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Weakening Cardinality Constraints Creates Harder Satisfiability
Benchmarks

Ivor Spence, Queen’s University Belfast

For some time the satisfiability formulae which have been the most difficult to solve for their size have
been crafted to be unsatisfiable by the use of cardinality constraints. Recent solvers have introduced explicit
checking of such constraints rendering previously difficult formulae trivial to solve. A family of unsatisfiable
formulae is described which is derived from the sgen4 family but which cannot be solved using cardinality
constraints detection and reasoning alone. These formulae were found to be the most difficult during the
SAT2014 competition by a significant margin and include the shortest unsolved benchmark in the competi-
tion, sgen6-1200-5-1.cnf.
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1. INTRODUCTION
The boolean satisfiability problem is to determine whether it is possible to assign truth
values to the Boolean variables in a propositional expression (formula) in such a way
that the overall expression has the value true. The theoretical and practical impor-
tance of this problem mean that much work has gone into developing effective solvers
and every year an international competition [Järvisalo et al. 2012] is held in conjunc-
tion with the annual conference on the Theory and Applications of Satisfiability Test-
ing 1. There are frequently significant improvements in solver technology from one
competition to the next, and there are formulae with millions of literals which can be
solved within the allowed CPU time which was 5,000 seconds in 2014.

However this decision problem is NP-Complete [Cook 1971], inspiring the search for
small difficult formula which the best solvers find exponentially hard, and we focus
in this paper on formulae with fewer than 1500 literals which were not solved in the
2014 competition. The most difficult formulae for their size have always been unsatis-
fiable and to date have relied on cardinality constraints to ensure that they cannot be
satisfied. For example the formulae in the pigeon-hole series [Haken 1984] encode the
allocation of n pigeons into n − 1 pigeon-holes with no more than one pigeon per hole,

1http://www.satisfiability.org/
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which is of course impossible. Related series include Hirsch’s hgen [Hirsch 2002] and
in recent years (including 2011) the most difficult formulae for their size at the SAT
competitions [Järvisalo et al. 2012] have come from the sgen [Spence 2010] family of
generators.

Some solver developers [Ostrowski et al. 2002; Li 2000; Warners and Maaren 1998]
have targeted particular classes of formula which has enabled very efficient solving
of formulae previously found to be difficult. In particular analysis using cardinality
constraints [Biere et al. 2014] means that solvers which can solve instances of these
series up to 1200 literals in less than one second are now available. Motivated by this
the approach which was used in the sgen4 benchmark generator has been modified so
that cardinality constraints alone are not sufficient to solve the generated formulae.

The main contributions from this paper are:

— A demonstration that the satisfiability instances which were previously the most
difficult are not any more and an explanation of why this is the case.

— A description of a new approach for generating unsatisfiable formulae with an ex-
planation of why these should be more difficult.

— The presentation of results from the SAT 2014 competition and further experiments
indicating that that the new formulae are now by a significant margin the most
difficult known, and suggesting that they are exponentially difficult for even the
best solvers.

We first describe briefly the satisfiability problem and the structure of the DIMACS
standard input format. We explain the reasons for trying to create difficult instances,
showing how instances previously found to be difficult were constructed. After explain-
ing how recent solvers are able to solve such instances easily we introduce our new
family of formulae. We define our measure of difficulty and present results from the
2014 SAT Competition indicating the success of this approach and finally we present
more detailed experimental results which suggest the exponential times required by
the best solvers for these benchmarks.

2. THE SATISFIABILITY PROBLEM
The satisfiability problem is to take a Boolean proposition (formula) in conjunctive
normal form [Whitesitt 1995] and determine whether there is an assignment of the
values true and false to the variables such that the whole proposition has the value
true. If this is possible then the formula is said to be satisfiable and the corresponding
values of the variables constitute a satisfying model, otherwise the formula is said to
be unsatisfiable. The typical mathematical notation uses p to denote a variable, p to
denote the negation of p, and ∧, ∨ to denote logical and and or respectively. p are p
are known as literals. A clause is a sequence of literals separated by ∨ operators and
enclosed in parenthesis. A formula is a sequence of clauses separated by ∧ operators.
A formula which is used to test the performance of a solver is often called a benchmark
or an instance.

