QUEEN’S

UNIVERSITY
BELFAST

ESTP1845

HTTP/2 Tsunami: Investigating HTTP/2 Proxy Amplification DDoS
Attacks

Beckett, D., & Sezer, S. (2017). HTTP/2 Tsunami: Investigating HTTP/2 Proxy Amplification DDoS Afttacks.
Advance online publication. https://doi.org/10.1109/EST.2017.8090411

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of
use of the publisher.

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. — Share your feedback with us: http:/go.qub.ac.uk/oa-feedback

Download date:23. Jan. 2025

https://doi.org/10.1109/EST.2017.8090411
https://pure.qub.ac.uk/en/publications/8a74d56a-f1cc-4e35-a7ab-eba442705c20

HTTP/2 Tsunami: Investigating HTTP/2 Proxy
Amplification DDoS Attacks

David Beckett, Sakir Sezer
CSIT, Queens University Belfast, Northern Ireland

Abstract—Distributed Denial of Service (DDoS) attacks cause
significant damage to computer systems by taking a system of-
fline. Hypertext Transfer Protocol (HTTP), is the most commonly
used protocol for web services. The HT'TP protocol has recently
received a major update to HT'TP/2. This new protocol provides
increased functionality, however this poses a threat from DDoS
due to the larger attack surface.

HTTP/2 implements novel compression techniques to reduce
bandwidth, in this paper we explore this compression technology
to providing understanding on its risk from DDoS, specifically in
a HTTP/2 to HTTP/1 proxy deployment. We implement a testbed
and measure the bandwidth to show that a amplification attack is
possible which is comparable to the current largest amplification
attacks.

Index Terms—DDoS, HTTP2, HPACK, Flood, Amplification,
Attack, Apache, nghttp2, Nginx, Vulnerabilities.

I. INTRODUCTION

Cyber attacks have become a major concern for society,
as they are becoming more prevalent and harder to protect
against. A common attack type is a Distributed Denial of
Service attack, this aims to take a network or service offline
so that it’s services can no longer be accessed.

These DDoS attacks are becoming more common [1] and
are increasing in magnitude. A common target for a DDoS
attack is the network infrastructure, whereby the network links
and devices are flooded with malicious packets to the extent
were they can no longer carry out their designed functionality.

Botnets are commonly used as an attack source, this poses
a serious issue as the infected bots are distributed in nature,
and can belong to unaware members of the general public, as
recently illustrated by the Mirai botnet [2].

A large portion of the internet is transmitted using the
Hyper Text Transfer Protocol (HTTP). In 2015, this protocol
received a substantial upgrade and was released as HTTP/2 [3].
The latest version of this protocol provides new functionality
with the aim of improving user’s quality of service. HTTP/2
introduces multiplexed streams allowing for multiple requests
and responses to be sent together in the same packet. It also
introduces a new compression methodology for the header
content to minimise bandwidth usage.

This new protocol has seen adoption by many websites. A
common approach is to use a HTTP/2 to HTTP/1 proxy, this
allows for the older version of the protocol to be used on
the existing web infrastructure, whilst providing the benefits
of the new protocol between users and the website proxy.
Content Delivery Networks (CDN) have also started to enable

this proxy deployment method for many of their clients still
running HTTP1 on their backend environment.

The benefits of HTTP/2 are well known, however there is
currently a lack of coverage on the risk from DDoS. In this
paper we provide an experimental study on the risk of attack
due to the latest version of the protocol, relating to the use of
it’s compression technique HPACK [4], as this is a potential
target for an amplification style attack.

II. HTTP/2 PROTOCOL OVERVIEW

Internet services and connection speeds have significantly
improved since the 1990s, however the HTTP protocol re-
mained relatively unchanged. The protocol only allowed a
single HTTP request to be active at at a time, with each
request requiring it’s own individual packet. This limitation
resulted in slow page load times. Header fields sizes have
also increased, in particular due to large cookie values which
were often duplicated in subsequent requests. Due to these
issues, Google in 2012 proposed SPDY, an alternative to the
legacy HTTP/1.1 protocol. SPDY aimed to solve these issues
by introducing multiplexed requests and by introducing a new
header compression technique. SPDY was formally adopted
as the new HTTP protocol, HTTP/2 in 2015 and released
as a RFC [3]. The following section will contain some of
the changes that the protocol has introduced so that potential
attacks can be exposed.

