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Abstract—Wireless backhaul is a cost-effective and flexible al-
ternative to wired backhaul, yet it suffers from unreliability. This
paper studies the secrecy performance of a relay network with
such unreliable wireless backhaul. Bernoulli process is adopted
to model the wireless backhaul reliability. In the network, a
relay employing time-switching-based radio frequency harvesting
technique aids in forwarding the signal from the best transmitter.
An eavesdropper, which is able to wiretap signals from both
the transmitter and the relay, uses selection combining to
maximize its received signal-to-noise ratio. Analytical expressions
for secrecy outage probability, ergodic secrecy rate and non-zero
achievable secrecy rate are derived, which can reveal the effect
of the number of transmitters and backhaul reliability on the
system performance. Furthermore, for the first time the impact
of energy harvesting time fraction upon secrecy performances
under unreliable backhaul is presented.

Index Terms—Energy harvesting, ergodic secrecy rate, secrecy
outage probability, transmitter selection, unreliable backhaul.

I. I NTRODUCTION

A high dense network is envisaged in the near future
where multiple backhaul connections have to be provided.
Conventional wired backhaul technologies such as copper,
optical fibre and line-of-sight (LOS) microwave can ensure
reliability and high data rate, but the cost for their deployment
and maintenance is relatively high [1] [2]. In contrast, wireless
backhaul has been proven to be a cost-effective and flexible
alternative, yet not without its drawback. The links in a
wireless backhaul solution are not as reliable due to non-LOS
propagation and channel fading [3]. However, with scenarios
such as smart cities, smart grids and the Internet-of-Things
gaining momentum, there is no doubt that future networks
will be dense and heterogeneous [4] and that the flexible, cost
efficient wireless backhaul is an attractive proposition despite
being unreliable. As such, the security and privacy issue for
future wireless networks is very crucial [5].

In this context, the use of relays is also attractive as they
can extend the coverage and enhance the overall system perfor-
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mance [6]–[11]. There are two main schemes, namely amplify-
and-forward (AF) and decode-and-forward (DF) [12]. In AF
schemes, the relay amplifies the received message and then
forwards it to the receiver, thus requires less power because
there is no decoding or quantizing at the relay. The drawback
is that the interference is also amplified. In DF schemes, the
relay decodes the source message in one block and transmits
the decoded message in the following. Consequently, a relay
network operating in DF schemes has better performance
thanks to lower interference, which motivates us to consider
cooperative DF relays in this work. To overcome the need for
more power to operate as a result of its complexity, we exploit
alternative ways of harvesting energy for the relays.

In recent years, radio frequency (RF) energy harvesting
(EH) has been presented as a promising environmental friendly
approach. RF signals with wireless information and energy
are transmitted so that the nodes can receive the harvested
energy to forward or process information [13] [14]. In [15],
the power beacon provides wireless energy for relay nodes to
stay active. In [16], a cooperative energy harvesting network
with time switching (TS) protocol at the relay is investigated.
In this work, the relay will harvest energy from a selected
transmitter during an energy harvesting period, receive the
information from the backhaul and forward the information
to the destination.

For a more complete study one also needs to take into
consideration the inherent challenges of security in future
wireless communication networks. Due to the broadcast na-
ture, information is vulnerable to eavesdropping and hostile
attacks [16]–[19]. The traditional way is deploying crypto-
graphic techniques which are used at higher-layers on the
condition that there is no error at the physical layer, despite this
consumes a hugh amount of energy for encrypting, decrypting
data and burdening the protocol stack. In recent years, physical
layer security (PLS) has become increasingly popular to tackle
significant concerns in wireless communications. The principle
of PLS is that the randomness of the wireless channels
can be exploited to keep the information confidential from
eavesdroppers. Some research has investigated the system
performance in the presence of an eavesdropper [16], [20]–
[30]. In this work, we consider an eavesdropper that can
wiretap the information from the transmitters and the relay.