Thus (p ∨ q) is a clause, (p ∨ q) ∧ (p ∨ q) is a formula which is satisfiable with {p, q}
being a satisfying model, and the formula (p) ∧ (q) ∧ (p ∨ q) is unsatisfiable.

2.1. DIMACS Input Format
The standard for representing formulae by text files is the DIMACS format [DIMACS
1993] and files have the standard extension .cnf - this is the format used during the
SAT competitions. In such a file the variables are represented by non-zero integers,
with a positive value indicating the literal p and a negative value indicating p. The
first line of such a file is of the form

ACM Journal of Experimental Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.
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p cnf num-of-variables num-of-clauses

and thereafter clauses are expressed as zero-terminated sequences of integers (con-
ventionally each clause is on a separate line). For example if p is represented by 1 and
q by 2 then the file to represent (p ∨ q) ∧ (p ∨ q) is

p cnf 2 2
1 2 0
-1 -2 0

3. CARDINALITY CONSTRAINTS
The most effective techniques for creating small difficult formulae have to date in-
volved partitioning variables into small groups and, within each group, generating
clauses which impose constraints on the number of variables which can take a par-
ticular value. For example, at least one variable must take the value true, or at most
two must take the value false [Spence 2010]. When all the constraints for a formula
are considered together they can be inconsistent (for unsatisfiable formula) or at least
only permit a small number of solutions (for satisfiable formula) but previous solvers
did not explicitly use this information.

3.1. Unsatisfiable Cardinality Constraints
In an unsatisfiable formula generated by sgen4 the partitions contain one group of
five variables with the remaining groups containing four variables. There are clauses
which guarantee that at most two variables in each group are true meaning that over-
all at most (N-1)/2 variables can be true. A second and similar partition is used to
guarantee that at most (N-1)/2 variables can be false. Taken together it is only possi-
ble to allocate values to N-1 of the variables and so the formula is unsatisfiable. Simu-
lated annealing is used to create the second partition in such a way as to minimise any
similarity to the first, so that for example variables which appear in the same group
in the first partition are not in the same group in the second. This shuffling reduces
the number of times that the same variables appear together in the same clause which
increases the difficulty of finding a solution [Spence 2010].

Formulae of this kind have until recently proved to be the most difficult for state-of-
the-art solvers, indeed it has been shown [Mikša and Nordström 2014] that they are
exponentially difficult for resolution-based approaches and in 2010 a challenge was
issued [Van Gelder and Spence 2010] for a particular 1060-literal formula to be solved
in less than a day. It is apparent that a formula-specific approach could have been used
to recognise this structure and declare unsatisfiability quickly, but the target was not
met until 2014. Solvers have now been written [Biere et al. 2014] which incorporate
detection and analysis of cardinality constraints (see Section 4.2) meaning that the
previously difficult formulae, including the challenge mentioned above, can be solved
in a fraction of a second. These solvers are based on cuttings planes which allow the
solver to produce a short proof of unsatisfiability [Cook et al. 1987].

3.2. Weaker Cardinality Constraints
In satisfiable formulae generated by sgen4 weaker constraints are used so that not
all possible assignments are immediately precluded. Such a formula is based on three
partitions of the variables, each consisting of groups of g variables (for the SAT 2013
competition a value of g = 5 was used, see section 4.3). Simulated annealing is again
used to minimise any similarity amongst the partitions. The groups in the second and
third partitions all intersect the the groups of the first partition in at most one variable,
except for very small benchmarks where this is impossible to achieve. The constraints
generated for the first partition guarantee that at most p variables from each group are
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Fig. 1. Constraints corresponding to satisfiable (left) and unsatisfiable formulae