A. HTTP/2 Headers

The HTTP protocol communicates between the server and
client using headers. These headers include basic information
such as the website URL, the requested resource and user
identification data such as cookies. Since the introduction of
HTTP, these header sizes have significantly increased.

Websites now require a multitude of cookies, for gathering
user analytics and for maintaining user sessions. User agents
are also sent which identifies the web browser that the user
is using. These values are typically the same for all requests,
resulting in massive amounts of header data duplication.

HTTP/2 aims to solve this by introducing its own be-
spoke header compression format, HPACK[4]. HPACK re-
duces header duplication by implementing data lookup tables
for common header values. Requests can reference the location
of the data within the storage table to reduce data retrans-
mission. These header values are encoded using Huffman
Encoding to minimise their overall size for when full data
is required to be sent.

Index Header Name Header Value
1 -authority

2 ‘method GET

3 method POST

4 ‘path

5 ‘path findex html
6 ‘scheme http

7 scheme htips

8 status 200

9 status 204

10 status 206

1" status 304

12 status 400

13 ‘status 404

14 status 500

19 accept-charset

16 accept-encoding gzip, deflate
17 acceptlanguage

18 accepi-ranges

l=]

accont

Fig. 1. Extract from HPACK Static Table

HPACK introduces two header memory tables, static and
dynamic. The static table contains common header values as
defined by the RFC, such as common HTTP response codes
and header field names as can be seen in Figure 1.

The dynamic table is connection specific, it is created for
the life of each TCP connection. Each party manages their own
copy of the table. After a value is stored within the dynamic
table, the field’s memory location can be referenced within fu-
ture request minimising the retransmission of common header
values. An example can be seen in Figure 2.

The dynamic table has an initial size of 4K Bytes as defined
by the RFC however this can be increased or decreased.
Current implementations however have kept this value at the
default 4KB value.

B. HTTP/2 Stream Control

HTTP/2 introduces multiplexing of requests and responses,
which are transmitted in streams as can be seen in Figure
3. Both parties can negotiate the maximum number of active
streams. If a value is not defined by the clients, the initial
value is assumed to be infinite. The RFC recommends a value
of 100, however this can be increased or decreased through
setting frames. In current implementations, the current chosen
values are 100 for Apache and nghttp2, whilst Nginx uses 128.

C. HTTP/2 Deployment

Currently the top products for implementing HTTP/2 are
Nginx and Apache [5]. IIS has HTTP/2 functionality but it
is currently not as widely deployed. Apache also does not
implement HTTP/2 with its own library, but instead uses the
open source nghttp2 APIL.

HTTP/1.1 HTTP/2

1 Request for index.html

GET /search.php

Host: www.onlineshop.com
User-Agent: Mozilla/5.0
(Windows NT 10.0; WOW64)
AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/54.0.2840.99
Safari/537.36
Cookie:A=ATUaSmZgpspNZ-
vObA14Ew8_w34mcSUKIDInrXO
MYZ1lus—xJu85507vSWF5AwWQ=

:method: GET

:path: /search.php

:authority: www.onlineshop.com
User-Agent: Mozilla/5.0
(Windows NT 10.0; WOW64)
AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/54.0.2840.99
Safari/537.36
Cookie:A—ATUaSmZgpspNZ-
vObA14Ew8 w54meSUKIDInrX
OMYZlus—

xJu85507vSWFSAWQ—
Subsequent Requests
GET /imagel.jpg :method: GET
Host: www.onlineshop.com :path: /imagel.jpg
User-Agent: Mozilla/5.0 &A0
(Windows NT 10.0; WOW64) &A1l
AppleWebKit/537.36 (KHTML, &A2

like Gecko) Chrome/54.0.2840.99
Safari/537.36
Cookie:A=ATUaSmZgpspNZ-
vObA14Ew8 w54meSUKIDInrXO
MYZ1lus—xJu85507vSWESAwQ=
& denotes reference to Dynamic Table
Table does not reference Static Table for simplicity

Fig. 2. HTTP/2 Example showing referencing of Dynamic Table

1 GET JPG
3 GET JPG _
5 GET HTML

HTTP/2
Server

Client

Single Packet

1 JPG
a: G
5 HIML

Single Packet

Fig. 3. HTTP/2 Streams

Due to the radical changes in the protocol, legacy web
firewalls are unable to analyse the binary protocol due to
the introduction of streams and the use of HPACK header
compression. Many implementations instead use a proxy to
use HTTP/2 between client and proxy, but still use HTTP/1.1
at the back-end, this still allows existing infrastructure such
as existing web application firewalls and load balancers to be
used whilst gaining the benefits of the new protocol.

