Development and validation of an UHPLC-MS/MS analytical method for the determination and quantification of SARMs in bovine and equine urine


Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 The Authors.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Development and validation of an UHPLC-MS/MS analytical method for the determination and quantification of SARMs in bovine and equine urine

Emiliano Ventura1*, Anna Gadaj1, Alexis Ripoche1, Tom Buckley2, Mark H. Mooney1

1 Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, BT9 5AG, United Kingdom, 2 Irish Diagnostic Laboratory Services Ltd., Johnstown, Co. Kildare, Ireland

Keywords: SARMs, UHPLC-MS/MS, urine, food safety, doping control

Selective androgenic receptor modulators (SARMs) are considered to be an attractive alternative to anabolic-androgenic steroids due to their strong anabolic activity combined with an absence of undesirable androgenic side-effects. SARMs have not yet been approved as pharmaceutical therapeutic drugs, but many are currently undergoing evaluation in pre- and clinical trial studies. However, new drug candidates emerging from clinical development have the potential to be adopted for use in sport and food-producing animals with the aim to increase muscle growth and reduce fat mass, and for this reason SARMs have been banned by WADA and International Federation of Horseracing Authorities. Consequently, control and systematic analysis through reliable and sensitive analytical testing for prohibited substances is required both in equine sport to monitor for doping practices, and potentially in farm livestock to ensure food safety and consumer health. In this study, an UHPLC-MS/MS method was developed to detect 14 SARM compounds belonging to different families, namely: arylpropionamide (7), quinolone (1), isoquinoline (1), phenylpirrolidine (1), alanine-phenyloxadiazole (1), alanine-tropanol (1) and hydantoin (2), in bovine and equine urine, respectively. Method development has focused on the optimization of UHPLC-MS/MS conditions as well as sample purification. Chromatographic separation was performed using a Phenomenex Luna Omega Polar C18 analytical column at 45 °C, and a binary gradient elution of 12 minutes at a flow rate of 0.4 mL/min. The mobile phase A consisted of 0.1% of acetic acid in water and mobile phase B of 0.1% of acetic acid in methanol. SARM residues, extracted with TBME without clean-up, were analysed by UHPLC-MS/MS operating in ESI+/ESI-. Validation of the confirmatory assay was carried out according to the EU Commission Decision 2002/657/EC and AORC guidelines. The following performance studies were carried out: specificity/selectivity, linearity (0.1-20 ng/mL), absolute recovery, within-laboratory repeatability/reproducibility, decision limit (CCα) and detection capability (CCβ), limit of detection (LOD) and quantification (LOQ) as well as assessment of matrix effects. Finally, the analytical method will be employed for screening and confirmatory purposes in bovine and equine urine samples to determine potential SARM abuse in stock farming and competition animals, respectively.

Acknowledgements:
The research was supported by funding from the European Union Horizon 2020 Research and Innovation Action under Grant Agreement No. 642380.

*Corresponding author: email: e.ventura@qub.ac.uk; Tel: +44 (0) 2890973091; Fax: +44 (0) 2890976513