true (for the SAT 2013 competition a value of p = 1 was used, see section 4.4), those
for each of the other two partitions guarantee that at least p variables from each group
are true. Thus potentially there is a solution with exactly np/g variables being true.
The question then becomes whether it is possible to identify a set of np/g variables
such that, in each of the three partitions, exactly p of the chosen variables occurs in
each group. The sgen4 generator generates the partitions in such a way that this is
forced to be true by choosing in advance what this set of variables will be and then not
shuffling them in the simulated annealing process. Analysing cardinality constraints
does not give a quick solution to these formulae, which are amongst the more difficult
satisfiable benchmarks, but using incomplete solvers such as sattime, formulae with
more than 1000 literals could be solved in the order of 10 seconds in 2011. The cutting
planes approach does not help here because there can be no proof of unsatisfiability for
a satisfiable formula.

3.3. sgen6 - Unsatisfiability With Weaker Constraints
Finally we describe the improvement which has led to the sgen6 unsatisfiable formulae
which cannot be solved quickly even using cardinality constraints. In order to provide
the challenge of having an unsatisfiable formula but yet avoid having cardinality con-
straints which on their own guarantee unsatisfiability, we investigated removing the
restriction on partitioning which sgen4 enforced. This means satisfiability of gener-
ated formulae is not guaranteed but depends in the random partitioning process. If
it is possible to choose a set of np/g variables in such a way that in every partition
there are exactly p such variables in each group then the formula is satisfiable, oth-
erwise it is not. As the size of the formula increases it can be seen empirically that
unsatisfiability is more likely. For example, with a group size of 5 the probability of
a satisfiable formula is approximately 50% at 540 literals. Within the sgen6 tool an
exhaustive (computationally expensive) search can be carried out on request to ensure
that only unsatisfiable benchmarks are generated and these are the kinds of formula
which proved to be so difficult in the 2014 competition.

Figure 1 represents the constraints corresponding to one satisfiable (left) and one un-
satisfiable formula in which g = 4 and p = 1. The vertical black dashed lines represent
the at-most-one constraints and it can be seen that in both formulae these constraints
refer to the unshuffled partition {{1, 2, 3, 4}, {5, 6, 7, 8}}. The solid red (with dots) and
blue (with diamonds) lines represent the at-least-one constraints which are applied to
shuffled partitions. For each example choosing one positive variable from each of the
two elements of the first partition, with the at-most-one constraints, means choosing
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Satisfiable with the model
{1,-2,-3,-4,-5,-6,7,-8}

Unsatisfiable

p cnf 8 16

-1 -2 0 First partition
-1 -3 0 {1,2,3,4},{5,6,7,8}
-1 -4 0 "at most one"
-2 -3 0 black dashed lines
-2 -4 0
-3 -4 0
-5 -6 0
-5 -7 0
-5 -8 0
-6 -7 0
-6 -8 0
-7 -8 0

1 2 3 8 0 Second partition
4 5 6 7 0 {1,2,3,8},{4,5,6,7}

"at least one"
red lines with circles

1 2 5 6 0 Third partition
3 4 7 8 0 {1,2,5,6},{3,4,7,8}

"at least one"
blue lines with diamonds

p cnf 8 16

-1 -2 0 First partition
-1 -3 0 {1,2,3,4},{5,6,7,8}
-1 -4 0 "at most one"
-2 -3 0 black dashed lines
-2 -4 0
-3 -4 0
-5 -6 0
-5 -7 0
-5 -8 0
-6 -7 0
-6 -8 0
-7 -8 0

1 2 7 8 0 Second partition
3 4 5 6 0 {1,2,7,8},{3,4,5,6}

"at least one"
red lines with circles

1 2 5 6 0 Third partition
3 4 7 8 0 {1,2,5,6},{3,4,7,8}

"at least one"
blue lines with diamonds

Fig. 2. cnf files for the example satisfiable and unsatisfiable formulae

a maximum of two positive variables in total. The second and third partitions both
lead to two at-least-one constraints so a minimum of two positive variables have to
be chosen. Thus overall there must be exactly two. As can be seen choosing 1 and 7
(circled) satisfies all the constraints in the left diagram. The right diagram however
cannot be satisfied. For example choosing 1 means that the second positive variable
must come from the column {5, 6, 7, 8}. Choosing 5 or 6 leaves {3, 4, 7, 8} (blue with
diamonds) unsatisfied and choosing 7 or 8 leaves {3, 4, 5, 6} (red with dots) unsatisfied.