CDNs such as Cloudflare have also enabled HTTP/2 by
default for all their clients, resulting in all website visitors to
use HTTP/2. If the website back-end hasnt been updated to the
latest protocol, the proxy will convert the traffic to HTTP/1.1.

D. HTTP/2 Potential Vulnerabilities

DDoS attacks against HTTP are well known, however the
new protocol introduces increased complexity which provides
the possibility of new attack methodologies, as well as po-
tentially enhancing existing attacks. Due to this risk, the RFC

contains a brief section dedicated to some of the DDoS issues
the protocol introduces[3].

HTTP/2 has introduced multiplexed flows, along with flow
management within the application layer. This new flow
mechanism may allow for existing network layer attacks to
be replicated within the application layer, for example if an
attack floods the web server with flow window updates, this
may consume the web servers processing power.

Historically, the HTTP request flood attack has been a
popular attack form. Due to the multiplexing of requests in
HTTP/2, this will give an attacker a enhanced attack target as
they will be able to send more requests per packet.

Amplification attacks are a very common DDoS attack
which seeks to consume the capacity of the target’s network
link by reflecting low bandwidth traffic off a reflection source
which provides a larger data response. The use of header
compression by HTTP/2 may give an attacker a method of
amplification as the headers will have to be decompressed
before processing. Current amplification factors from existing
attacks can be seen in Table I.

TABLE I
ToP ATTACK BANDWIDTH AMPLIFICATION FACTORS [6]

Protocol Factor

NTP 556.9
Chargen 358.8

QOTD 140.3

RIPv1 131.24

Quake 63.9

LDAP 46 to 55

DNS 28 to 54

If the attacker can create an amplification attack which
causes the decompressed header data to exceed either the
memory of the server or the bandwidth of the link, this will
cause system instability. This can be achieved with low sized
incoming headers if the attacker can find large decompression
methods and if there is no upper limits set on the maximum
decompression size.

III. RELATED WORK

C Rossow et al [7] analysed UDP amplification attacks
to expose the risk of existing vulnerabilities with network
protocols. Bait servers were deployed and back scatter analysis
was performed to provide insight into their current usage.
Using UDP as the network protocol for an amplification attack
allows for IP spoofing to be used so that attackers can reflect
off vulnerable servers to target any IP address.

R Sherwood et al [8] investigated the use of TCP for
amplification attacks by generating optimistic ACKS causing
the network link throughput to increase, resulting in the victim
to consume their own network bandwidth.

B Sieklik et al [9] analysed the TFTP application for po-
tential amplification attacks. They discovered a amplification
factor of 60x which could generate a large amount of attack
traffic for DDoS.

E Adi et al[10] [11] analysed HTTP/2 and it’s risk from
DDoS. Their research focused on exploiting the flow mecha-
nisms and setting frames. They performed analysis on a testbed
to illustrate the potential attacks and their attack strengths
against a HTTP/2 web server.

Imperva, a cyber security vendor, released a white paper in
2016 with four HTTP/2 flaws relating to DDoS [12]. The flaws
were a mix of software implementation and protocol bugs. The
protocol flaws included a slow read attack, an attack against
flow control mechanism which could create a dependency
loop, and lastly a flaw against HPACK were they managed to
create a header compression bomb, which was able to consume
the memory of the web server memory.

IV. RATIONALE FOR CURRENT RESEARCH

DDoS is not a new topic of research, however existing
research carried out on HTTP/1.1 does not provide sufficient
coverage over the new HTTP/2 protocol. Currently the only
published work on HTTP/2 is by E Adi et al[10][11] and the
security vendor Imperva [12], however these do not provide
complete coverage of the potential attack vectors of HTTP/2.

The changes in the new protocol dramatically change the
overall operation of the protocol and has altered the threat
posed by DDoS. There is currently no research into the risks
posed on the risk posed by HTTP/2 proxies for bandwidth
amplification attacks.

Amplification attacks seeks to consume the network link
capacity of the target, so that it can no longer handle the
traffic. We believe the use of header compression by HTTP/2
gives an attacker a method of amplification, allowing for the
exploitation of the application layer to perform a network layer
DDoS and this is the topic we have to chosen to investigate.

From obtaining knowledge of this attack, before it is seen
by industry, we aim to provide researchers with a threat model
so that defence systems may be proposed in the near future.

