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Candidate variant association studies have been largely unsuccessful in identifying common breast cancer sus-
ceptibility variants, although most studies have been underpowered to detect associations of a realistic magni-
tude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which
evidence of association with breast cancer risk had been previously reported. Case-control data were combined
from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional
logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21
[rs1053338, per allele OR 5 1.07, 95% confidence interval (CI) 5 1.04–1.10, P 5 2.9 3 1026], AKAP9-M463I at
7q21 (rs6964587, OR 5 1.05, 95% CI 5 1.03–1.07, P 5 1.7 3 1026) and NEK10-L513S at 3p24 (rs10510592,
OR 5 1.10, 95% CI 5 1.07–1.12, P 5 5.1 3 10217). The first two associations reached genome-wide statistical
significance in a combined analysis of available data, including independent data from nine genome-wide asso-
ciation studies (GWASs): for ATXN7-K264R, OR 5 1.07 (95% CI 5 1.05–1.10, P 5 1.0 3 1028); for AKAP9-M463I,
OR 5 1.05 (95% CI 5 1.04–1.07, P 5 2.0 3 10210). Further analysis of other common variants in these two
regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus iden-
tified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is
associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility
region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of
the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast
cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying
variants and the genes through which they act.

INTRODUCTION

Few common non-synonymous genetic variants have been
implicated in breast cancer susceptibility. Earlier candidate–
gene association studies focused heavily on such variants but
generally failed to produce robust findings (1). Agnostic
approaches using genome-wide panels of single-nucleotide
polymorphisms (SNPs) have been much more successful,
having identified .70 common breast cancer susceptibility
loci to date (2–21). No missense variants have been clearly
shown to explain these observed associations with marker
SNPs. The fact that the effect sizes detected by these large-scale
studies were relatively small [for the vast majority, the asso-
ciated odds ratio (OR) was ,1.20] suggests that most, if not
all, of the earlier candidate-gene studies were underpowered
to detect associations of a realistic magnitude.

The Wellcome Trust Case-Control Consortium (WTCCC)
previously conducted an association study of 14 436 non-
synonymous SNPs (nsSNPs) across the genome, using a custom
array genotyped in 1053 breast cancer cases and 1500 controls
(22). No clear associations were identified. However, no replica-
tion stage was carried out and the study had ,15% power to

detect a per-allele OR of 1.20 for even the most common variants
at a Bonferroni-corrected nominal significance threshold of
3.5 × 1026. One of the SNPs on the array has previously been
studied by Breast Cancer Association Consortium (BCAC); we
found evidence that AKAP9-M463I (rs6964587) was associated
with breast cancer risk, with a recessive model appearing to be
the best fit, although evidence of association (P ¼ 0.001) did
not reach genome-wide statistical significance (23).

We aimed to assess the most promising association signals
from the WTCCC study in a much larger BCAC case–control
study that formed part of the Collaborative Oncological
Gene-Environment Study (COGS). COGS is a multi-consortium
project that seeks to identify common variants contributing to
susceptibility to breast, ovarian and prostate cancer (http://
www.nature.com/icogs/primer/cogs-project-and-design-of-the-
icogs-array/). It is based on genotyping case–control samples
using a custom iSelect SNP genotyping array (iCOGS). The
principal criterion for inclusion of SNPs on this array by
BCAC was statistical evidence of association from a combined
analysis of nine genome-wide association studies (GWASs);
the analysis of these SNPs selected from GWAS, identifying
.40 novel breast cancer susceptibility loci (2–4), has been
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completed. We also included on the iCOGS array, and success-
fully genotyped, 41 nsSNPs from the WTCCC study, including
rs6964587, for which the strongest evidence of association had
been observed. In the present analysis, we attempted to replicate
these associations using the BCAC component of COGS, com-
prising 53 835 female breast cancer cases and 50 156 controls
(Table 1).

RESULTS

After quality control (QC), all genotyped SNPs in the present
analysis had overall call rates .95% and duplicate and
HapMap sample concordance .98%. No evidence of departure
from Hardy–Weinberg equilibrium was observed in controls
overall (P ≥ 0.11 for Europeans), and no strong evidence was