Figure 2 gives the cnf files corresponding to these two sets of constraints. The two
formula have the same structure with respect to cardinality constraints and their sat-
isfiability depends on the exact partitions, demonstrating that cardinality detection
alone is not sufficient to solve these formulae. We have not proved the impossibility of
a short proof of unsatisfiability, but no known solver has been found to take advantage
of one.

4. RESULTS
We present published results from the SAT2014 competition, and also results from our
own experiments. The platform for SAT2014 was

— Operating System: Linux Centos 5.5
— Processor(s): 2 Hex-core Xeon 5680
— Memory: 24GB

ACM Journal of Experimental Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.
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— Timeout: 5,000 seconds

For our experiments the platform was

— Operating System: Ubuntu 13.04
— Processor(s): 2 Quad-core Xeon 5430
— Memory: 8GB
— Timeout: 30,000 seconds

All the programs are sequential.

4.1. Smallest Known Time Metric
In the absence of any absolute measure of difficulty we introduce a technique for com-
paring the relative difficulty of two formulae by considering for each its size, measured
by the number of literals it contains, and the shortest time to solution of any known
solver applied to that formula (the execution platform is implicit). This is also known
as the execution time of the Virtual Best Solver (VBS) [Xu et al. 2012]. Note that we
do not insist on the same solver being used in both cases - we are looking for formulae
which are resistant to solution by any solver. We define a partial order which indicates
whether it is possible to compare the difficulty of two given benchmarks. Clearly the
value depends on the set of solvers used and for any given formula the inclusion of a
new solver can decrease but cannot increase the shortest time to solution.

Suppose that S is a set of solvers and F is a set of formulae. Given s ∈ S, f ∈ F , we
denote by t(s, f) the execution time of the solver s applied to the formula f . We define
vbsS(f) = mins∈S t(s, f), i.e. the smallest time of any solver s ∈ S when applied to f .
We are interested in the difficulty of formulae in terms of their length, so we denote
the number of literals in a formula f by lits(f).

We then define a partial order �S on formulae which is intended to formalise the
notion of one formula being less difficult than another with respect to the set of solvers
S. If two formula are the same size, then the one with smaller VBS execution time
is said to be easier. If the formulae have the same VBS execution time then the one
containing more literals is said to be easier. If the longer of two formulae has the
smaller VBS time then it is clearly easier. Finally if the longer formula also has a
greater VBS time then we cannot compare the difficulty of the two formulae.

Formally the relation f1 �S f2 indicates that f1 is easier then f2 (or equally diffficult)
where

f1 �S f2 = {(f1, f2) | lits(f1) ≥ lits(f2) ∧ vbsS(f1) ≤ vbsS(f2)}

f1 =S f2 = {(f1, f2) | lits(f1) = lits(f2) ∧ vbsS(f1) = vbsS(f2)}
For this relation to be useful the set of solvers should be as large as possible, or

should at least include the best known solvers for the formulae in question. In this
paper we use the set of solvers submitted to the SAT Competition 2014 together with
a small number of others which have been found to be particularly effective on small
difficult benchmarks. No other solvers are known whose inclusion would materially
alter the conclusions.

Figure 3 illustrates the different possibilities when we attempt to compare two for-
mulae. Each part of this figure represents a scatterplot of VBS time against number of
literals. The first two sketches are hypothetical and the third illustrates the situation
for the four sample formulae listed in Table I with data from the SAT Competition
2014. Formulae A,B and D are unsatisfiable and formula C is satisfiable. In the first
sketch f1 is easier than any of f2, f3, f4. It is longer than f2 for the same execution
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Fig. 3. Relative difficulty of two formulae

