoonal season, unlike Sri Lanka where only a month of monsoonal wet deposition was collected, the seasonal input of arsenic species into Bangladesh soils could be determined. This was 2.3 g/ha for inorganic arsenic, and 0.4 g/ha for TMAO (Figure 2). DMAA was not included in subsequent correlation analysis as it was primarily below LoD.

The 72-h weather trajectories for wet deposition sampling dates originated from the northern Indian Ocean, the Bay of Bengal, and the Gulf of Arabia for both the summer and winter monsoons (Figure 1). Median TMAO concentrations in Bangladeshi wet deposition were 0.30 nM compared to 0.056 nM, the ½ LoD, for Sri Lanka (Figure 3). Median DMAA were both at the LoD for Bangladesh and Sri Lanka (data not shown), while inorganic arsenic was 1.33 and 0.33 nM, for the Bangladesh and Sri Lanka, respectively (Figure 3). Inorganic arsenic concentrations in wet deposition were ~5-fold higher than organic concentrations, for both Bangladesh and Sri Lanka (Figure 3).

Relationships between other elements and TMAO (Figure 3) and inorganic arsenic (Figure 4), and with wet deposition volume (Figure 5) and distance from origin of 72-h weather
trajectories (Figure S2) were analyzed by Spearman’s correlation (Table S3) for the Bangladeshi and Sri Lankan data sets. Spearman’s correlation showed for Bangladesh that TMAO correlated well with boron (P<0.001), selenium (P<0.001), strontium (P<0.001) and chromium (P<0.001), and to a lesser extent with iodine (P=0.035), cobalt (P=0.02), rubidium (P=0.015) and cadmium (P=0.028). It was also negatively correlated with wet deposition volume (P=0.031). TMAO was poorly correlated with inorganic arsenic (P=0.525), length of trajectory (P=0.846), and with copper (P=0.113), barium (P=0.479) and lead (P=0.299), amongst other elements. For inorganic arsenic in wet deposition there were similarities and differences to TMAO (Table S3). Inorganic arsenic was, similar to TMAO, positively correlated with iodine (P=0.001), selenium (P<0.001), and had a poor correlation with copper (P=0.148), and was not correlated with trajectory length (P=0.069). In contrast to TMAO, inorganic arsenic had a very strong negative correlation with barium (P<0.001), was positively correlated with lead (P=0.019), and was not correlated with deposition volume (P=0.621), boron (P=0.135) and cadmium (P=0.413), amongst other elements. Correlations for the Sri Lankan data (Table S3) were less significant throughout, as compared to the Bangladesh data set. TMAO and inorganic arsenic, for the Sri Lankan data, were only correlated with each other (P=0.001), cadmium (TMAO, P=0.020; inorganic arsenic, P=0.003) and lead (P=0.001 for both TMAO and inorganic arsenic).

Considering the two datasets together, there are highly significant (P<0.001) negative correlations (Table S5) between wet deposition volume and rainwater concentrations of boron, selenium and cadmium, with iodine, chromium, iron and lead also showing washout (Figure 5). Distance to 72-h trajectory origin was only significant (P=0.036) for barium. The Spearman’s analysis showed that there were strong correlations between elements, other than arsenic species, for both Bangladesh and Sri Lanka (Table S3). This was true of elements that
will be primarily of marine origin such as selenium, iodine and boron, which show strong
inter-correlations, while transition metals tend to correlate best with themselves. The
elements that differ most between the two datasets, by an order of magnitude, are boron,
selenium, cadmium and lead (Figures 3 and 4). For boron, selenium and cadmium, this can be
explained at least partially by washout, with higher concentrations in Sri Lanka related to
lower monsoonal wet deposition (Figure 5). For lead the reason why Sri Lankan data is ~10-
fold lower than the Bangladeshi concentrations is not related to depositional volume.

All the sample points for Sri Lanka mapped to marine locations for their 72-h trajectory
origin, but some of the Bangladeshi samples trajectories mapped them back to being in
transects across the Indian sub-continent landmass (Figure 1). Kruskal-Wallace analysis
found for every parameter measured, that there was no significant difference in
concentrations in rain based on a Persian Gulf, continental Indian or Bay of Bengal 72-h
trajectory origin (analysis not shown).