Table 1. BCAC studies contributing cases and controls to COGS

Study Country Controls Cases ER+ ER2

European women
Australian Breast Cancer Family Studya (ABCFS) Australia 551 790 456 261
Amsterdam Breast Cancer Study (ABCS) Netherlands 1429 1325 420 153
Bavarian Breast Cancer Cases and Controls (BBCC) Germany 458 564 460 83
British Breast Cancer Study (BBCS) UK 1397 1554 507 114
Breast Cancer In Galway Genetic Study (BIGGS) Ireland 719 836 495 154
Breast Cancer Study of the University Clinic Heidelberg (BSUCH) Germany 954 852 499 154
CECILE Breast Cancer Study (CECILE) France 999 1019 797 144
Copenhagen General Population Study (CGPS) Denmark 4086 2901 1919 357
Spanish National Cancer Research Centre Breast Cancer Study (CNIO-BCS) Spain 876 902 242 88
California Teachers Study (CTS) USA 71 68 0 17
ESTHER Breast Cancer Study (ESTHER) Germany 502 478 304 98
Gene Environment Interaction and Breast Cancer in Germany (GENICA) Germany 427 465 328 119
Helsinki Breast Cancer Study (HEBCS) Finland 1234 1664 1295 237
Hannover-Minsk Breast Cancer Study (HMBCS) Belarus 130 690 37 0
Karolinska Breast Cancer Study (KARBAC) Sweden 662 722 338 63
Kuopio Breast Cancer Project (KBCP) Finland 251 445 304 97
kConFab/Australian Ovarian Cancer Study (kConFab/AOCS) Australia 897 613 162 59
Leuven Multidisciplinary Breast Centre (LMBC) Belgium 1388 2671 2071 379
Mammary Carcinoma Risk Factor Investigation (MARIE) Germany 1778 1818 1349 399
Milan Breast Cancer Study Group (MBCSG) Italy 400 488 149 42
Mayo Clinic Breast Cancer Study (MCBCS) USA 1931 1862 1486 295
Melbourne Collaborative Cohort Study (MCCS) Australia 511 614 352 119
Multi-ethnic Cohort (MEC) USA 741 731 415 87
Montreal Gene-Environment Breast Cancer Study (MTLGEBCS) Canada 436 489 421 64
Norwegian Breast Cancer Study (NBCS) Norway 70 22 0 22
Oulu Breast Cancer Study (OBCS) Finland 414 507 407 100
Ontario Familial Breast Cancer Registryb (OFBCR) Canada 511 1175 630 268
Leiden University Medical Centre Breast Cancer Study (ORIGO) Netherlands 327 357 211 70
NCI Polish Breast Cancer Study (PBCS) Poland 424 519 519 0
Karolinska Mammography Project for Risk Prediction of Breast Cancer (pKARMA) Sweden 5,537 5434 3672 702
Rotterdam Breast Cancer Study (RBCS) Netherlands 699 664 368 131
Singapore and Sweden Breast Cancer Study (SASBAC) Sweden 1378 1163 663 144
Sheffield Breast Cancer Study (SBCS) UK 848 843 377 105
Study of Epidemiology and Risk factors in Cancer Heredity (SEARCH) UK 8069 9347 5160 1181
Städtisches Klinikum Karlsruhe Deutsches Krebsforschungszentrum Study (SKKDKFZS) Germany 29 136 0 136
Szczecin Breast Cancer Study (SZBCS) Poland 315 365 165 60
Triple Negative Breast Cancer Consortium Study (TNBCC) Various 542 881 0 881
UK Breakthrough Generations Study (UKBGS) UK 470 476 96 22

Asian women
Asian Cancer Project (ACP) Thailand 636 423 92 53
Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC) Japan 1376 694 395 139
Los Angeles County Asian-American Breast Cancer Case-Control (LAABC) USA 990 812 528 138
Malaysian Breast Cancer Genetic Study (MYBRCA) Malaysia 610 770 422 291
Shanghai Breast Cancer Genetic Study (SBCGS) China 892 848 510 276
Seoul Breast Cancer Study (SEBCS) South Korea 1129 1162 657 375
Singapore Breast Cancer Cohort (SGBCC) Singapore 502 533 272 108
IARC-Thai Breast Cancer (TBCS) Thailand 253 138 26 26
Taiwanese Breast Cancer Study (TWBCS) Taiwan 236 889 460 204

African-American women
Southern Community Cohort Study (SCCS) USA 680 679 0 0
Nashville Breast Health Study (NBHS) USA 252 437 199 222

Total 50 156 53 835 30 635 9120

BCAC, Breast Cancer Association Consortium; COGS, Collaborative Oncological Gene-Environment Study; ER+, estrogen receptor-positive cases; ER2, estrogen
receptor-negative cases.
aAustralian site of the Breast Cancer Family Registry.
bOntario site of the Breast Cancer Family Registry.
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seen in controls from any single study (P ≥ 2.3 × 1024). Results
from analysis of main effects for Europeans (46 450 cases and 42
600 controls) are summarized in Table 2. No notable between-
study heterogeneity was observed for any SNP (I2 ≤ 33%).
Nominally statistically significant associations (P , 0.05)
were observed for seven SNPs; however, for four of these the evi-
dence of association was weak (P ≥ 0.012) and compatible with
chance association, given the number of SNPs considered.
Stronger evidence of association was observed for three SNPs:
rs10510592 (L513S) in NEK10 [per-allele odds ratio (OR) ¼
1.10, 95% CI ¼ 1.07–1.12; P ¼ 5.1 × 10217], rs6964587
(M463I) in AKAP9 (per-allele OR ¼ 1.05; 95% CI ¼ 1.03–
1.07; P ¼ 1.7 × 1026) and rs1053338 (K264R) in ATXN7 (per-
allele OR ¼ 1.07; 95% CI ¼ 1.04–1.10; P ¼ 2.9 × 1026). Sub-
sequent analyses were focused on these three variants (see Sup-
plementary Material, figure).

SNP rs10510592 (L513S) in NEK10 is located 83 kb from a
known breast cancer susceptibility GWAS hit, rs4973768 (9),
which was also genotyped on iCOGS; the two SNPs are in
modest linkage disequilibrium (LD; r2¼ 0.36). The evidence of
association using the same dataset was stronger for rs4973768
(P ¼ 3.0 × 10222). A multivariate analysis including both
SNPs resulted in substantial attenuation in the OR for
rs10510592 (per-allele OR ¼ 1.05, 95% CI¼ 1.02–1.07, P¼
0.0010), while the evidence of association for rs4973768 remained
strong (P ¼ 1.0 × 1028). The variant rs10510592 was included
on iCOGS, both as part of the present study and as part of a fine-
mapping study of 899 SNPs in an 881 kb region of 3p24. More
detailed multivariate analyses of these fine-mapping SNPs, com-
plemented by functional analysis, will be required to pinpoint the
underlying causal variant(s).