These research studies do not investigate the effect of the
unreliability of wireless backhaul links on the system perfor-
mance. For instance, in [21], the authors considered EH, relay
networks and PLS in a wireless network with Rayleigh fading,
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without considering the impact of the unreliable backhaul on
the system performance. However, there has been research
into this important role of wireless backhaul. A cooperative
wireless system with unreliable backhaul is investigated in [3],
[31]–[33]. Moreover, the system performance is shown to de-
crease because of the unreliable wireless backhaul links [31].
Related research in [31] and [32] is extended by considering an
energy harvesting relay to enhance coverage and PLS to keep
information confidential from an eavesdropper. In [31] and
[32], a control unit (CU) sends a message to transmitters via
unreliable backhaul links. When the information is transmitted
successfully, it is forwarded to the receiver. In addition,
selection combing (SC) is used at the receiver to increase the
throughput and maximize the signal-to-noise ratio (SNR) in
[32]. However, neither relaying nor security is considered in
these studies.

In [3], the secrecy performance of finite-sized cooperative
single-carrier systems with unreliable backhaul connections is
investigated. In [34], the secrecy performance of cooperative
single-carrier systems has been derived under the unreliable
backhaul. Closed-form expressions were derived to study
the secrecy outage probability, ergodic secrecy rate and the
probability of non-zero achievable secrecy rate.

Different from all the aforementioned work, in this paper,
we consider unreliable backhaul in EH relay networks where
the terminals are under realistic constraints that their batteries
are limited. Our work presents a more complete model by
including an EH relay to extend coverage and to show the
impact of EH time fraction upon secrecy for the first time.

Our main contributions are summarized as below:

• We investigate the impact of unreliable backhaul on the
secrecy performance of EH relay networks with transmit-
ter selection.

• We provide analytical expressions to evaluate the perfor-
mances of secrecy outage probability, non-zero achiev-
able secrecy rate and ergodic secrecy rate.

• We investigate the effect of the number of transmitters,
EH time-fraction ratio, and wireless backhaul reliability
on the secrecy performance is investigated.

The remainder of the paper is organized as follows. System
and channel models are described in Section II. Derivation of
the SNR distributions is obtained in the Section III. Secrecy
performance analysis is carried out in the Section IV, while
numerical results are presented in the Section V. Finally, the
paper is concluded in the Section VI.

Notation: P[·] is the probability of occurrence of an event.
For a random variableX , EX [·] denotes expectation or mean
of X , FX(·) denotes its cumulative distribution function
(CDF) andfX(·) denotes the corresponding probability den-
sity function (PDF). (x)+ , max(0, x), and max (·) and
min (·) denote the maximum and minimum of their arguments,
respectively.λXY denotes inverse of the average SNR of the
arbitrary linkX − Y .

II. SYSTEM AND CHANNEL MODELS

A cooperative EH network, consisting of a macro base
stationS connected toK small-cell transmitters,TX{1,··· ,K},

TX1 TXk TXK
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Fig. 1: System Model

Fig. 2: Time Switching Based Protocol

via unreliable backhaul links, a relay,R, and a destination,D,
in presence of an eavesdropper,E, is considered as shown in
Fig. 1. The best transmitter is selected to transfer its message to
D with the help ofR while E attempts to wiretap information
transmitted from both the transmitter andR. The relay is
assumed to be operating in half-duplex DF and constrained
by the amount of radio energy it harvests from the selected
transmitter within the time allocated to it. Time switching (TS)
based EH mechanism is considered as shown in Fig. 2 where
α, 0 < α < 1, is the fraction of the total time periodT for
the harvesting radio energy.

Reliability of the kth Backhaul is modeled as a Bernoulli
processIk with success probabilitysk whereP(Ik∗ = 1) = sk
and P(Ik∗ = 0) = 1 − sk. This indicates that theTXk is
participating in the transmission if the message is successfully
delivered over its dedicated backhaul with probabilitysk
whereas it defers its transmission with probability1− sk. All
the channels are assumed to undergo independent and iden-
tically distributed (i.i.d) Rayleigh fading. It is also assumed
that transmitters and the receiver are equipped with a single
antenna. The best transmitter (k∗) is the transmitter for which
the received SNR atR is maximum, i.e.,

k∗ = arg max
1≤k≤K

SNRTkR. (1)

The eavesdropper combines signals fromTKk∗ andR using
SC to maximize its received SNR.