V. PROXY AMPLIFICATION ATTACK

HTTP/2 compression implements a dynamic table for
header data storage. On a header value’s first occurrence it can
be stored in this table so that subsequent requests can instead
reference the data. HTTP/1.1 does not have this compression
functionality, therefore if a HTTP/2 to HTTP/1.1 proxy han-
dles the requests, the requests will need to be expanded in
full for HTTP/1.1. These small referenced HTTP/2 requests
therefore will result in large sized HTTP/1.1 requests as can
be seen in Figure 4. This could be exploited as an attack vector,
to consume the network bandwidth of a back-end data link.

To understand this risk, we have performed amplification
DDoS attacks on an experimental testbed. These simulations
consist of an attacker exploiting the dynamic header compres-
sion by referencing stores values from the dynamic table.

A testbed environment was setup to allow for these exper-
iments to be carried out. Sensors were positioned onto the
links of the network so that both bandwidth sizes and packet
rates could be recorded, allowing for the relevant amplification
factors to be measured.

Byt

HTTP/1 Server

GET /index.htm| HTTP/1.1
Host: www.web.com
Accept-Encoding:gzip
Cookie:A=AlUaSmZgpspNZ-
vObA14Ew8_w54mc5UKIDInr
rXOMYZ1lus—
xJu85507vSWF5AwWQ=
Cookie:B=bR14Ew8_w54mR
14EcSTKIXInrrR14EXOSWF5A

GET /file2.php HTTP/1.1
Host: www.web.com
Accept-Encoding:gzip
Cookie:A=AlUaSmZgpspNZ-
vObA14Ew8_w54mc5UKIDInr
rXOMYZ1lus—
xJuB5507vSWF5AwWQ=
Cookie:B=bR14Ew8_w54mR
14EcSTKIXInrrR14EXOSWFSA

GET /file3.php HTTP/1.1
Host: www.web.com
Accept-Encoding:gzip
Cookie:A=AlUaSmZgpspNZ-
vObA14Ew8_w54mc5UKIDInr
rXOMYZ1lus—
xJuB5507vSWF5AwWQ=
Cookie:B=bR14Ew8_w54mR
14EcSTKIXInrrR14EXOSWFSA

R1I4EwQR14E== R14EwQR14E== R14EwQR14E==

Converted to HTTP/1.1 Requests

:method: GET

:host: www.web.com

:path: /index.html
Cookie:A=AlUaSmZgpspNZ-
vObA14Ew8_w54mc5UKIDInr
rXOMYZ1lus—
xJuB5507vSWF5AwWQ=
Cookie:B=bR14Ew8_ w54mR
14EcSTKIXInrrR1I4EXOSWF5SA
R14EwQR14E==

HTTP/2 Proxy

:path: /file2.php
&(References headers)

&(References headers)

..

HTTP/2 Client

HTTP/2 Request

Fig. 4. Amplification of packets when using HTTP/1 to HTTP/2 Proxy

For amplification factors, we consider both packet and
bandwidth amplification. If the proxy requires a larger quantity
of packets on the HTTP/1 backend, this may cause it to crash
as packet generation is also a bottleneck for network devices.

A. Testbed Architecture

The testbed comprised of a HTTP/2 gateway proxy which
connects to a HTTP/1.1 back-end webserver. All simulations
are carried out on a private cloud environment running Ubuntu
14.04 as an operating system. Apache 2.4.7 is used for
the back-end HTTP/1.1 traffic. For the proxy, the two most
common HTTP/2 proxies were tested, Nginx and nghttp2. IIS
and native Apache do not currently provide proxy support.

The attack tool used was h2load, the tool was fed the neces-
sary parameters to generate all of the following amplification
attacks.

The tool, tcpdump captures the traffic at the attacker location
and at the back-end location. Only packets containing a pay-
load were measured to minimise the influence of deployment
choices regarding the frequency of TCP ACKs. The byte size
is measured for the entire packet including Ethernet, IPv4,
TCP headers and HTTP payload.

B. Dynamic Table Memory Consumption

To obtain the optimum header pattern for an attacker,
the compression of the HTTP header field must be fully

understood to find the attack set with the maximum impact.
Each HTTP request features multiple header values such as
cookies, user agents and host name.