The nsSNP in AKAP9, rs6964587, had been previously
studied by the BCAC (23,24). The dataset used in the previous
analysis overlapped partially with the present study (14 423
cases and 12 785 controls were in both datasets). Table 3 presents
results from both analyses after removing overlapping samples
from the latter. In the present study, we observed strong inde-
pendent evidence of replication of the reported association
(P ¼ 9.2 × 1027). After combining published and new data
from European women (55 445 cases and 62 668 controls),
the per-T-allele OR estimate was 1.05 (95% CI ¼ 1.04–1.07,
P ¼ 2.5 × 1029) and the OR relative to the GG genotype was
1.04 (95% CI ¼ 1.01–1.07, P ¼ 0.0034) for GT and 1.12
(95% CI ¼ 1.08–1.16, P ¼ 1.1 × 1029) for TT. The per-allele
OR estimates and 95% CI to two decimal places were unchanged
when analyses were repeated excluding 3734 cases with carcin-
oma in situ or unknown invasiveness (P ¼ 3.7 × 1029). The
above analyses were adjusted only for study as principal compo-
nents could not be determined for published data; however, when
adjustment was made for principal components for the iCOGS
data alone (setting the principal components to zero for other
samples), the results were similar (per-T-allele OR ¼ 1.05,
95% CI ¼ 1.03–1.07, P ¼ 1.3 × 1028). All subsequent ana-
lyses for this SNP included published and new data, unless other-
wise specified. The genotype-specific ORs were consistent with
a log-additive (per-allele) model; a recessive model as previously
proposed could be rejected (OR ¼ 1.05, 95% CI¼ 1.03–1.06,
P ¼ 8.4 × 1028; P ¼ 0.0034 compared with a two-parameter
model). No notable between-study heterogeneity was observed
(I2 ¼ 32%, Fig. 1).

We also had access to the original combined data from nine
GWASs used to select the majority of the BCAC SNPs on
iCOGS. These included either measured or imputed genotypes
for rs6964587 (4). Data for 7938 cases and 11 809 controls
had not been included in the analyses conducted to date. The
estimated OR based on a meta-analysis of these GWAS data
was 1.05 per T-allele (95% CI ¼ 1.01–1.10, P ¼ 0.027). This
model was a better fit than a recessive model (OR ¼ 1.07, 95%
CI ¼ 1.00–1.14, P ¼ 0.043). When these GWAS data were
combined with the iCOGS and previously published data,
the estimated per-allele OR for rs6964587 was 1.05 (95%
CI ¼ 1.04–1.07, P ¼ 2.0 × 10210).

The T allele of rs6964587 was less frequent in Asians (0.19)
and more frequent in African-American women (0.51) than in
Europeans (0.39). While there was no statistically significant
evidence of association in either Asian or African-American
women, the estimated OR in Asians (after combining available
data, OR ¼ 1.05, 95% CI ¼ 0.99–1.11) was similar to that in
Europeans, and in both non-European populations the 95% CIs
included the OR estimate in Europeans (Table 3). Based on
data for European women, there was evidence of association
for both ER-positive (OR ¼ 1.06, 95% CI¼ 1.04–1.08, P ¼
3.2 × 1028) and ER-negative breast cancer (OR ¼ 1.04, 95%
CI¼ 1.01–1.07, P ¼ 0.019; P ¼ 0.47 for difference in OR by
ER disease).There was no evidence of differences in the OR
by age (P ¼ 0.58), family history (P ¼ 0.74) or any of the other
tumor characteristics considered (PR status, HER2 status,
axillary node status, grade, size or morphology; P ≥ 0.084).

There were no other SNPs genotyped on iCOGS within 500 kb
of rs6964587 that gave stronger evidence of association in
Europeans, based on the BCAC data. However, there were 133
SNPs that gave stronger evidence based on imputed genotypes
(all with imputation r2 . 0.90); an intronic single-base deletion
in AKAP9 (chr7:91681597), located 51 kb from rs6964587, was
the best imputed hit (P ¼ 4.4 × 1027, compared with 1.7 ×
1026 for rs6964587 in the same dataset). This variant was also
well imputed in Asians and African Americans (imputation
r2 ¼ 0.99), but no independent evidence of association was
observed in either (P . 0.35). There were three genotyped and
63 imputed (with imputation r2 . 0.8) SNPs with P below an
arbitrary cut-off of 0.001 in Asian women, but the evidence of
association for these SNPs in European women was weak
(P ≥ 0.0029) relative to that for rs6964587.

Results for nsSNP rs1053338 in ATXN7 are presented in
Table 4. The per-allele OR estimate for Europeans was 1.07
(95% CI ¼ 1.04–1.10, P ¼ 2.9 × 1026) before, and 1.06
(95% CI ¼ 1.03–1.09 P ¼ 1.7 × 1025) after, excluding 3290
cases with carcinoma in situ or unknown invasiveness. No
notable between-study heterogeneity was observed (I2 ¼ 14%,
Fig. 2). The estimated OR based on a meta-analysis of data for
the independent 8800 cases and 11 809 controls from the nine
GWASs was 1.07 per T-allele (95% CI ¼ 1.01–1.14, P ¼
0.034). A combined analysis of BCAC and GWAS data gave
an estimate of 1.07 (95% CI ¼ 1.05–1.10, P ¼ 1.0 × 1028).

