Invariant Sets Analysis for Constrained Switching Systems

N. Athanasopoulos, K. Smpoukis and R. M. Jungers

Abstract—We study discrete time linear constrained switching systems with additive disturbances, in the general setting where the switching acts on the system matrices, the disturbance sets and the state constraint sets. Our primary goal is to extend the existing invariant set constructions when the switching signal is constrained by a given automaton. We achieve it by working with a relaxation of invariance, namely the multi-set invariance. By exploiting recent results on computing the stability metrics for these systems, we establish explicit bounds on the number of iterations required for each construction. Last, as an application, we develop new maximal invariant set constructions for the case of linear systems in far fewer iterations compared to the state-of-the-art.

I. INTRODUCTION

Switching systems pose major theoretical challenges, provide an accurate modeling framework for many processes and are good approximations of complex dynamics [1]–[5]. In interesting cases, switching is not arbitrary, see, e.g., dwell time and fault-detection settings [6]–[9]. Constrained switching can be described by labeled directed graphs [10]–[14]. A switching sequence is admissible if it can be realized by the labels of the edges appearing in a walk in the graph.

Although the stability and stabilizability problems are addressed in the literature, a systematic approach dealing with the safety analysis, as in e.g. [15], [16], of these systems is missing. Related studies include works on Markov Jump Linear Systems [17], dwell-time [6], [18], [19], periodic [20] and cyclic [21] invariance. In this article, we focus on how invariance\(^1\) generalizes to constrained switching and develop the notion of invariant multi-sets. A multi-set is an M–tuple of sets, one per node in the switching constraints graph (see for an example Figure 2): at each time instant, the state is required to be in only one of these sets. We define forward and backward reachability multi-set sequences and characterize, to the best of our knowledge for the first time, the maximal invariant multi-set and the minimal invariant multi-set and its approximations. The contributions are:

• We show existence and uniqueness of the minimal invariant multi-set. We construct \(\varepsilon\)-approximations of the minimal invariant multi-set, starting from the approaches concerning unconstrained systems in [24] (inner approximation) and [8], [22], [25] (outer approximations).
• We show existence and uniqueness of the maximal invariant multi-set following a similar path as in [26].
• We provide new constructions of the maximal invariant set for linear time-invariant systems, with a bound on the number of iterations proportional to the square root of the iterations in the standard algorithm.

Most importantly, by utilizing recent, practicable, results concerning approximations of the exponential stability metrics [11], [12], [27], we establish a priori upper bounds on the maximum number of iterations required for computing the multi-sets. Preliminary results are in [28].

Notation: The ball of radius \(\alpha\) of an arbitrary norm is \(B(\alpha)\). The Minkowski sum of two sets \(S_1\) and \(S_2\) is \(S_1 \oplus S_2\). The interior and the convex hull of a set \(S\) is \(\text{int}(S)\) and \(\text{conv}(S)\) respectively. A C-set \(S \subset \mathbb{R}^n\) is a convex compact set for which a \(\delta > 0\) exists such that \(B(\delta) \subseteq S\) [15].

II. PRELIMINARIES

We consider a set of matrices \(A := \{A_1, \ldots, A_N\} \subset \mathbb{R}^{n \times n}\) and disturbance sets \(W = \{W_1, \ldots, W_N\}, W_i \subset \mathbb{R}^n\). We consider a set of nodes \(V := \{1, 2, \ldots, M\}\) and a set of edges \(E = \{(s, d, \sigma) : s \in V, d \in V, \sigma \in \{1, \ldots, N\}\}\), where \(s\) is the source node, \(d\) is the destination node and \(\sigma\) is the label of the edge. We denote the corresponding graph by \(G(V, E)\), or, \(G\). The set of outgoing nodes of a node \(s \in V\) is \(\text{Outgoing}(s, G) := \{d \in V : (\exists \sigma \in \{1, \ldots, N\} : (s, d, \sigma) \in E)\}\). Finally, we consider constraint sets \(X_i \subset \mathbb{R}^n, i \in \{1, \ldots, M\}\). The system we study is