In the first hop, the received signal atR andE are of the
form

yR =
√

PThTk∗RIk∗x+ z, (2)
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wherehTk∗R is the channel coefficient of the linkTXk∗−R, x
is the unit power transmitted symbol andPT is the transmitted
power byTXk∗ , z is the complex additive white Gaussian
noise (AWGN) atR with zero mean and varianceσ, i.e., z ∼
CN(0, σ). Received signal atE can be obtained by simply
replacingR by E in (2).

In the second hop, the received signal atD andE are of
the form

yD =
√

PRhRDx+ z, (3)

wherePR is the transmitted power byR which is harvested
in the first time slot,hRD is the channel coefficient of the
link R−D. Received signal atE can be obtained by simply
replacingD with E in (3). It is to be noted here that receivers
are assumed to be affected by the same amount of noise power.

A. Harvested Power

Considering TS policy based EH, the harvested energy at
R can be obtained as [13]

ER = ηαTPT |hTk∗R|2Ik∗ (4)

whereη is the EH efficiency and0 < η < 1. Corresponding
harvested power can be obtained as

PR = ξPT |hTk∗R|2Ik∗ (5)

whereξ = 2ηα
(1−α) .

I II. SNR DISTRIBUTIONS

Before the secrecy performances are derived in the next sec-
tion, this section finds the distributions of the SNRs necessary
for the derivation.

A. Distribution of the link Tk∗ −R.

According to the transmitter selection rule, the SNR of the
best linkTk∗ −R can be written as

SNRTk∗R = max
k=1,...,K

PT |hTkR|2Ik
σ2

. (6)

Corresponding CDF can be obtained as

FγM1 (x) = 1 +

K
∑

k=1

(−1)k
(

K

k

)

sk exp

(

−λTR

kx

γM

)

, (7)

whereγM = PT

σ2 .
Proof: The proof is given in Appendix A.

B. Distribution of the link R−D.

SNR of the linkR−D can be written in the form of

SNRRD =
PR|hRD|2

σ2
, (8)

wherePR is the harvested power in the first time slot as in
(5). SNR of the linkR−E can be obtained just by replacing
D with E in (8). The corresponding CDF is derived as

FγM2 (x) = 1 +
K
∑

k=1

(−1)ksk
(

K

k

)

2

√

λTRλRDkx

γMξ

× K1

(

2

√

λTRλRDkx

γMξ

)

, (9)

whereKv (z) is the modified Bessel function of the second
kind.

Proof: The proof is given in Appendix B.

C. Distribution of the end-to-end link Tk∗ −D.

As R follows DF relaying protocol, the end to end SNR at
D is expressed as

SNRTk∗D = min(SNRTk∗R, SNRRD). (10)

The CDF of the link can be expressed as

FγTD
(x) = 1− (1− FγM1 (x))(1− FγM2 (x))

= 1−
K
∑

k=1

(−1)k
(

K

k

)

sk exp

(

−λTR

kx

γM

) K
∑

i=1

(−1)isi
(

K

i

)

× 2

√

λTRλRDix

γMξ
K1

(

2

√

λTRλRDix

γMξ

)

. (11)

D. Distribution of the link Tk∗ − E.

The SNR of the linkTk∗ − E is given by

SNRTk∗E =
PT |hTk∗E |2Ik∗

σ2
. (12)

Hence, corresponding CDF can be obtained following Ap-
pendix A as

FγE1 (x) = 1− s exp

(

−λTE

x

γM

)

. (13)

E. Distribution of the link R− E.

The CDF of the linkR−E can be obtained as of the link
R−D in (9) as

FγE2 (x) = 1 +
K
∑

k=1

(−1)ksk
(

K

k

)