The minor T allele of rs1053338 has a similar frequency (0.13)
in European and Asian women, but was much less frequent
in African Americans (0.032). The results for Asian and
African-American women were consistent with those for Eur-
opeans (P-het ¼ 0.77; Table 4). There was no evidence of a
differential association with the risk of disease subtypes
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Table 2. Summary results from COGS-BCAC for European women

Original
SNP (nsC)

Gene Surrogate SNPa Allelesb MAF pHWE OR (95% CI) P-value
c

P-hetd I2 (%)d

Aa aa Per-a-allele

rs10415312
(E171K)

OR7C1 AG 0.09 0.36 0.98 (0.95, 1.02)
0.31

1.02 (0.87, 1.17)
0.81

0.99 (0.96, 1.02)
0.43

0.38 5.05

rs10494217
(H50N)

TBX15 CA 0.19 0.28 1.00 (0.97, 1.03)
0.94

0.98 (0.91, 1.05)
0.60

1.00 (0.97, 1.02)
0.81

0.06 27.7

rs10510592
(L513S)

NEK10 AG 0.25 0.26 1.11 (1.08, 1.14)
1.4 × 10212

1.18 (1.12, 1.25)
1.5 × 1029

1.10 (1.07, 1.12)
5.1 × 10217

0.53 0

rs1053338
(K264R)

ATXN7 AG 0.13 0.53 1.07 (1.03, 1.10)
5.6 × 1025

1.14 (1.04, 1.26)
0.0073

1.07 (1.04, 1.10)
2.9 × 1026

0.23 13.7

rs11078738
(L621P)

PFAS GA 0.24 0.41 1.01 (0.98, 1.03)
0.73

0.96 (0.90, 1.02)
0.15

0.99 (0.97, 1.01)
0.50

0.27 11.1

rs12051468
(S105G)

CRISPLD2 AG 0.43 0.39 1.02 (0.99, 1.05)
0.25

1.01 (0.97, 1.05)
0.66

1.01 (0.99, 1.03)
0.53

0.34 7.10

rs12256835
(H1759Q)

C10orf112 AC 0.18 0.25 1.01 (0.98, 1.04)
0.71

1.05 (0.97, 1.13)
0.25

1.01 (0.99, 1.04)
0.35

0.12 21.8

rs1265096
(E34K)

PSORS1C1 GA 0.09 0.39 1.02 (0.98, 1.06)
0.26

0.86 (0.74, 1.01)
0.061

1.00 (0.97, 1.04)
0.80

0.84 0

rs12894584
(intronic)

NAA30 GA 0.29 0.31 1.00 (0.97, 1.03)
0.96

0.98 (0.93, 1.03)
0.43

0.99 (0.97, 1.02)
0.60

0.65 0

rs13096522
(non-coding)

ARL6 TA 0.20 0.31 1.02 (0.99, 1.05)
0.13

0.99 (0.92, 1.06)
0.79

1.01 (0.99, 1.04)
0.34

0.77 0

rs1801197
(L447P)

CALCR rs2023778,
r2 ¼ 1.0

AG 0.24 0.30 1.02 (0.99, 1.04)
0.27

1.02 (0.96, 1.08)
0.53

1.01 (0.99, 1.04)
0.26

0.85 0

rs2107732
(V53I)

CCM2 GA 0.09 0.48 0.99 (0.96, 1.03)
0.64

0.98 (0.84, 1.14)
0.80

0.99 (0.96, 1.02)
0.61

0.63 0

rs2230018
(T726K)

KDM6A CA 0.12 0.43 0.98 (0.95, 1.01)
0.23

1.07 (0.96, 1.19)
0.23

0.99 (0.96, 1.02)
0.65

0.03 33.1

rs2272955
(M96T)

WFDC8 AG 0.05 0.31 1.02 (0.98, 1.07)
0.36

0.82 (0.64, 1.05)
0.12

1.01 (0.97, 1.05)
0.72

0.34 7.30

rs2282542
(V1365M)

CEP192 GA 0.12 0.42 0.97 (0.94, 1.01)
0.12

0.90 (0.80, 1.00)
0.050

0.97 (0.94, 1.00)
0.025

0.07 26.7

rs2285374
e

(K889R)
VPS11 AG 0.39 0.32 0.99 (0.96, 1.02)

0.52
0.99 (0.95, 1.03)

0.67
0.99 (0.98, 1.01)

0.58
0.60 0

rs2286587
(R110H)

MXRA7 AG 0.39 0.50 0.97 (0.95, 1.00)
0.083

0.97 (0.94, 1.02)
0.29

0.99 (0.97, 1.01)
0.15

0.08 25.7

rs2291533
(Q253H)

NIF3L1BP1 rs7614311,
r2 ¼ 0.94

AC 0.19 0.34 1.03 (1.00, 1.06)
0.041

1.05 (0.98, 1.13)
0.14

1.03 (1.00, 1.05)
0.018

0.31 9.30

rs2298083
(V854I)

SMG7 GA 0.11 0.17 0.99 (0.95, 1.02)
0.39

1.02 (0.90, 1.15)
0.78

0.99 (0.96, 1.02)
0.54

0.71 0

rs2735018
(intronic)

HLA-G GC 0.10 0.32 0.97 (0.94, 1.01)
0.13

0.94 (0.82, 1.07)
0.36

0.97 (0.94, 1.00)
0.086

0.38 5.30

rs2822558
(S199N)

ABCC13 GA 0.15 0.27 1.01 (0.98, 1.04)
0.52

1.01 (0.92, 1.10)
0.89

1.01 (0.98, 1.03)
0.56

0.60 0

rs2853699
(A27G)