\[
\begin{align*}
 x(t + 1) &= A_{\sigma(t)} x(t) + w(t), \\
 z(t + 1) &\in \text{Outgoing}(z(t), G), \\
 w(t) &\in W_{\sigma(t)}, \\
 (x(0), z(0)) &\in \mathbb{R}^n \times V,
\end{align*}
\]

subject to the constraints

\[
\begin{align*}
 \sigma(t) \in \{\sigma : (z(t), z(t + 1), \sigma) \in E\}, \\
 x(t) &\in X_{\sigma(t)},
\end{align*}
\]

for all \(t \geq 0\). We call nominal the disturbance-free system, i.e., the system \(x(t + 1) = A_{\sigma(t)} x(t)\) together with (2), (4)–(6). The stability of the nominal system is characterized by the constrained joint spectral radius [10] \(\hat{\rho}(A, G) := \lim_{k \to \infty} \hat{\rho}_k(A, G)\), where \(\hat{\rho}_k(A, G) := \max\{\| \prod_{j=1}^{k} A_{\sigma_j} \|^{1/k} : \sigma_k, \ldots, \sigma_1\text{ is an admissible switching sequence}\}\) is the maximum growth rate up to time \(k\). The nominal system is asymptotically stable if and only if \(\hat{\rho}(A, G) < 1\) [10, Corollary 2.8].

\(^1\) By stability we mean asymptotic stability and by invariance we mean robust positive invariance [15], [22], also referred to as forward invariance [23] or d-invariance [24].
Assumption 1 (State constraints) The constraint sets $X_i \subset \mathbb{R}^n$, $i = 1, \ldots, M$, are C-sets.

Assumption 2 (Disturbances) The disturbance sets $W_i \subset \mathbb{R}^n$, $i = 1, \ldots, N$, are C-sets.

Assumption 3 (Stability) $\dot{p}(A, G) < 1$.

Assumption 4 (Connectedness) $G(V, \mathcal{E})$ is strongly connected.

These assumptions are standard, or necessary for our purpose, see e.g., [16] for Assumptions 1 and 2. Assumption 3 is standard since $\dot{p}(A, G) > 1$ excludes non-trivial invariant multi-sets or safe sets2. Assumption 4 guarantees the completeness of solutions and can be alleviated, at the price of further technicalities. Below, we generalize the notion of invariance, which concerns the confinement of the system trajectories to a single set, see e.g. [15], to multi-sets.

Definition 1 (Multi-set invariance) The collection of sets $\{S_i^1\}_{i \in V}$ is an invariant multi-set with respect to the System (1)-(5) if $x(0) \in S_i^0(0)$ implies $x(t) \in S_i^0(t)$, for all $t \geq 0$, $z(0) \in V$ and $\sigma(t), t \geq 0$, satisfying (5). If also $S_i^1 \subset X_i$, $i \in V$, then $\{S_i^1\}_{i \in V}$ is called an admissible invariant multi-set with respect to (1)-(6). The multi-set $\{S_M^1\}_{i \in V}$ is the maximal admissible invariant multi-set if for any admissible invariant multi-set $\{S_i^1\}_{i \in V}$, we have $S_i^1 \subset S_M^1$. The invariant multi-set $\{S_m^1\}_{i \in V}$ is the minimal invariant multi-set if for any invariant multi-set $\{S_i^1\}_{i \in V}$, $i \in V$, $S_i^1 \subseteq S_m^1$.

Definition 2 (Safety) A set $S_Y \subset \mathbb{R}^n$ is safe with respect to the System (1)-(6) and a set of nodes $Y \subset V$ if $(x(0), z(0)) \in S_Y \times Y$ implies $x(t) \in X_Y(t)$, $t \geq 0$.