2

√

λTRλREkx

γMξ

×K1

(

2

√

λTRλREkx

γMξ

)

. (14)

F. Distribution of the SNR at E.

As E follows SC protocol, the SNR atE can be expressed
as

SNRE = max(SNRTk∗E , SNRRE). (15)
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The corresponding CDF can be evaluated using (13) and (14)
as

FγE
(x) = FγE1 (x)FγE2 (x)

= 1 +

K
∑

k=1

(−1)k
(

K

k

)

sk2

√

λTRλREkx

γMξ
K1

(

2

√

λTRλREkx

γMξ

)

− s exp

(

−λTEx

γM

)

− s exp

(

−λTEx

γM

) K
∑

i=1

(−1)i
(

K

i

)

si

× 2

√

λTRλREix

γMξ

(16)

By differentiating (16), the PDF of the SNR atE is expressed
as

fγE
(x) = −

K
∑

i=1

(−1)isi
(

K

i

)

2
iλTRλRE

γMξ
K0

(

2

√

λTRλREix

γMξ

)

+
λTEs

γM
exp

(

−λTEx

γM

)

+ s

K
∑

j=1

(−1)jsj
(

K

j

)

2

√

λTRλREj

γMξ

× λTE

γM
K1

(

2

√

λTRλREjx

γMξ

)

exp

(

−λTEx

γM

)

x
1
2 + s

K
∑

k=1

× (−1)ksk
(

K

k

)

2λREkλTR

γMξ
K0

(

2

√

λTRλREkx

γMξ

)

× exp

(

−λTEx

γM

)

. (17)

In the above equation, the first derivative of the modified
Bessel function of the second kind is utilized as follows

∂Kv (z)

∂z
= −Kv−1 (z)−

v

z
Kv (z) . (18)

IV. SECRECY PERFORMANCEANALYSIS

This section derives the performances of secrecy outage
probability, non-zero achievable secrecy rate and ergodic se-
crecy rate utilizing the SNR distributions obtained in the
previous section. Towards deriving those performances, the
secrecy rate of the system is required to be defined first, which
is given by

CS =
1

2

[

log2(1 + SNRT∗

k
→D)− log2(1 + SNRE)

]+
,

(19)

where[x]+ = max(x, 0).

A. Secrecy outage probability

The secrecy outage probability is defined as the probability
that the secrecy rate falls below a certain thresholdθ, i.e.,

Pout(θ) = Pr(CS < θ)

=

∫ ∞

0

FTk
∗D

(

22θ(1 + x) − 1
)

fE (x) dx, (20)

Substitute (11) and (17) into (20), the expression for secrecy
outage probability can be obtain in (B.2) as shown in the
Appendix C.

B. Probability of non-zero secrecy rate

The probability of non-zero secrecy rate is the probability
that secrecy rate is more than zero, or another waySNRTk∗D

is higher thanSNRE. The probability of none-zero secrecy
rate can be obtained as [35]

Pr(CS > 0) = 1− Pout(0)

= 1−
∫ ∞

0

FSNRT∗

k
→D

(x) fSNRE
(x) dx,

(21)

Using (11) and (17), it can be evaluated in (B.6) as shown in
the Appendix D.

C. Ergodic secrecy rate

The ergodic secrecy rate is defined as the average secrecy
rate averaged over all the SNR distributions. Ergodic secrecy
rate (bits/s/Hz) is expressed as [35]

Cerg =
1

2 ln(2)

∫ ∞

0

FSNRE
(x)

1 + x
[1− FSNRT∗

k
→D

(x)]dx

(22)

Substitute (11) and (16) into (22), ergodic secrecy rate can be
evaluated as in (B.7) as shown in the Appendix E.