CCR8 rs12107527,
r2 ¼ 1.0

GA 0.30 0.37 1.01 (0.98, 1.04)
0.64

1.01 (0.97, 1.06)
0.60

1.01 (0.99, 1.03)
0.53

0.26 11.8

rs2856705
(non-coding)

HLA-DQA2 GA 0.09 0.24 1.00 (0.96, 1.03)
0.87

1.07 (0.93, 1.22)
0.35

1.00 (0.97, 1.04)
0.79

0.07 26.5

rs2879097
(R79C)

CISD3 GA 0.22 0.50 1.00 (0.97, 1.03)
0.83

0.97 (0.91, 1.04)
0.38

0.99 (0.97, 1.01)
0.49

0.20 15.7

rs315675
(L396H)

ZCCHC4 rs13149511,
r2 ¼ 1.0

AG 0.11 0.37 1.00 (0.97, 1.03)
0.96

0.97 (0.85, 1.10)
0.61

1.00 (0.97, 1.03)
0.79

0.99 0

rs365990
(V1101A)

MYH6 AG 0.35 0.20 1.04 (1.01, 1.07)
0.014

1.04 (1.00, 1.09)
0.052

1.03 (1.01, 1.05)
0.012

0.13 20.4

rs3742801
(E368K)

ABCD4 GA 0.36 0.21 1.00 (0.97, 1.02)
0.76

1.02 (0.98, 1.06)
0.37

1.01 (0.99, 1.03)
0.57

0.10 23.2

rs3815768
(A298T)

ELL2 GA 0.26 0.38 1.00 (0.97, 1.03)
0.90

1.04 (0.98, 1.10)
0.16

1.01 (0.99, 1.03)
0.40

0.47 0

rs3873283
(non-coding)

HCG9 rs9260734,
r2 ¼ 1.0

GA 0.15 0.28 0.99 (0.96, 1.02)
0.51

0.95 (0.87, 1.04)
0.24

0.98 (0.96, 1.01)
0.25

0.54 0

rs3891175
(non-coding)

HLA-DQB1 GA 0.21 0.32 0.99 (0.96, 1.02)
0.64

0.97 (0.91, 1.03)
0.30

0.99 (0.97, 1.01)
0.34

0.22 14.2

rs3997854
(non-coding)

HLA-DQA2 AC 0.13 0.31 0.98 (0.95, 1.02)
0.33

0.93 (0.84, 1.03)
0.18

0.98 (0.95, 1.01)
0.14

0.73 0

rs4128458
(K323E)

LAD1 AG 0.50 0.27 0.99 (0.96, 1.03)
0.75

0.97 (0.94, 1.01)
0.18

0.99 (0.97, 1.01)
0.18

0.10 23.7

rs4986790
(D299G)

TLR4 AG 0.06 0.41 0.98 (0.94, 1.02)
0.38

0.96 (0.77, 1.20)
0.73

0.98 (0.94, 1.02)
0.35

0.40 4.12
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defined by ER status in Europeans (P ¼ 0.62); the estimated per-
allele OR was 1.07 (95% CI ¼ 1.04–1.11, P ¼ 1.2 × 1025) and
1.05 (95% CI ¼ 1.00–1.11, P ¼ 0.073) for ER-positive and
ER-negative disease, respectively. Similar results by ER status
were observed in Asian women. No evidence of heterogeneity
in the OR by age was found (P ¼ 0.11). We observed some evi-
dence of a trend (P ¼ 0.0075) in the associated effect size by
grade, with the association only being apparent for Grade 2
and Grade 3 disease [OR ¼ 0.98 (95% CI ¼ 0.93–1.04) for
Grade 1 disease, 1.08 (95% CI ¼ 1.04–1.13) for Grade 2 and
1.08 (95% CI ¼ 1.03–1.14) for Grade 3 disease]. The trend of
increasing relative risk of higher grade disease was also observed
for Asian women (P ¼ 0.0017). There was no evidence of het-
erogeneity in the OR by family history (P ¼ 0.66), or for any
of the other tumor characteristics considered (PR status, HER2
status, axillary node status, size or morphology; P ≥ 0.074).

We assessed associations with other SNPs within 500 kb
either side of rs1053338, both genotyped and imputed, based
on BCAC iCOGS data. Slightly stronger evidence of association
was observed in Europeans for one other genotyped SNP:
rs3821902, an intronic variant in ATXN7 located 26 kb away
(OR ¼ 1.08, 95% CI ¼ 1.05–1.11, P ¼ 7.4 × 1028). For
Asians and African Americans the P-value for this SNP was
0.48 and 0.54, respectively. Two other imputed SNPs
(rs2241822 and rs6445387, imputation r2 ≥ 0.98), both within
5 kb of rs1053338 and both intronic to ATXN7, had a slightly
lower P-value (P ¼ 5.1 × 1028). All three SNPs were strongly
correlated with rs1053338 (r2 ≥ 0.83). No independent evi-
dence was observed for these SNPs in the other ethnic groups
(P . 0.31). There was only one imputed SNP with P , 0.01
in Asian women (rs9837159; P ¼ 0.0093); the evidence of asso-
ciation for this SNP in European women was weak (P ¼ 0.078).