The Assumptions do not suffice for System (1)-(6) to possess a non-trivial invariant set3. The connection to invariance can be made via the Θ-lift and the Kronecker lift [29], [13]. Although it is tempting to work in that lifted space, the computations are significantly harder since they involve set operations in higher dimensions. Invariant multi-sets can also be connected to a particular case of hybrid invariance sets, e.g., [23], defined in an extended state space $[x^T \ z^T]^T \in \mathbb{R}^n \times \{1, \ldots, M\}$. See [30] for new results on invariance and ω-limit sets in the framework of set dynamical systems.

Definition 3 (Reachability) Consider the System (1)-(4) and a switching sequence $\sigma_1, \ldots, \sigma_p$, $\sigma_i \in \{1, \ldots, N_i\}$, $p \geq 1$. The p-step forward reachability map is $R_{\sigma_1, \ldots, \sigma_p}(S) := (\prod_{i=1}^p A_{\sigma_{p+1,i}} \cdots A_{\sigma_1}) \circ \bigoplus \prod_{j=1}^{p-1} A_{\sigma_{p+1,j+1}} W_{\sigma_j}$. The p-step backward reachability map is $C_{\sigma_1, \ldots, \sigma_p}(S) := \{x : (\prod_{i=1}^p A_{\sigma_{p+1,i-1}} \cdots A_{\sigma_1}) \circ (\bigoplus \prod_{j=1}^{p-i} A_{\sigma_{p+1,j+i}} W_{\sigma_j}) \subset S\}$ (Note that we use the convention $\prod_{i=1}^0 A_{\sigma(i)} = 1$).

We write $N_i(\sigma_1, \ldots, \sigma_p, S) := \{x \in \prod_{i=1}^p A_{\sigma_{p+1,i}} x : x \in S\}$. Moreover, we define the convex versions of the forward mappings as $\mathcal{R}_C(\sigma_1, \ldots, \sigma_p, S) := \text{conv}(R(\sigma_1, \ldots, \sigma_p, S))$, $\mathcal{R}_{CN}(\sigma_1, \ldots, \sigma_p, S) := \text{conv}(\mathcal{R}_N(\sigma_1, \ldots, \sigma_p, S))$.

Example 1 By considering a sequence σ_1, σ_2 and a set $S \subset \mathbb{R}^n$, we have $\mathcal{R}(\sigma_1, \sigma_2, S) = A_{\sigma_2} A_{\sigma_1} S \oplus A_{\sigma_2} W_{\sigma_1} \oplus W_{\sigma_2}$ and $\mathcal{C}(\sigma_1, \sigma_2, S) = \{x : A_{\sigma_2} A_{\sigma_1} x \oplus A_{\sigma_2} W_{\sigma_1} \oplus W_{\sigma_2} \in S\}$. See Figure 1 for an illustration.

![Fig. 1. Example 1, illustration of the Definition 3 for a two-step forward and backward reachability map.](image)

Let us consider the sequence $\{N_i^j\}_{j \in V}$, $l \geq 0$, generated by

\[N_0^j := \cup_{(s,j) \in \mathcal{E}} W_{\sigma_s} \quad j \in V, \]

\[N_{l+1}^j := \cup_{(s,j) \in \mathcal{E}} N_l^s \quad j \in V. \]

We can express the exponential shrinking of the elements of the multi-set sequence (7), (8) with the set inclusion

\[N_l^j \subseteq \Gamma_1^l N_0^j \quad \forall j \in V, \quad \forall l \geq 0. \]

Several methods exist for computing the scalars $\Gamma_1 \geq 1$, $\rho \in (0, 1)$ in (9), see, e.g., [11], [12], [27].

III. THE MINIMAL IN Variant MULTI-SET

Let us consider the forward reachability multi-set sequence $\{F_i^j\}_{j \in V}$, $l \geq 0$, with

\[F_0^j := \{0\}, \quad j \in V, \]

\[F_{l+1}^j := \cup_{(s,j) \in \mathcal{E}} R(\sigma_i, F_i^j), \quad j \in V. \]

First, we characterize the minimal invariant multi-set.