V. NUMERICAL RESULTS

In this section, numerical results along with simulations
are shown for the analyses carried out on the proposed
system. The threshold of secrecy outage probability is fixed
at θ = 1 bits/s/Hz. It is assumed that the location of
the nodes in Cartesian coordinate system respectively are
TXk = (0, 0), ∀k, R =(0.8, 0), D =(1, 0), E =(1,
-4) [36]. Hence, the distance between two nodes can be
found asdAB=

√

(xA − xB)2 + (yA − yB)2, where A and B
have the co-ordinates(xA, yA) and (xB, yB) and A,B =
{T,R,D,E}. It is assumed that average SNR of each link
is dependent on the path loss as1/λX = 1/dplX , where,pl is
the path loss exponent. Unless otherwise specified,pl = 4 and
η = 0.5 is assumed. In figures, “sim” represents the simulation
results, and “ana” represents the analytical results.

A. Effect of number of transmitters, reliability of backhaul and
EH time on secrecy outage probability

In Fig. 3, secrecy outage probability versusγM is plotted
by increasing the number of transmitters fromK = 1 to 3.
The parameters,s = 0.98, andα = 0.2 are assumed. As the
number of transmitters increases, secrecy outage probability
decreases. This is because of the increased diversity with
increased number of transmitters. It can also be seen that as
γM increases, secrecy outage probability initially decreases,
however, becomes saturated at a fixed value for a givenK.

In Fig. 4, secrecy outage probability versusγM is plotted by
increasing the reliability of the backhaul ass = 0.8, 0.9, 0.98
for K = 3. The parametersα = 0.2 is assumed. It can
observed that if the system has more reliable backhaul, it
performs better.
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Fig. 3: Secrecy outage probability with different number of
transmitters at a fixed backhaul reliability.

Fig. 4: Secrecy outage probability with different backhaul
reliability at a fixed number of transmitters.

In Fig. 5, secrecy outage probability versus time fraction,
α, allowed to do the EH is shown at a specific s=0.98. It is
observed that the secrecy outage probability tends to get higher
whenα is too low or too high. It has a convex nature with
α. This is because when the EH time is too high, the relay
does not have sufficient time to transmit the signal as a result,
received power decreases, and when it is too low, so little
energy is harvested that transmit power decreases. In both the
cases, the secrecy outage probability will be extremely high.
It can be noticed that with the number of transmitters varying,
the curves show the same trend and has the same optimal
point obtained atα = 0.2 . This shows that the number of
transmitters has no effect on the optimal EH time.

B. Effect of number of transmitters, reliability of backhaul and
EH time on ergodic secrecy rate

Fig. 6, Fig. 7 and Fig. 8 depict the effect of the number
of transmitters, backhaul reliability, EH time fraction on the

Fig. 5: Secrecy outage probability plotted as a function ofα
at a fixed backhaul reliability.

Fig. 6: Ergodic secrecy rate with different number of
transmitters at fixed backhaul reliability.

ergodic secrecy rate as shown in the corresponding figures
Fig. 3, Fig. 4 and Fig. 5, respectively, on the secrecy outage
probability. Parameters are the same in the corresponding fig-
ures of the ergodic secrecy rate and secrecy outage probability.
Effect of number of transmitters, reliability of backhaul and
EH time is complementary on ergodic secrecy rate and secrecy
outage probability. When secrecy outage probability decreases,
the ergodic secrecy rate would increase. Observations from
these figures are as follows: ergodic secrecy rate increases
initially with γM , however, saturates afterwards, asK in-
creases, ergodic secrecy rate also increases, ergodic secrecy
rate is concave in nature withα, as reliability of the backhaul
increases, ergodic secrecy rate also increases.
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Fig. 7: Ergodic secrecy rate with different backhaul
reliability at a fixed number of transmitters.

Fig. 8: Ergodic secrecy rate plotted as a function ofα at a
fixed backhaul reliability.

C. Effect of number of transmitters, reliability of backhaul and
EH time on non-zero secrecy rate

Fig. 9 shows the same performances as of secrecy outage
probability and ergodic secrecy rate with the same parameters,
correspondingly. The observations are similar in all the cases.

In the figure, simulation results match well with the nu-
merical results, thus, validating the analysis presented in the
paper.