To interrogate the interrelationships between the data, Principle Components Analysis (PCA)
was conducted, with the component factor score coefficient matrix as well all as the
individual sample scores (Figure 6). The Bangladesh and the Sri Lankan data followed
different trends, outlined by ellipses, with these ellipses being orthogonal to each other,
intersecting near the X-Y origin. The trends in these data suggest that there is a commonality
in samples that co-locate at the origin, but that these differ towards the extremes of
composition for the two data sets. The factor scores show that most elements pull to the right,
with iodine, selenium and boron closely clustered, along with iron, manganese, chromium,
cadmium, rubidium and strontium. Distance from origin and volume of water deposited also
go along with this trend, with inorganic arsenic factor loadings most closely matching these.
Copper, cobalt, and less strongly lead, loadings are opposite to inorganic arsenic and orthogonal to most other elements. TMAO stands out by itself, diametric or orthogonal to all other elements, suggesting very different regulation.

Discussion

It was found that both inorganic arsenic and TMAO were elevated in the Bangladeshi summer monsoon wet deposition, as compared to Sri Lankan winter monsoon, and that TMAO made up ~20% of total arsenic deposited in both environs. DMAA was a minor component, with generally, levels below LoD. MMAA was not detected. TMAO concentrations were 4-fold higher in Bangladeshi wet deposition as compared to previous studies in a non-monsoonal continental setting, using their ½ LoD (2), and equating to the Sri Lankan data. The TMAO also seems to be differentially regulated in wet deposition between the summer and winter Indian sub-continent monsoons, not correlated with inorganic arsenic during the summer, but highly correlated during the winter. To explain these findings the biology of TMAO production has to be considered in context of prevailing wind directions, and arsenic methylation in both marine and terrestrial settings.

TMAO

The origin of weather trajectories for both Bangladesh and Sri Lanka are both either the Bay of Bengal or the Persian Gulf, with a very similar origin distribution, except that some (36 %) Bangladeshi samples had 72-h weather origins that placed them as being in transit across India. However, Persian Gulf, Bay of Bengal and Indian mainland origin samples did not differ in any measured parameter for Bangladesh. Given that the Sri Lankan and Bangladeshi samples had similar marine origins but very different TMAO concentrations and associations with co-deposited elements, either the production of TMAO must differ at different times of
year, and/or the prevailing winds determine TMAO atmospheric loadings. As weather origins of the wet deposition are marine, and with an intercontinental convergence zone (ITZ) drawing air from the Indian Ocean in its northerly summer location, and from the continental landmass in its southern winter location (17), it may be expected, if TMA/TMAO is of terrestrial origin, that TMAO in wet deposition should be higher in the winter monsoon. This is not the case and the apparent marine source of TMA/TMAO is a conundrum.

TMA/TMAO production in terrestrial habits is fairly well established (16), but in marine habitats there is little evidence of it being present in environmental monitoring programmes where DMAA and MMAA are routinely detected (19,20), including the Persian Gulf and in the Indian Ocean just off the Sri Lankan shoreline (19). TMAO can be produced either through methylation of DMAA (16,11) or through degradation of the main marine arsenical, arsenobetaine (21). Previous maritime oxidized arsines monitoring, for atmospheric particulates sampled on the remote islands of the Japanese archipelago in the East China Sea, attributed their origin to the soils of the main Japanese islands, rather than the seas that surround Japan (10). In this Japanese investigation, as for our study, TMAO was the dominant organic species. They (10) argued against a marine source, but did not consider that marine water as a source of TMA/TMAO, even though the Japanese land surface is very small in comparison to its surrounding marine waters.

The fact that TMAO is not routinely measured in marine waters may be due to its absence, or more likely to concentrations being below LoD, in marine waters, and/or due to inappropriate analytical methodologies. The saline content of marine waters is challenging to most chromatographic conditions. Ion chromatography can separate the methylated species in waters but the TMAO LoD is much higher due to severe peak broadening under saline
conditions (data not shown). Most marine water studies for arsenic speciation use hydride
generation (19,20), sometimes followed by pre-concentration (such as cryo-trapping), and
these should pick up TMAO if present, as long as enough reductant is added as other moieties
may be preferentially reduced, and as long as chromatographic runs are long enough to pick
up late eluting TMA (22). When specific care was taken to speciate TMA/TMAO, where
analytical limitations were overcome, ~0.2 nM TMAO concentrations were detected in 3
seawater certified reference materials (and 2 freshwater at similar concentrations), higher
than MMAA (0.12 nM), 10-fold lower than DMAA (1.6 nM), and a 100-fold lower than
inorganic arsenic (22). No such application of this type of analytical approach to actual
environmental monitoring of TMAO in marine waters has been undertaken.