DISCUSSION

In this study of 41 non-synonymous coding SNPs, selected based
on prior evidence of association with breast cancer, we have iden-
tified a novel susceptibility locus at 3p21 based on SNP rs1053338
(K264R) in ATXN7. We have also confirmed for the first time at
genome-wide statistical significance, that AKAP9-rs6964587
(M463I) at 7q21 is a marker of breast cancer susceptibility in
European women. In both cases, a nominally statistically signifi-
cant result was observed in a meta-analysis of independent data
from nine GWASs, with very similar OR estimates to those
found in the BCAC COGS dataset. Both nsSNPs are associated
with relatively small per-allele effects (estimated OR ¼ 1.07
and 1.05, respectively) and appeared to confer susceptibility to
ER-positive and ER-negative disease. The potentially differential
associationof rs1053338with riskofbreast cancer bygrade requires
confirmation.

That independent confirmation of these associations was not
observed for Asian and African-American women may be
explained by the limited power to detect these effect sizes. We
estimate that at 5% statistical significance our study had ,50%
power to detect the ORs estimated for European women for
these SNPs in Asian women and much lower power (,15%)
for African-American women. However, weaker associations in
non-European populations have been observed for many breast
cancer susceptibility loci and may reflect differences in LD pat-
terns, genetic background and/or the distribution of interacting
environmental risk factors.

The nsSNP giving the strongest signal in our study was
rs10510592 (L513S) in NEK10, located within an established
breast cancer susceptibility region. However, substantially
stronger evidence of association with risk was observed for the

Table 2. Continued

Original
SNP (nsC)

Gene Surrogate SNPa Allelesb MAF pHWE OR (95% CI) P-value
c

P-hetd I2 (%)d

Aa aa Per-a-allele

rs5744751
(A252V)

POLE GA 0.11 0.29 1.01 (0.98, 1.04)
0.57

1.02 (0.91, 1.15)
0.75

1.01 (0.98, 1.04)
0.52

0.87 0

rs6032538
(H36D)

WFDC3 rs399672,
r2 ¼ 1.0

AG 0.28 0.11 1.00 (0.97, 1.03)
0.82

0.98 (0.93, 1.03)
0.49

0.99 (0.97, 1.01)
0.55

0.11 22.0

rs6964587
(M463I)

AKAP9 GT 0.39 0.29 1.04 (1.01, 1.07)
0.0098

1.11 (1.06, 1.15)
1.6 × 1026

1.05 (1.03, 1.07)
1.7 × 1026

0.18 16.7

rs7158731
(L118P)

ZNF839 AG 0.18 0.33 1.00 (0.97, 1.03)
0.89

1.01 (0.94, 1.10)
0.71

1.00 (0.98, 1.03)
0.75

0.16 18.7

rs7454108
(non-coding)

HLA-DQA2 AG 0.11 0.26 0.96 (0.93, 1.00)
0.034

0.98 (0.87, 1.10)
0.73

0.97 (0.94, 1.00)
0.047

0.71 0

rs7863265
(F10L)

STRBP GC 0.34 0.40 1.01 (0.98, 1.04)
0.48

1.00 (0.96, 1.05)
0.98

1.00 (0.98, 1.02)
0.75

0.43 2.42

rs8059973
(intronic)

MGC3101 GA 0.16 0.18 1.00 (0.97, 1.03)
0.83

1.00 (0.92, 1.08)
0.92

1.00 (0.98, 1.03)
0.91

0.55 0

rs9891699
(P19S)

PFAS AG 0.19 0.48 1.01 (0.98, 1.04)
0.59

0.99 (0.92, 1.07)
0.87

1.00 (0.98, 1.03)
0.75

0.61 0

COGS, Collaborative Oncological Gene-environment Study; BCAC, Breast Cancer Association Consortium; nsC, non-synonymous amino acid change; MAF, minor
allele frequency for controls; pHWE, P-value for compliance with Hardy–Weinberg equilibrium for controls; OR, odds ratio, where A is the common allele, a is the
rare allele and both Aa and aa are compared with AA genotypes; CI, confidence interval; P-het, P-value for between-study homogeneity.
aSNP genotyped as a surrogate for the original SNP when the latter failed on design; r2 value given is that for LD between the surrogate and the original SNP; results in
columns to the right are for the surrogate SNP.
bMinor allele listed second.
cBased on the Wald statistic for the genotype-specific estimates; based on the likelihood ratio test for the per-allele estimate.
dApplying the per-allele (log-additive) model.
ers2285374 has been merged into rs15818.
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originally reported SNP at this locus (rs4973768), and further
analyses revealed that the association with rs10510592 was sub-
stantially attenuated after adjusting for rs4973768. Hence, if
there is a single causal variant in this region, it is unlikely to be
rs10510592, despite the fact that this SNP is an amino acid substi-
tution with strong evidence of association with disease risk (P ¼
5.1 × 10217). Further work, including in vitro analyses to func-
tionally characterize candidate variants, will be required identify
to the biological mechanism behind this clear association.

The same phenomenon was observed for the two nsSNPs
marking novel breast cancer susceptibility loci that we have
identified in the present study. In both cases, the nsSNP could
not be definitively ruled out as the causal variant. Nevertheless,
in the case of ATXN7-K264R, three intronic SNPs in the same
gene, one genotyped and two imputed, gave stronger signals of
association. Similarly, while AKAP9-M463I gave the strongest
signal among the genotyped SNPs, an imputed intronic SNP had
an associated P-value almost an order of magnitude smaller.
Future studies that fine-map these two regions through dense
genotyping, in even larger sample sizes, will therefore be required
to identify the casual variants and targeted genes.