Theorem 1 The minimal invariant multi-set $\{S_m^1\}_{i \in V}$ with respect to the System (1)-(5) is unique and equal to $S_m^1 = \lim_{l \to \infty} F_l^j$, $j \in V$.}

Proof Following a reasoning similar to [24, Section 4], we can show that $F_{l}^{j} \subseteq F_{l+1}^{j} \subseteq F_{l}^{j} \oplus (\Gamma_1^l \cup_{j \in V} W_l)$, $l \geq 0$, where Γ_1, ρ satisfy (9). Consequently, the multi-set sequence is convergent to a compact multi-set, in the space of compact multi-sets paired with the Hausdorff metric. To show uniqueness, we work as in [31, Lemma 3.1] and assume there is a compact invariant multi-set $\{S^j\}_{j \in V}$ and $j^* \in \{1, \ldots, M\}$ such that $F_{l}^{j^*} \not\subseteq S^{j^*}$. We pick a $x(0) \in \mathbb{R}^n$, $z(0) \in V$ and set $w(t) = 0$, for all $t \geq 0$. By Assumption 4, we choose a solution $(x(t), z(t))$, $t \geq 0$, for which $z(t_i) = j^*$, $i \geq 0$, for a sequence $\{t_i\}_{i \geq 0}$. We have $x(t) \to 0$ as $t \to \infty$. Since S^{j^*} is compact, $x(t_i) \in S^{j^*}$ and $(x(t_i))_{i \geq 0}$ converges to 0, it necessarily holds that
0 ∈ S/j. By invariance of \(\{S/j\}_{j \in V} \), \(F/j \subseteq S/j \), leading to a contradiction.

Since the multi-set sequence (10), (11) does not necessarily converge in finite time, we provide ways to approximate it, by the following theorem.

Theorem 2 Consider the System (1)–(5), a pair \((Γ, ρ)\) satisfying (9), the multi-set sequence (10), (11) and the minimal invariant multi-set \(\{S/m\}_{j \in V} \). Let \(α_1 := \min \{a : \cup_{i=1}^{N/j} W_i \subseteq B(a)\} \). Given a desired accuracy \(ε > 0 \), the following hold.

1. For any \(l \geq \lfloor \log_{1−ρ}(1−ρ) \rfloor \), it holds that
 \[
 F/l_i \subseteq S/m_i \subseteq F/l_i \oplus B(ε), \quad i \in V.
 \]
2. Let \(α_2 = \min \{a : \cup_{i=1}^{N/j} W_i \subseteq a \cap N/j_1 W_i\} \) and consider a pair \((k, λ)\) that satisfies the inequalities
 \[
 α_2 Γ^{k−1} ≤ λ, \quad (12)
 \frac{Γ^{k−1}(1−ρ)}{1−ρ} ≤ \frac{ε(1−λ)}{α_1}. \quad (13)
 \]
 Then, the multi-set \(\frac{1}{k} F/j \) is invariant, and furthermore,
 \[
 S/m_j \subseteq \frac{1}{k} F/j \subseteq S/m_j \oplus B(ε), \quad j \in V.
 \]

Proof (i) The left inclusion holds by construction. To prove the right, we have for any \(l \geq \lfloor \log_{1−ρ}(1−ρ) \rfloor \), \(j \in V \),
 \[
 S/m_j = \lim_{k \to \infty} F/j_k = \lim_{k \to \infty} F/j_{k+1} \subseteq S/m_j \oplus B(ε).
 \]
 (ii) From (13) we have that
 \[
 \frac{1}{k} F/j_{k+1} \subseteq \frac{1}{k} F/j_k \subseteq B(ε).
 \]
 Consequently, to show the right inclusion we have
 \[
 \frac{1}{k} F/j_k = (1 + \frac{1}{k}) F/j_{k+1} \subseteq S/m_j \oplus B(ε).
 \]
 From (12) it follows \(N/j_k \subseteq Γ^{k−1} N/j_0 \subseteq \Lambda \cap \cap_{i=1}^{N/j} W_i \) and using a similar reasoning as in [22], [25] we can prove invariance of \(\frac{1}{k} F/j \subseteq S/m \).