Table I. Example results

Id Formula Lits Best Solver VBS Time(s)
A sgen6-840-5-1 840 BFS-Glucose mem 8 85 279
B sgen6-960-5-1 960 glueSplit clasp 692
C sgen4-sat-220-8 1320 RSeq2014 11.1
D edges-024-4-5667555-1-00 612 Lingeling 0.004

time, takes less time than f4 for the same number of literals, and is both longer and
faster than f3. In the second sketch f1 is shorter than f2 but also takes less time and
so their difficulties cannot be compared. In the third sketch it can seen that for exam-
ple that edges-024-4-5667555-1-00 has a very short minimum execution time (0.004
seconds) but because it is also smaller than the other formula we cannot infer that it
is easier. By contrast since sgen4-sat-220-8 (C) is larger than sgen6-960-5-1 (A) as
well have having a shorter execution time we say that sgen4-sat-220-8 is easier than
sgen6-960-5-1.

4.2. Solver incorporating cardinality detection
First we demonstrate that the use of a solver incorporating cardinality detection can
quickly solve formulae previously found to be very difficult. sgen4 formulae were used
in the SAT 2014 Competition but pigeon-hole and hgen8 were not, so we ran the solver
sat4j-detectcards [Biere et al. 2014] on a collection of pigeon-hole, hgen8 and sgen4
formulae from 500 to 1200 literals. Figure 4 shows the execution times for this solver
for the two pigeon-hole formulae within this range and for 20 randomly generated
hgen8 and sgen4 formulae for each of a range of requested numbers of literals. Note
that hgen8 does not generate formula with exactly a given number of literals, hence
the horizontal blurring of each cluster of values. It can be seen that in every case
the execution time was less than one second. By contrast this solver takes more than
10,000 seconds to solve a 540 literal sgen6 formula.

4.3. Group Size
We now address the issue of determining the optimum values for the size of the groups
of variables (g) and by the number of variables within each group which can and must
be positive (p). The values g = 5 and p = 1 had been found empirically to be the
best for the satisfiable benchmarks in sgen4 and it was anticipated that these values
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Fig. 4. Performance of sat4j-detectcards on previously difficult instances

would also be best for the unsatisfiable benchmarks of sgen6. For a group of size g, of
which p variables are positive, there will be g!

p!(g−p)! =
(
g
p

)
possible ways of assigning

these positive variables. It might be anticipated that, for a given number of groups,
the solver execution time will increase as

(
g
p

)
increases. The experiments described

in sections 4.3 and 4.4 use the solver glueSplit clasp. If p is fixed at for example
1, then

(
g
p

)
= g and execution time might be expected to increase with group size.

Figure 5, where each candlestick shows the minimum, lower quartile, upper quartile
and maximum execution times, plots glueSplit clasp against 20 sgen6 benchmarks
for each group size from 2 to 7 with 20 groups and with 30 groups. It can be seen that
execution time does broadly increase with group size.

In addition to increasing the execution time for a fixed number of groups however,
increasing the value of g also increases the total number of literals. Given that we
are interested in execution time for given number of literals, we must take this into
count. Instead of fixing the number of groups we must fix the number of literals (at
least approximately). Figure 6 shows execution times for glueSplit clasp against 20
benchmarks for each group size from 2 to 7 with limits of approximately 700 and 900
literals. Note that the number of literals is not fixed exactly because of the constraint
imposed by the relationship amongst g, p, number of groups and number of literals.

It can be seen that a group size of 5, as used previously, does provide the greatest ex-
ecution times for a given number of literals. It offers the best combination of providing
sufficient complexity per group without requiring too many literals per group.

4.4. Positive Variables per Group
If g is fixed at for example 5 then

(
g
1

)
= 5,

(
g
2

)
= 10 and

(
g
3

)
= 10 and execution time

might be expected to increase at least as p increases from 1 to 2. Figure 7 shows the
execution times for glueSplit clasp against 20 benchmarks with g = 5 and p = 1, 2, 3
with 20 groups and with 30 groups. It can be seen in practice that, even with a fixed
number of groups, the execution time does not increase with p. Given that the number

ACM Journal of Experimental Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Weakening Cardinality Constraints A:9

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
P
U

 T
im

e
 (

se
co

n
d

s)