The WTCCC also noted that an observed association with an
nsSNP does not necessarily imply that the SNP, or even the gene
in which it is located, is causal (22). That is, a candidate variant
approach may identify novel susceptibility loci, but the variant
in question cannot be assumed to be causal, highlighting the im-
portance of rigorous fine-scale mapping analyses, even when an

association with a potentially functional SNP has been identified.
These results are also consistent with previous observations that
the vast majority of common susceptibility alleles for breast
cancer are non-coding; even after deliberately selecting potential-
ly associated nsSNPs, the confirmed associations appear to be
markers for other, presumably non-coding, functional SNPs.

For both the AKAP9 and ATXN7 nsSNPs, a consistent as-
sociation was observed in the BCAC dataset and the combined
analysis of nine GWASs. It is interesting to note, however, that
neither locus was selected for inclusion on the iCOGS array
based on evidence of association in the combined GWAS,
despite the fact that the array included .35 273 SNPs selected
for replication of the GWAS (4); both loci failed to reach the
cut-off of P , 0.008. Indeed, the probability that loci with asso-
ciatedeffectsof thismagnitudewouldhavebeenselected for inclu-
sion on iCOGS on the basis of their GWAS-based results was
,0.40. These results emphasize that, for associations of this mag-
nitude (OR¼ 1.05–1.07), even a combined GWAS of .10 000
cases and 10 000 controls has limited power. They also highlight
that further loci with associated effects of similar magnitude
remain to be identified (4).

A key strength of this study is the sample size; the iCOGS
study is the largest genotyping study in breast cancer, and by
far the largest study to evaluate non-synonymous SNPs. There
is potentially some overlap between the samples used in the
WTCCC study and the current analysis. The WTCCC study
used samples from a UK study of familial breast cancer (FBCS)

Table 3. AKAP9-M463I (rs6964587) and risk of breast cancer based on published and new BCAC data

Group/genotype Controls, N (%) Cases, N (%) OR
a

(95% CI) P-value

European women
Published data (21 studies)

GG 12 650 (38) 8952 (37) 1.00
GT 15 785 (47) 11 400 (47) 1.01 (0.97–1.05) 0.58
TT 4941 (15) 3802 (16) 1.09 (1.03–1.15) 0.0022
Per T-allele 1.04 (1.01–1.06) 0.0058

New COGS data (40 studies
b

)
GG 11 044 (38) 11 206 (36) 1.00
GT 13 858 (47) 14 956 (48) 1.06 (1.02–1.10) 0.0031
TT 4390 (15) 5129 (16) 1.13 (1.07–1.19) 1.6 × 1026

Per T-allele 1.06 (1.04–1.09) 9.2 × 1027

Asian women
Published data (two studies)

GG 1514 (69) 1746 (67) 1.00
GT 615 (28) 763 (29) 1.06 (0.93–1.20) 0.58
TT 63 (2.9) 86 (3.3) 1.16 (0.83–1.62) 0.42
Per T-allele 1.07 (0.96–1.19) 0.37

New COGS data (nine studies
c

)
GG 4209 (65) 3716 (65) 1.00
GT 2012 (31) 1764 (31) 1.02 (0.94–1.11) 0.58
TT 241 (3.7) 199 (3.5) 1.03 (0.84–1.26) 0.79
Per T-allele 1.02 (0.95–1.09) 0.57

African-American women
New COGS data (two studies)

GG 213 (23) 299 (27) 1.00
GT 480 (52) 531 (48) 0.80 (0.64–0.99) 0.04
TT 236 (25) 285 (26) 0.89 (0.70–1.15) 0.38
Per T-allele 0.95 (0.84–1.07) 0.39

BCAC, Breast Cancer Association Consortium; OR, odds ratio; CI, confidence interval.
aOR estimated by logistic regression, adjusted for study (published data); adjusted for study and principal components (new data).
bNineteen studies of European women contributed both published data and new data.
cTwo studies of Asian women contributed both published data and new data.
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that was also used in one of the GWAS (UK2). Although it is not
possible tocheckdirectly, anyoverlapwith the samples used in the
COGS would have been incidental: we estimate that ,3% of
samples in the BCAC COGS analysis could have been used in
the WTCCC analysis. Moreover, since both loci reach genome-
wide levels of significance, the evidence for these associations
being real does not depend strongly on their selection through
the WTCCC study.

In summary, in this very large case–control study focused
on common candidate non-synonymous variants, we have id-
entified a novel susceptibility locus at 3p21 and confirmed
AKAP9-rs6964587 as a marker of a breast cancer risk at 7q21.
Additional analyses of other common variants in these regions,
the majority imputed from the 1000 genomes project, suggest
that the nsSNPs genotyped are unlikely to be causal and that

further fine-mapping studies are required to identify the variants
and corresponding genes that modify breast cancer risk.

MATERIALS AND METHODS

Participants

Samples for the main study were drawn from 49 case–control
studies participating in the BCAC (Table 1): 38 from populations
of predominantly European ancestry (46 450 cases and 42 600
controls), nine from populations of Asian ancestry (6269 cases
and 6624 controls) and two of African-American women
(1116 cases and 932 controls). Studies were either population
based or hospital based; some studies sampled cases according
to age, or oversampled for cases with a family history or bilateral

Figure 1. Per-allele OR estimates for AKAP9-M463I (rs6964587) for European women by study, based on published data and new data from the Breast Cancer
Association Consoritum. MAF, minor allele frequency; pHWE, P-value for departure from Hardy–Weinberg equilibrium; CI, confidence interval.
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disease (Supplementary Material, Table S1). All study participants
gave informed consent and all studies were approved by the corre-
sponding local ethics committees.