Each stored header record i, consumes memory within
the dynamic table. The field name for each header record
consumes F number of bytes, the corresponding field value
consumes V bytes and each record requires an additional 32
Bytes overhead. Each character within the record consumes
a single Byte. The total header size needs to be below the
total maximum dynamic header size to allow for compression
to operate. Using this information, the following formula was
produced.

N

Z F; +V; 4+ 32(Bytes) < MaxDynamicHeaderSize (1)

i=0

Due to the overhead of 32 bytes per cookie instance, an
optimum attack pattern will aim to reduce the number of
cookie instances and instead increase the byte size of each
cookie to maximise the amplification power.

C. Amplification Attack Experiments

The objective of the experiment is to show the amplification
risk posed by the decompression of HTTP/2 request headers.
The max concurrent stream value affects the number of open
streams a client can have at a point in time, if this value is
large, a client should gain larger amplification due to more
frequent requests which can reference the dynamic table.

Each HTTP/2 request requires several header values to
facilitate the request, these can be seen in Table II. The cookie
values chosen for the following experiments were obtained
using equation 1. The cookie structure used for the following
simulations can be seen in Table III.

1) Effect of Max Concurrent Requests on Amplification
Factor: The aim is to demonstrate how an attacker can
generate an amplification attack using the dynamic table size
of 4KB. The simulation’s first request contains 2 instances
of 1940 character cookies, to fill up the 4KB table. The first
request headers will be sent to the server in full, however
HPACK will store these large values into its dynamic table.
Subsequent requests may now reference these large cookie
values from the dynamic table, whilst requiring a relatively
small transmission size.

The recommended max concurrent value of 100 was chosen
to illustrate the base amplification factor an attacker will have.
Varying levels of simultaneous requests were sent to the server
ranging from 1 request (with no subsequent requests) to 768.

The experiment is subsequently repeated using alternative
max concurrent values of 128, 256 and 512 to demonstrate the
affect this has on the amplification factor.

2) Results: After the experiments were executed, the ampli-
fication factor was calculated by calculating the ratio between
the attackers traffic and the traffic produced by the proxy to
the back-end server.

Figures 5 and 6 show the amplification factor vs numbers
of active requests streams sent in that particular connection.

TABLE 11
HTTP/2 REQUEST HEADER VALUES

Field Name and Value Field Name Length (Bytes) | Field Value Length (Bytes) | Overhead (Bytes) | Total (Bytes)
Authority:www.csitweb.co.uk 9 17 32 58
User-Agent:h2load nghttp2/1.14.0-DEV 10 25 32 67
Cookie:CN=(100 Chars) 6 103 32 141
TABLE III

SCHEMATIC OF EXPERIMENT 1 REQUESTS

Request | Header Structure

1 CO0=ABCDE(1940 chars)
C1=ABCDE(1940 chars)

2 &C0 (reference to Dynamic table)
&Cl1 (reference to Dynamic table)

N &C0 (reference to Dynamic table)
&C1 (reference to Dynamic table)

Packet Amplification Factor
200
180
160
140
120
100 W L

80

Amplification Factor

60
40

20

O N & W ®
NN T
Mmoo Mmoo

32

64

96
128
160
192
224
256
288
480

N g O 0O NI O 0
o T ~NO ST N~NO MmO
nwno v oN~~N~N

Requests Sent

----- 100 Max Concurrent 128 Max Concurrent

256 Max Concurrent 512 Max Concurrent

Fig. 5. Packet Amplification for varying max concurrent values

It can be seen from the graph shown in Figure 5 that the
attack amplification factor increases linearly for all scenarios
until the sent requests matches the relevant max concurrency
value. After the number of attack requests exceeds the max
concurrency value, the amplification rate curtails and levels
off. This is due to the extra HTTP/2 packet overhead required
to facilitate the freeing of streams for the remaining requests.

Due to the loss of amplification and the extra computational
complexity, we can assume the attacker will not send more
requests than the max concurrent value in a single connection.
We expect for an attacker to create multiple connections each
sending the requests at the max concurrent value set by the
server to maximise the impact of their amplification attack.
Therefore the max amplification factor is taken from the graph
at the max concurrent limit value. These values are shown in
Table IV.