VI. CONCLUSION

This paper investigated the effect of unreliable backhaul
on the secrecy of an energy harvesting relay network with
transmitter selection. Three performance metrics, i.e., secrecy
outage probability, non-zero achievable secrecy rate and er-
godic secrecy rate, were derived under independent Rayleigh
fading channels. Results showed that the increase in the
backhaul reliability and the number of transmitters improve the

Fig. 9: Probability of non-zero achievable secrecy rate
plotted as a function ofα at a fixed backhaul reliability.

system performance. It was also shown that energy harvesting
time fraction has a huge impact on the system performance,
hence, should be optimally designed.

APPENDIX A

As individual links are i.i.d Rayleigh distributed, corre-
sponding SNRs are exponentially distributed. Assuming suc-
cess probabilitys for each link i.e.,sk = s, ∀k, distribution of
SNRTkR can be written as (avoiding the subscriptk hereafter
as i.i.d links)

f|hTR|2I (t) = (1− s)δ(t) + sλTR exp(−λTRt), (A.1)

where δ(t) is the Dirac delta function and1/λTR is the
average SNR of the corresponding link. The corresponding
CDF can be written as

F|hTR|2I (t) =

∫ t

0

(1− s)δ(t) + sλTR exp(−λTRt)dt

= 1− s exp

(

−λTR

t

γM

)

(A.2)

Now the CDF ofSNRTk∗R = maxk=1,...,K γMhTkRIk is

FγM1 (t) =

(

1− s exp

(

−λTR

t

γM

))K

= 1 +

K
∑

k=1

(−1)k
(

K

k

)

sk exp

(

−λTR

kt

γM

)
(A.3)
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APPENDIX B

The CDF of SNRRD can be found from the definition
assigning auxiliary variablet to |hRD|2 as

FγM2 (x) = P
[

ξγM |hTk∗R|2|hRD|2Ik∗ ≤ x
]

= P

[

γM |hTk∗R|2Ik∗ <
x

ξt

]

=

∫ ∞

0

(

1 +

K
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(

K

k

)

sk exp

(

−λTRk
x

γMξt

)

)

f(t)dt
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√
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γMξ
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(

2

√
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γMξ

)

(B.1)

The integral can be solved according to [37, Eq. (3.324.1)].

APPENDIX C

The expression for the secrecy outage probability is shown
in (B.2). The integralsJ1 andJ4 can be written in the form
of
∫ ∞

0

exp(ax)K0 (
√
a0x)K1

(

√

b0x+ do

)√
b+ cxdx (B.3)

Whereas, the integralsJ2 andJ3 can be written in the form

J2 =

∫ ∞

0

exp(ax)K1

(√
a0x+ co

)
√
b+ cxdx, (B.4)

and

J3 =

∫ ∞

0

√
x exp(ax)K1 (

√
a0x)K1

(√
a0x+ co

)
√
b+ cxdx,

(B.5)

respectively, where,a, b, c, a0, b0, c0, d0 are constants. To the
best of our knowledge, the integralsJ1, J2, J3 andJ4 cannot
be solved in closed-form.

APPENDIX D

The expression for the non-zero secrecy rate is shown in
(B.6) wherea0 = 4 iλTRλRD

γMξ
, b0 = 4 iλTRλRE

γMξ
. HA,B

C,D [·] is H
function defined in [37, Eq. (1.1.1)]. (B.6) can be derived with
the help of [38, Eq. (2.6)] and [37, Eq. (6.643.3)].

APPENDIX E

The expression for the ergodic secrecy rate is shown in (B.7)
wherea0 = 4 iλTRλRD

γMξ
, b0 = 4 iλTRλRE

γMξ
. (B.7) can be derived

with the help of [38, Eq. (2.6)] and [37, Eq. (6.643.3)].J5
can be written in the following form,

∫ ∞

0

x

1 + x
exp(ax)K1 (

√
a0x)K1

(

√

b0x
)

dx, (B.8)

wherea, a0, b0 are constant. To the best of our knowledge, the
integralJ5 cannot be solved in closed-form.
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