Consequently, the left inclusion holds by definition.

(iii) For any admissible switching sequence \(σ_1...σ_l \) such that there is \(d \in V \) so that \((j, d, σ_1) \in E\), we have
 \[
 R_N(σ_1, ...σ_l, S/m_j) \subseteq R_N(σ_1, ...σ_l, S/m_j) \subseteq α_2 Γ^{k−1} N/j_0 \subseteq B(α \alpha_1, Γ^{k−1} Γ^{k−1}) \subseteq B(ε).
 \]
 Consequently, we have for any edge \((i, j, σ) \in E\) that \(A_o S/m \oplus W_j \subseteq B(ε) \oplus F/j_{k+1} \subseteq B(ε) \oplus S/m_j \), hence, \(S/m_j \subseteq S/m_j \oplus B(ε) \).

A. Convexifications

It may be difficult in practice to compute the sequences generated by (8) and (11) since their members are typically non-convex. As it is the case with unconstrained systems [8], [25], [6], [16], we may establish convex approximations of the minimal convex invariant multi-set. We consider the multi-set sequences, \(\{S/m\}_{j \in V} \), \(\{F/l\}_{j \in V} \), updated by
 \[
 \frac{1}{k} F/l_{i+1} := \cup_{(s,j,σ) \in E} R_C N/j \quad (14)
 \]
 and
 \[
 \frac{1}{k} F/l_{i+1} := \cup_{(s,j,σ) \in E} R_C (σ, F/l_j) \quad (15)
 \]
 respectively, with \(N/j = N/j_0 \), \(F/j = F/j_0 \), \(j \in V \). We can show that the minimal convex invariant multi-set \(\{S/m\}_{j \in V} \) is \(\{S/j\} = \cup_{(s,j,σ) \in E} R_C (σ, F/j) \), \(j \in V \) and that similar approximation schemes as in Theorem 2 can be made, using the technical facts summarized below.

Lemma 1 Consider the multi-set sequences generated by the updates rules (8), (14) and (11), (15). The following hold.

- (i) \(\text{conv}(N/j) = \text{conv}(N/j) \), \(\forall l \geq 0, \quad \forall j \in V \).
- (ii) \(\text{conv}(F/j) = \text{conv}(F/j) \), \(\forall l \geq 0, \quad \forall j \in V \).
- (iii) Consider two sets \(S_1, S_2 \subseteq R^n \) and let \(S_2 \) be convex. Then, \(S_1 \subseteq S_2 \) if and only if \(\text{conv}(S_1) \subseteq S_2 \).
- (iv) For any two sets \(S_1, S_2 \subseteq R^n \), it holds that \(\text{conv}(S_1 \cup S_2) = \text{conv}(S_1) \cup \text{conv}(S_2) \).

Proof To show (ii), we can use a similar reasoning to [25, Section 3], [11, Proposition 1]. In specific, the relation holds for \(l = 0 \) and assuming that the relation holds for \(l = k \), we have
 \[
 \text{conv}(F/j_{k+1}) = \text{conv}(\cup_{(s,j,σ) \in E} R(C, F/j)) = \text{conv}(\cup_{(s,j,σ) \in E} R(C, F/j)) = \text{conv}(F/j_{k+1}).
 \]
 The proof of (i) is identical. Items (iii) and (iv) follow from standard convexity arguments.

Taking into account Lemma 1, we can establish the corollary convex versions of Theorems 1 and 2.

Corollary 1 (Theorem 2, Lemma 1) Consider the System (1)–(5), a pair \((Γ, ρ)\) satisfying (9), the multi-set sequence generated by (15), \(F/j = \{0\} \) and the minimal convex invariant multi-set \(\{S/m\}_{j \in V} \). Let \(α_1 := \min \{a : \cup_{i=1}^{N/j} W_i \subseteq B(a)\} \). Given a desired accuracy \(ε > 0 \), the following hold.