Group Size

20 groups
30 groups

Fig. 5. Execution time against group size for fixed number of groups
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Fig. 6. Execution time against group size for fixed number of literals

of literals does increase with p it is clear that using p = 1 gives the best results. It
should be noted that with p > 1 it was not possible to generate any unsatisfiable
benchmarks and so the results reported are for satisfiable ones. It is possible that an
incomplete solver could give even smaller execution times when p > 1 but this would
only confirm the result that p = 1 is the best choice.
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4.5. SAT2014 Competition
Now we present the results obtained by submitting our formulae to be used as bench-
marks in the SAT 2014 Competition. As in previous years, the competition was divided
into three sections based on the origin of the corresponding benchmarks:

Application.
These benchmarks reflect the expression of a real-world problem as a satisfiabil-
ity instance. They are typically large but can sometimes be surprisingly easy for
solvers.

Random.
These benchmarks are randomly generated but typically with carefully controlled
ratios of numbers of clauses to numbers of literals.

Hard-combinatorial (crafted).
These are typically the smallest benchmarks and are constructed purely in order
to be difficult to solve or demonstrate some principle. The sgen6 benchmarks were
included in this category.

The benchmarks in the Application and Random categories were all the longer than
the 500-1200 literal range of interest here, so only the Crafted results are considered.
There was a limit of 5,000 seconds on the CPU time permitted for any solver and the
results are available via the competition website [Belov et al. 2014].

Figure 8 displays the results from the Hard-combinatorial SAT+UNSAT track in a
form suitable for evaluating the relation �SC where SC is the set of solvers used in
the competition. Each point on the plot gives the size (number of literals) of a formula
and the VBS execution time for that formula over all the solvers in the competition.
If a formula f1 appears below and to the right of f2 in Figure 8 then f1 �SC f2, i.e. f1
is easier than f2. To preserve legibility both axes use logarithmic scales and execution
times of less than 0.1 seconds are recorded as 0.1 (which improves the case for formulae
other than sgen6).
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Fig. 8. Minimum Times for Solution of Crafted Benchmarks - SAT2014

One additional point, labelled Extra sgen6 has been included. The smallest sgen6
formula submitted to the competition was 840 literals and so could not be compared
with the Z1 formulae which were of size between 600 and 700 literals with minimum
execution times less than 0.01 seconds. We want every other formula to be comparable
with at least one sgen6 formula so on our own platform we ran glueSplit clasp (the
best solver for sgen6) on a 600-literal sgen6 formula and found the execution time to be
3.93 seconds. Comparison of other results suggests that execution times on our com-
puter are approximately twice those of the competition environment so we included
the point (600 literals ,2 seconds). Clearly this value is not particularly accurate but it
is convincingly more than than the 0.004 seconds of the Z1 formulae.

From the SAT Competition results the solvers which give the best results for the
sgen6 formulae were glueSplit clasp and lingeling so we focused our final exper-
iments on these solvers. glueSplit clasp incorporates clasp so we included that as
well.

4.6. Further Results
For every multiple of 60 from 540 to 1200 literals we generated 20 sgen6 formulae
with g = 5, p = 1, and ran each of these three solvers on the formulae with a timeout of
30,000 seconds. The results are shown in Figure 9. It can be seen that glueSplit clasp

gives the best results, with a complexity which appears to be of order 5n/120.

5. ANALYSIS
We consider first Figure 8 which shows the Virtual Best Server CPU time plotted
against size in literals for all the entries in the Hard Combinatorial track of the SAT
Competition 2014, together with a single added point for sgen6 as explained above. The
largest Time value which appears corresponds to the competition time-out of 5,000
seconds. On this chart the gradient of the lining joining two points can be used to
determine the relative difficulties of the corresponding formulae. If the gradient is
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Fig. 9. Minimum execution times for sgen6 formulae

positive the difficulties cannot be compared, whereas if the gradient is negative, zero
or infinite (vertical) then the formula appearing to the left/higher is the more difficult.