Even if TMAO is very low in waters, this does not preclude TMA volatilization and, indeed,
loss of the trimethyl arsenic species through volatilization may itself explain why TMAO
could be low in seawaters. No studies on marine water column arsenic biovolatilization have
been conducted. Marine algae have been shown to biovolatilize arsenic in culture, though the
volatilized forms were not speciated (11). DMAA can be observed above LoD in Bangladesh
wet deposition, but not in Sri Lankan; and MMA is not found at all, presumably below LoD.
As TMAO, it is assumed, is low in seawaters, the low DMAA and MMAA, which are
routinely recorded in the Indian Ocean (19), and the high TMAO, argue against entrainment
of seawater into atmospheric aerosols, as for boron (23), as being a major source. TMAO is
highly correlated with boron, whose wet deposition source is marine derived sea spray, but it
is also correlated with selenium and iodine that are marine biovolatilization derived in
terrestrial wet deposition (24,25). As sources are mixed in wet deposition, care must be taken
not to over interpret correlations (7,15).
Depositional rates can also be used to interpret potential inputs. The only previous TMAO, and indeed DMAA and MMAA, report known to us is a continental German study, with low (weekly) sampling resolution, where concentrations were generally below LoD (2). TMAO deposition in that continental setting was 0.05 g/ha/y, 10-fold lower than for Bangladesh. Dominant soil/sediment land-cover for Bangladesh, mangrove sediments and paddy soils, have all been shown to be amongst the highest producers of arsines so far measured, with TMA dominating (16). Total fluxes of arsines, including arsine, MMA, DMA and TMA, dominated by TMA, from Bangladesh paddy soil and coastal mangrove sediments were recorded in the field at 0.2 and 0.02 g/ha/y, respectively (16). This compares to 0.4 TMAO g/ha/y for wet depositional inputs measured for Bangladesh here over the monsoon period (Figure 2). While paddy ecosystem biovolatilization can contribute to TMAO inputs exceeding TMA outputs, this should be roughly the same for Bangladesh and Sri Lanka for wet deposition. As this is not the case, and that prevailing winds are from marine origin, it suggests that wet deposition TMAO is of both of terrestrial and marine origin. The reason why TMAO correlates with arsenic during the winter monsoon, but not during the summer, may be due to this interplay between terrestrial and marine sources, but this remains to be investigated. However, in an early study of arsenic speciation of surface waters in the northern Indian Ocean, and Persian Gulf off the Indian coast, MMAA concentrations decreased 6-fold, and DMAA 10-fold, during summer and winter (19). It appears that this corresponds to the considerable decrease in TMAO and DMAA in our wet depositional samples between the summer and winter monsoons, again pointing to a marine source for these elements in wet deposition.

TMAO in Bangladesh samples was not well correlated with industrial contaminants copper and lead that are normally associated with arsenic in ores (1-7), though it positively
correlated with cadmium. It was also not associated with inorganic arsenic which can have a strong anthropogenic signal, again originating from mining and smelting activity (1-7). For Sri Lankan samples, TMAO was correlated with lead and arsenic, as well as cadmium. As air masses are continental for the Sri Lankan winter monsoon, the correlation with lead, cadmium and arsenic may have a substantial terrestrial contribution. Lead is very high in Bangladeshi wet deposition, and cadmium in Sri Lankan. The reasons for these anomalies are not known. Inorganic arsenic can also be of marine origin, as outlined in the following section, and it may simply be that both inorganic arsenic and TMAO are predominantly of marine origin, but with different regulation: TMAO derived from biovolatilized TMA, and inorganic arsenic through aerosol entrainment. TMA can be UV-photodegraded (23), with TMA have a half-life of 7.2 h during the day (12). Thus, demethylation by photodegradation may reduce TMAO deposition from TMA generated during daytime. This further complexity in TMA/TMAO cycling may explain why the TMAO was orthogonal to all other arsenic species and other elements in the PCA analysis presented here.