- (i) For any \(l \geq \lfloor \log_{1−ρ}(1−ρ) \rfloor \), it holds that
 \[
 \text{conv}(F/l_i) \subseteq \text{conv}(F/l_i) \oplus B(ε), \quad j \in V.
 \]

4However, they have some structure since they are radially convex sets.
(ii) Let \(\alpha_2 = \min\{\alpha : \cup_{j=1}^{N} W_j \subseteq \alpha \cap \cap_{j=1}^{N} W_j\} \) and consider a pair \((k, \lambda)\) that satisfies (12), (13). Then, the multi-set \(\{\text{conv}(\frac{1}{t}F_{k-1})\}_{j \in V}\) is invariant, and furthermore,
\[S_m \subseteq \text{conv}(\frac{1}{t-1}F_{k-1}) \subseteq S_m \oplus B(\varepsilon), \quad j \in V. \]

(iii) Let \(\{S_{0j}\}_{j \in V} \) be an invariant multi-set and let \(\alpha_5 = \min\{\alpha : S_{0j} \subseteq \alpha N_0, j \in V\} \). Let \(\{S_{ij}\}_{j \in V}, \ l \geq 0 \) be the multi-set sequence generated by the update (15), initialized by \(\{S_{0j}\}_{j \in V} \). Then, for any \(l \geq \lfloor \log_{\frac{c}{\alpha_1 \alpha_3 \alpha}} \rfloor \), the multi-set \(\{\text{conv}(S_{ij+1})\}_{j \in V} \) is invariant, and furthermore,
\[S_m \subseteq \text{conv}(S_{i+1}) \subseteq S_m \oplus B(\varepsilon), \quad j \in V. \]

IV. THE MAXIMAL INVARIANT MULTI-SET

Let us consider the backward reachability multi-set sequence \(\{B^l_j\}_{j \in V}, l \geq 0, \) where
\[B^0_j = X_j, \quad j \in V, \]
\[B^l_{j+1} = (\cap_{\sigma \in C(\sigma, B^l_j)} \cap B^0_j), \quad j \in V. \] (16) (17)

The \(l \)-th term of the multi-set sequence (16), (17) contains the initial conditions \((x(0), z(0)) \in X_{z(0) \times V}\) which satisfy the state constraints for at least \(l \) time instants.

Theorem 3 Consider the System (1)-(6) and the sequence (16), (17). Let the pair \((\Gamma, \rho)\) satisfy (9) and \(\{S_{mj}\}_{j \in V} \) be the minimal invariant multi-set. Assume \(S_{m0} \subseteq \text{int}(X_j), j \in V \) and let \(R_j = \max\{R : \mathbb{B}(R) \subseteq X_j\}, r_j = \min\{r : S_{m0} \subseteq \mathbb{B}(r)\}, a_1 = \min\{a : \cup_{j=1}^{N_0} W_j \subseteq \mathbb{B}(a)\}, c := \min\{c : X_j \subseteq c N_0, j \in V\}, N_0 \} \) given in (7). Then, there is an integer \(k \) such that \(B^k_{j+1} = B^k_j, j \in V, \) with
\[k \leq \log_{\frac{\min_{j \in V}(R_j-r_j)}{\alpha_1 \alpha_3 \alpha}}. \] (18)

Moreover, the multi-set \(\{B^k_j\}_{j \in V} \) is the maximal admissible invariant multi-set.

Proof For any initial condition \((x(0), z(0)) \in X_{z(0) \times V}\) we have \(x(t) = x_1(t) + x_2(t), \) with \(x_1(t) := \prod_{i=0}^{t-1} A_{\sigma(t-i-1)} x(0) \) and \(x_2(t) \in F^k_j, \) where \(\{F^k_j\}_{j \in V} \) is generated by (10), (11). Consequently, we have \(\|x(t)\| \leq a_1 \rho \epsilon^{-r_j} x_1(t), t \geq 0. \) Thus, \(\|x(t)\| \leq R_j(t), \) or, \(x(t) \in X_{\epsilon^{-1}}(t), \) for all \(t \geq k, \) where \(k \) is given in (18). Let us assume that \(x(0) \in B^k_{X_1} \) but \(x(0) \notin B^k_{X_2} \). Then, \(x(t) \in X_{\epsilon^{-1}} \) which is a contradiction. Thus, \(B^k_{X_2} \supseteq B^k_{X_1} \).