Bandwidth Amplification Factor

250
200

150 _

100

Amplification Factor
]

50

0

- 0 O NS VWO NT OO NI O
0 N W@ O AFTNOTNO MmO
~N g 1NN nmO YO R~~~

N S O 0O N
MmO O N O N
LR] Mmoo oMo

256

Requests Sent

----- 100 Max Concurrent 128 Max Concurrent

256 Max Concurrent 512 Max Concurrent

Fig. 6. Bandwidth Amplification for varying max concurrent values

TABLE IV
TABLE: AMPLIFICATION FACTOR FOR VARYING MAX CONCURRENT
STREAM LIMITS. MAX DYNAMIC TABLE SET AT 4KB

Amplification Factor at

Max Concurrent limit
Max Concurrent Setting | Bandwidth | Packet
100 79.2x 46.8x
128 94.4x 64.9x
256 140.6x 113x
512 196.3x 173x

VI. CONCLUSION

The objective of the research is to understand, in a HTTP/2
deployment, the risk of a DDoS attack relative to the threat
posed by the previous HTTP/1.1 version.

We have shown the vulnerability of a amplification attack in
a HTTP/2 to HTTP/1 environment. This allows a sophisticated
attacker to exploit the HTTP/2 header compression, HPACK
to generate large packet payload onto the back-end data link.

The max concurrency value set by the server also influ-
ences the amplification power of the attacker. For 128 max
concurrent value with a 4KB dynamic table, this gave a
HTTP/2 to HTTP/1 amplification factor of 94.4x whilst 100
max concurrent value gave a amplification factor of 79.2x. For
proxies, it is therefore safer to choose this lower limit of 100.

Another possible amplification attack vector emerges due
to publicly available HTTP proxies. If they support HTTP/2

they can be used to amplify HTTP/2 compressed traffic to
any HTTP/1.1 website. This opens up this attack to allow any
HTTP/1.1 website to be attacked through reflection.

We believe we have benefited the research community by
providing this information so that suitable defence mecha-
nisms can be proposed. We hope to explore suitable detec-
tion strategies in our future work and analyse further attack
methods relevant to HTTP/2.

HTTP/2 deployment is on the rise, however security re-
search on this new protocol is inadequate, we have provided
much needed research on this protocol so that future deploy-
ments can be implemented with parameters that can decrease
its risk from DDoS.

REFERENCES

[1] A. Networks, “WORLDWIDE INFRASTRUCTURE SECU-
RITY REPORT XII 2017, 2017. [Online]. Available:
https://www.arbornetworks.com/insight-into-the-global-threat-landscape

[2] Incapsula, “Breaking down Mirai Botnet,” 2017. [On-
line]. Available: https://www.incapsula.com/blog/malware-analysis-
mirai-ddos-botnet.html

[3] IETF, “RFC:7540, Hypertext Transfer Protocol Version 2 (HTTP/2),”
2015. [Online]. Available: https://tools.ietf.org/html/rfc7540

[4] IETF., “RFC:7541, HPACK: Header Compression for HTTP/2),” 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7541

[5] W3TECH, “Usage of HTTP/2 broken down by web servers,” 2017,
online; accessed 10-Mar-2017.

[6] US Computer Emergency Readiness Team (US-CERT), “UDP-based
Amplification Attacks,” https://www.us-cert.gov/ncas/alerts/TA14-017A,
2014, online; accessed 26-Aug-2014.

[7]1 C. Rossow, “Amplification hell: Revisiting network protocols for ddos
abuse,” in 2014 Network and Distributed System Security Symposium,
2014.

[8] R. Sherwood, B. Bhattacharjee, and R. Braud, “Misbehaving tcp
receivers can cause internet-wide congestion collapse,” in Proceedings
of the 12th ACM Conference on Computer and Communications
Security, ser. CCS "05. New York, NY, USA: ACM, 2005, pp. 383—
392. [Online]. Available: http://doi.acm.org/10.1145/1102120.1102170

[9] B. Sieklik, R. Macfarlane, and W. J. Buchanan, “Evaluation of tftp ddos
amplification attack,” Computers & Security, vol. 57, pp. 67-92, 2016.

[10] E. Adi, Z. A. Baig, P. Hingston, and C.-P. Lam, “Distributed
denial-of-service attacks against http/2 services,” Cluster Computing,
vol. 19, mno. 1, pp. 79-86, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10586-015-0528-7

[11] E. Adi, Z. Baig, C. P. Lam, and P. Hingston, “Low-rate denial-of-service
attacks against http/2 services,” in 2015 5th International Conference on
IT Convergence and Security (ICITCS), Aug 2015, pp. 1-5.

[12] Imperva, “HTTP/2: In-depth analysis of the top four flaws of the next
generation protocol,” Aug, 2016.