From this plot it can be seen that there is no formula which is harder than (i.e to left
and above) any sgen6 formula. That is if Fs is the set of sgen6 formulae and Fo is the
set of all other formulae in the competition,

∀fs ∈ Fs, fo ∈ Fo | fs 6� fo

It can also be seen that for every formula which is not from sgen6 there is a sgen6
formula which is harder than it. That is

∀fo ∈ Fo∃fs ∈ Fs | fo � fs

There is a caveat to these comments which is that if two formulae both result in a
vbs timeout value then there is not enough information to compare them (which is not
the same as saying that they are incomparable). However if only one formula results
in a timeout the comparison is valid.

Both axes of Figure 8 use logarithmic scales and it can be seen that the sgen6 for-
mulae are not just the most difficult but significantly so. Their vbs times for formula of
even nearly comparable size are ten times greater, and other formula whose vbs times
are similar are nearly ten times as long.

Figure 9 demonstrates the increase in execution time with formula size of the
three best solvers for sgen6 formulae. For 1000 literals and over the best solver is
glueSplit clasp and its complexity appears to be O(5n/120) where n is the number of
literals. Given that the addition of a group of 5 variables increases the number of lit-
erals by 30, this means that the addition of four groups of 5 variables multiplies the
execution time by 5.
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6. CONCLUSIONS
On the basis of the results of the SAT 2014 competition and confirmed by our own
experiments we have demonstrated that sgen6 generates the most difficult unsatisfi-
able formulae for state-of-the-art solvers. In particular solvers which use cardinality
constraint detection and are able quickly to solve what were previously regarded as
the most difficult formulae cannot quickly solve sgen6 formulae. For an unsatisfiable
formula generated by sgen4 the relaxation of cardinality constraints to real-valued
variables yields an unsatisfiable problem whereas sgen6 formulae relax to problems
which can be satisfied by the assignment of 1/g to each variable. Therefore no solver
for the real-valued relaxation, including one using linear programming, can solve these
formulae. The increase in difficulty for unsatisfiable formulae is significant, with ex-
ecution times for the smallest formulae at least ten times those for other formulae of
comparable length.

There remains the possibility that a new solver could be written which is targeted
specifically for these formulae, but (unlike the situation previously) it is not apparent
how this could be done. There are both satisfiable and unsatisfiable sgen6 formulae
with similar cardinality structures and it would appear that this is what increases the
difficulty so much.
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APPENDIX
A.1. Running sgen6

The source code sgen.c for the generator is available from the JEA library. It can be
compiled with the command

gcc -o sgen sgen.c -lm

and writes the generated formula to standard output so that a typical execution
would be

./sgen -unsat -lits 600 >sgen6-600.cnf

The arguments are:

-version integer-value.
specifies a version number which can be either 4 or 6 and defaults to 6.

-sat | -unsat | -unknown.
indicates whether a satisfiable, unsatisfiable or unknown formula is to be gener-
ated. A satisfiable formula is generated by constraining the permutation process
as described above. An unsatisfiable formula is generated by testing and repeated
generation using successive seeds. Exactly one of these argument must be given for
version 6. For version 4 unknown is not valid. -unsat is only supported if -pos-per-
group is 1.

-vars integer-value.
specifies the maximum number of variables to be created. For version 6, the number
of variables will be a multiple of 5.

-lits integer-value.
specifies the maximum number of literals to be created. For version 6, with default
values for group-size and pos-per-group, the number of variables will be a multiple
of 30. Exactly one of -lits and -vars must be specified.

-group-size integer-value.
specifies the value of g, the size of the groups of variables. Defaults to 5.

-pos-per-group.
specifies the value of p, the number of variables in each group which must be posi-
tive. Defaults to 1.

-s integer-value.
specifies a seed for the random number generator. Repeatedly using the same seed
generates the same formula. Defaults to 1.

-model string-value.
specifies the name of a file into which a satisfying model will be written. This is only
applicable if a satisfiable formula is being generated.

-min-variables.
specifies that a formula with a minimum number of variables is to be generated.

-reorder.
as a final generation step the variables and clauses are randomly permuted.
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