The upper bound (18) in Theorem 3 can be computed a priori: The pair \((\Gamma, \rho)\) can be computed by [27], the scalars \(R_j, c, a_1 \) depend on the problem data and can be computed, e.g., for polyhedral or ellipsoidal disturbance and state constraint sets. By applying the results of Section III, we can compute approximations of \(r_j, j \in V \) and use them in (18). The relation with the maximal safe set is stated in Corollary 2 which is a consequence of Theorem 3 and the definition of the maximal invariant multi-set. We note that we can deduce even more refined types of invariance, such as, e.g., returnability [32] and recurrence [33].

Corollary 2 Consider the System (1)-(6) and let \(\{S_{Mj}\}_{j \in V} \) be the maximal invariant multi-set. Let \(Y \subseteq V \) be a set of nodes in \(G(V, E) \). The maximal safe set \(S_Y \) with respect to the System (1)-(6) and the node set \(Y \subseteq V \) is \(S_Y = \cap_{j \in Y} S_{Mj}. \)

Example 2 We consider a constrained switching system modeling possible failures of a closed-loop linear system [12, Section 4]. We define \(A = \{A_1, \ldots, A_4\}, \) where \(A_1 = A + BK_1, A_2 = \begin{bmatrix} 0.94 & 0.56 \\ 0.14 & 0.46 \end{bmatrix}, \) \(B = [1] \), \(K_1 = [-0.49 0.27], \) \(K_2 = [0 0.27], \) \(K_3 = [-0.49 0], \) \(K_4 = [0 0] \). In [12] it is shown that \(\rho(A, G) < 1 \) while in [34] \(\rho(A, G) \) is computed exactly. We consider different state constraint sets and dist-

\[\begin{align*}
2 & \quad 1 \\
3 & \quad 4
\end{align*} \]

Fig. 2. The switching constraints graph \(G(V, E) \), Example 2.

turbance sets \(X_1 = B_{\infty}(1.5), X_2 = B_{\infty}(1.5) \oplus [0.5 0.5]^T, X_3 = B_{\infty}(1.5) \oplus [-0.5 -0.5]^T, X_4 = B_{\infty}(2) \) and \(W_1 = W_4 = B_{\infty}(0.01), W_2 = T_1 B_{\infty}(0.01), W_3 = T_2 B_{\infty}(0.01), \)
where \(T_1 = [0.94 -0.91, 0.34 -0.94], T_2 = [0.94 -0.91, -0.34 -0.94] \) and \(\mathbb{B}(\alpha) := \{x \in \mathbb{R}^2 : \|x\|_{\infty} \leq \alpha\}. \) From Corollary I(i), we compute a convex inner \(\epsilon \)-approximation \(\{S_{j}^{\epsilon}\}_{j \in V} \) of the minimal convex invariant multi-set for \(\epsilon = 10^{-2} \). In specific, we calculate \(S_{j}^{\epsilon} = \text{conv}(F_{490}), j \in V, \) where \(\{F^j_{X}\}_{j \in V}, l \geq 0 \) is generated by (15). The multi-set \(\{S_{j}^{\epsilon}\}_{j \in V} \) is shown in Figure 3 with yellow color. From Corollary I(ii) we can compute an invariant, convex outer \(10^{-2} \)-approximation. We obtain the pair \((k, \lambda)\) with \(k = 582, \lambda = 6.75 \times 10^{-4} \) which satisfies the conditions (12), (13) with the smallest \(k. \) Thus, the convex outer \(10^{-2} \)-approximation is \(\{\text{conv}(\frac{1}{9} F^j_{490})\}_{j \in V}. \) By utilizing Theorem 3, we compute the exact maximal invariant multi-set \(\{S_{j}^{e}\}_{j \in V} \) in \(19 \) \(\log_{\frac{\min_{j \in V}(R_j-r_j)}{\alpha_1 \alpha_3 \alpha}} \) iterations. The maximal invariant multi-set is shown in Figure 3 in light blue color. Last, from Corollary I(iii), by considering the maximal invariant multi-set, i.e., \(S_0 = S_{Mj}, j \in V \) we compute a second convex outer approximation \(\{\text{conv}(\frac{1}{9} F^j_{490})\}_{j \in V}. \)