Inorganic arsenic

The inorganic arsenic in wet deposition may be from multiple sources such as anthropogenic, volcanism and seawater entrainment into the atmosphere (1-3). The, relatively, much higher concentrations of inorganic arsenic in sea waters compared to wet deposition ~10-20 nM Persian Gulf/Indian Ocean waters, and 0.8 and 0.2 nM for wet deposition as reported for Bangladesh and Sri Lanka, respectively, suggests that physical transport, entrainment into the atmosphere from seawater as aerosols, may explain, at least partially, inorganic arsenic wet deposition concentrations, given that we have remote from industrial arsenic sources monitoring sites. The potential role of volatilization also needs consideration. Arsine (AsH₃), which is oxidized to its oxy anions in the atmosphere (12), is normally only a minor
component of volatization from soils/sediments (16). Elevated arsine concentrations are
found under highly reduced conditions (16), attributed to abiotic reduction. Such low oxygen
tensions are not typical of epipelagic waters, potentially ruling out arsine volatilization from
marine environments as a source. If volatilization was the dominant source of arsenic to wet
deposition much higher levels of TMAO and DMAA, the oxidized products of methylated
arsines, would be expected as compared to inorganic arsenic, as di- and tri- methylated
arsines are the main species volatilized (16). As this is not the case, inorganic arsenic
concentrations were ~5-fold higher than organic species, this again argues against
volatilization being the primary source of inorganic arsenic. One proviso is that arsines, or
their oxides, can be demethylated by UV. This has been exploited in hydride analysis where
separated methylated species are UV cracked to overcome kinetic interferences in hydride
generation (26).

Inorganic arsenic is highly negatively correlated with barium. Barium in wet deposition is
normally attributed to terrestrial inputs (27). Studies on Barium fluxes into the Bay of Bengal
show sharp clines away from deltaic zones towards the open oceans (28), again showing the
strong terrestrial source of this elements in our study region. The negative correlation with
barium for inorganic arsenic reported for Bangladesh here, is again strong evidence that, at
least, marine sources are a strong contributor to monsoonal wet deposition of arsenic.

Wet deposition and arsenic’s biogeochemical cycle

Historically, studies have attempted to attribute total arsenic in deposition to its sources,
usually concluding them to be industrial (1-7). However, wet depositional inputs of arsenic
decreased 5-fold from 1996 to 2010 in maritime Europe (5), with the authors of this report
attributing this to rapidly declining anthropogenic inputs such as coal burning and metal
mining and processing. Studies using older deposition data (1,3,4,6) would not have been able to readily identify natural sources or arsenic against this industrial background. Furthermore, our study sites’ weather patterns are predominantly marine, far from mining or industrial centres of activity. Both the modern timing, and the locations of our study has enabled us to better assess natural biogeochemical cycling of arsenic compared to previous investigations. A study in Britain, with more continental influenced weather patterns, found that total arsenic did have a strong marine signature when weather trajectories came from the marine west rather than the continent to the east (7). Also, early studies at lower sampling resolution and with measurement of total arsenic at coastal Pacific (6) and western Atlantic (4) locations also found strong marine contributions to wet deposition when weather trajectories were of oceanic rather than continental origin. A German study (2) that speciated arsenic in bulk deposition, sampling conducted in 2004-2005, found an inorganic arsenic deposition of 3.9 g/ha/y, similar to the Bangladesh location. Again, the German study is historic, and with deposition being predominantly from anthropogenic sources as prevailing winds cross major industrial zones.