A. Maximal invariant sets for linear time-invariant systems

Relation (18) is an upper bound on the iterations required to retrieve the maximal invariant multi-set. For linear systems
\[x(t + 1) = Ax(t), \] (19)
we can compute the maximal invariant set \hat{S}_M of the T-iterated system in at most $k = \lceil \log_{\rho_T} \left(\frac{k}{T} \right) \rceil = \lceil \frac{k}{T} \rceil$ iterations. It is not difficult to show that the maximal invariant set of the true system (19) is $\hat{S}_M = \hat{S}_{T-1}$, where $S_0 = \hat{S}_M$ and $\hat{S}_{t+1} = \{ x : A x \in \hat{S}_t \}$, $t = 0, ..., T - 2$. Using this two-step approach, we can express the bound of the number of iterations required to compute the maximal invariant set as a function of T by

$$g(T) := \left\lceil \frac{k}{T} + T - 1 \right\rceil.$$

(23)

The optimal T^* that minimizes (23) is $T^* = \sqrt{k}$. The result (22) is reached by computing $g(T^*)$.

The reasoning may carry on in the setting of [36, Section V, Lemma 4], where we can obtain a similar amelioration on the number of linear inequalities in case the constraint set \mathcal{X} is a polyhedral set. More generally, the same approach could be applied for switching systems with additive disturbances. Its exact formulation is left for further research.

Example 3 We study the triple integrator $\dot{x}(t) = A x(t) + B u(t)$, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, by considering its discretized version $\dot{x}(k+1) = A_d x(k) + B_d u(k)$, with $A_d = I + \tau A$, $B_d = \tau B$, with $\tau = 0.3$. We choose the LQR controller setting $Q = 1$, $R = 10^2$. Moreover, we consider the constraint set $\mathcal{X} = \{ x \in \mathbb{R}^3 : |x| \leq w \}$, with $w = [4 \ 3 \ 1]^T$. We compute the maximal invariant set \hat{S}_M for the closed-loop system in two ways. First, from (20), we compute $k = 689$, while \hat{S}_M is computed in exactly 164 iterations. Second, following Theorem 4, we compute the T-iterated system setting $T = \sqrt{k} = 27$. The maximal invariant set of the T-iterated system \hat{S}_M is computed in exactly 7 iterations. Next, we compute \hat{S}_M after $T - 1 = 26$ additional basic iterations. Overall, the maximal invariant set is retrieved in $7 + 26 = 33 < 164$ iterations, while the theoretical upper bound is $k^* = 53 < 689$ iterations. We illustrate in the lower and upper part of Figure 4 the sets \hat{S}_M and S_M respectively.

V. CONCLUSIONS

Invariance, safety and more refined set-theoretic notions are utilized more and more to tackle challenges appearing in safety-critical, resource-aware, embedded, Cyber-Physical systems. In this article, we focused on extending the available results to a family of systems with significant modeling power. We showed that it is necessary to generalize invariance to multi-set invariance and extended the available constructions for the minimal invariant multi-set (and its approximations) and the maximal invariant multi-set for systems under constrained switching.

We also characterized the computational complexity of the respective algorithms by providing in all cases a priori upper bounds on the maximum number of iterations. We believe this comprehensive outlook on invariant multi-set constructions may also provide new insights to well studied problems. For instance, in this article we established a new, provably much faster, way of computing the maximal invariant set for linear systems.
REFERENCES