Marine derived wet deposition of selenium (23) and iodine (24), biovolatilized by phytoplankton; and iodine (24) and boron (25), entrained into the atmosphere as aerosols through wind turbulence followed by evaporation, are the dominant sources of these elements to soils. For example, selenium deficiencies and sufficiencies in Chinese soils map to the northern limit of the monsoon (29). Total selenium concentrations in wet deposition are ~1-2 nM (29). Median inorganic arsenic concentrations in monsoonal Bangladesh deposition are 1.3 nM, i.e. with the range of selenium concentrations in wet deposition.
Using median As concentrations in wet deposition ranging from 0.23 to 1.75 nM for Sri Lanka and Bangladesh, respectively, and a global wet deposition of 5.1×10^{14} m3/y (1), this equates to 9,000 – 69,000 t/y globally. While not all terrestrial landmass is monsoonal, most of the Earth’s surface is marine, so this calculation may be considered as an upper boundary. Depositional inputs are assumed to be much lower in the southern as compared to the northern hemisphere (1), both our sites being in the north, but even so, our measurements suggest marine contribution to global arsenic deposition to be measured in the 10,000s per annum just on a northern hemisphere contribution. As it is estimated that 26,000-82,000 t/y of arsenic is deposited to the surface of the earth annually (1), marine sources are a major contribution to atmospheric inputs, if our assumption is correct that arsenic in wet deposition in monsoonal settings is marine derived. Matschullat (1), reviewing the available literature, estimated marine inputs of arsenic into the environment to be 27 t/y, 3-orders of magnitude lower than our estimates, although he cites older citations on maritime inputs that are in order with ours, 30,000-78,000 t/y (29). As these reviewed studies were based on old and limited analytical technologies, often with very limited actual measurements, Matschullat’s argued that only further work to increase the reliability of global arsenic budgeting will resolves these discrepancies regarding marine contribution to global atmospheric cycling. Our empirical study shows that the older estimates were more in line with reality compared to the lower estimates. Furthermore, previous studies have ignored monsoonal inputs which we show to be very significant in depositional inputs of arsenic due to the volume of deposition associated with monsoons. Given that large tracts of the populated globe are in monsoonal regions, wet deposition is a major vector for arsenic inputs into terrestrial ecosystems. The implications of oceans being a major source of arsenic now needs to be addressed; such as to how depositional inputs vary globally, temporally and what the impact of climate
change will have on deposition. Also, past atmospheric deposition may be a major
collection to the buried sediments that constitute groundwater arsenic stores as high arsenic
in groundwaters are found in many delta regions with monsoonal climates (30). Intriguingly,
Mirlean et al. (31) had hypothesized that the major source of ancient arsenic buried in coastal
inter-dune swamps lacking fluvial contribution, are likely to be atmospheric in origin.

Associated content

Supporting Information

Details on the manufacturers of equipment and reagents, table of quality assurance data,
including LoDs and CRM recoveries, tables with Spearman’s correlation coefficient matrix
for Bangladesh, Sri Lanka and combined sites elemental and speciation data, figures
containing chromatograms for speciation analysis by both anion and cation IC-ICP-MS and
regressions of arsenic species and trace element data for both sites with distances from 72-h
weather trajectories.

Author information

Corresponding Author

Andrew A. Meharg; Email: aa.meharg@qub.ac.uk

References

2. Huang, J. -H.; Matzner, E. Biogeochemistry of organic and inorganic arsenic species in a
3. Wai, K.-M.; Wu, S.; Li, X.; Jaffe, D. A.; Perry, K. D. Global atmospheric transport and

4. Cutter, G. A. Metalloids in wet deposition on Bermuda: concentrations, sources, and

The biogeochemistry of arsenic in a remote UK upland site: trends in rainfall and runoff,

Res. 1980, 85, 4512-4518.

Winkel, H. E. Marine primary productivity as a potential indirect source of selenium and

8. Tziaras, T.; Pergantis, S. P.; Stephanou, E. G. Investigating the occurrence and
environmental significance of methylated arsenic species in atmospheric particles by

Feldmann, J. Atmospheric stability of arsines and the determination of their oxidative
products in atmospheric aerosols (PM$_{10}$): evidence of the widespread phenomena of

10. Mukai, H.; Ambe, Y.; Muku, T., Takeshita, K. Seasonal variation of methylarsenic

volutilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosph. 2013,
93, 47-53.

Legend to figures

Figure 1. The origin of 72-h weather trajectories modeled using Hysplit and arsenic speciation of monsoonal wet deposition for Bangladesh/summer (red) and Sri Lanka/winter (blue). The map was created using the Mac App Magic Maps.
Figure 2. The individual daily wet deposition of arsenic species for Bangladesh samples collected from 01/04/2016 – 26/09/2016.
Figure 3. Relationship for both Sri Lankan (red triangles) and Bangladeshi (black circles) between TMAO and other elements/species.
Figure 4. Relationship for both Sri Lankan (red triangles) and Bangladeshi (black circles) between inorganic arsenic and other elements/species.
Figure 5. Relationship for both Sri Lankan (red triangles) and Bangladeshi (black circles) between deposition volume and elements/species.
Figure 6. Principle components analysis of Sri Lankan (red text, SL) and Bangladeshi (black text, B) elemental/species data (A), along with the factor loadings (B).