SNP selection

We considered the 48 SNPs for which the strongest evidence of
association (per-allele test P-value , 0.005) with breast cancer
was observed in the original analysis by the WTCCC (22). In
addition, we considered an nsSNP in AKAP9 based on previous
evidence from the BCAC (23,24) and for which consistent
results were reported in the WTCCC study, even though the
P-value did not meet the 0.005 threshold (22). Pairwise LD
was assessed based on the correlation coefficient (r2) in Eur-
opeans from HapMap data release 28 (Phases II and III) and
visualised using Haploview version 4.2. Two nsSNPs
(rs4148077 and rs4986791) were in complete LD (r2 ¼ 1.0)
with other variants considered (rs3742801 and rs4986790, re-
spectively) and were therefore excluded. A further three SNPs
(rs11465716, rs3790549 and rs7313899) were excluded
because they were reported to have an MAF , 5%. Genotyping
assays could not be designed for nine SNPs (Illumina design
score ,0.8), but surrogate SNPs could be genotyped for six of
these, five in complete LD with the original SNP and one in
high LD (r2 ¼ 0.94); the remaining three SNPs (rs4255378,
rs2074491 and rs4730283) could not be assessed. The 41 SNPs
considered in this analysis are listed in Table 2 and their selection
is summarized in the Supplementary Material, Fig. S1.

Genotyping

Genotyping was conducted using a custom Illumina Infinium
array (iCOGS) in four centers, as part of the COGS, as described
previously (4). Genotypes were called using Illumina’s propri-
etary GenCall algorithm. QC procedures have been previously
described (4). Subjects with an overall call-rate ,95% were
excluded. Genotype intensity cluster plots were checked manu-
ally for SNPs for which evidence of association at P , 0.0001
was found, and all were judged to be acceptable, with the

exception of that for rs6964587. However, clearly defined clus-
ters were observed for rs6964587 after excluding 1259 samples
from plates with call-rates ,90% and all subsequent analyses for
this SNP were based on this slightly reduced sample.

Statistical methods

Ethnic outliers were identified by multi-dimensional scaling,
combining the iCOGS data with the three Hapmap2 populations,
based on a subset of 37 000 uncorrelated markers that passed QC
(including �1000 selected as ancestry informative markers).
Most studies were predominantly of a single ancestry (European
or Asian), and individuals with .15% minority ancestry, based
on the first two components, were excluded. Exceptions to this
were the two studies of African Americans (NBHS and SCCS)
and two of the Asian studies, from Singapore (SGBCC) and Ma-
laysia (MYBRCA), which contained a substantial fraction of
individuals of mixed ancestry and so no exclusions were made
based on genetically determined ethnicity. Principal compo-
nents analyses were then carried out separately for the European,
Asian and African-American subgroups, based on the same
subset of SNPs. Results presented are for women of European
ancestry, unless otherwise stated.

Departure from Hardy–Weinberg equilibrium (HWE) was
tested for in controls using a study-stratified x2 test (1 d.f.)
(25,26). The association of each SNP with breast cancer risk
was assessed by estimating genotype-specific and per-allele
ORs using logistic regression, adjusted for study. For the ana-
lyses of European women, we also included the first six principal
components as covariates, together with a seventh component
specific to one study (LMBC) for which there was substantial
inflation not accounted for by the components derived from the
analysis of all studies. The inclusion of additional principal com-
ponents did not reduce inflation further. We included two race-
specific principal components in the analyses of Asian and
African-American women.

Between-study heterogeneity in ORs was assessed for each of
the three broad racial groups using the metan command in Stata
(Release 10) (27) to meta-analyse study-specific per-allele

Table 4. ATXN7-K264R (rs1053338) and risk of breast cancer based on BCAC data

Group/genotype Controls, N (%) Cases, N (%) OR
a

(95% CI) P

European women
GG 32 062 (75) 34 467 (74) 1.00
GT 9764 (23) 11 056 (24) 1.07 (1.03–1.10) 5.6 × 1025

TT 773 (1.8) 925 (2.0) 1.14 (1.04–1.26) 0.0073
Per T-allele 1.07 (1.04–1.10) 2.9 × 1026

Asian women
GG 4978 (75) 4600 (73) 1.00
GT 1534 (23) 1536 (25) 1.03 (0.94–1.12) 0.55
TT 112 (1.7) 132 (2.1) 1.07 (0.82–1.39) 0.63
Per T-allele 1.03 (0.96–1.11) 0.46

African-American women
GG 873 (94) 1045 (94) 1.00
GT 59 (6.3) 70 (6.3) 0.95 (0.66–1.37) 0.80
TT 0 (0) 1 (0.0) – –
Per T-allele 0.97 (0.68–1.40) 0.89

COGS, Collaborative Oncological Gene-Environment Study; OR, odds ratio; CI, confidence interval.
aOR estimated by logistic regression, adjusted for study and principal components.
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log-OR estimates and generate I2 statistics; values .50% were
considered notable (28). Differences in ORs by ethnicity were
assessed using a likelihood ratio test (LRT) comparing the
model with interaction terms for the per-allele log-OR by
study population (European, Asian, African American) to the
model with no interaction terms. Differences by age (,40,
40–49, 50–59, 60–69 and ≥70 years) were evaluated using a
similar LRT, but modeling a linear trend by fitting the median
age for each of these defined categories.

Heterogeneity in the OR by first degree family history (no,
yes), by subtypes defined by ER, PR and HER2 status (positive,
negative) and by axillary node status (none, ≥1 affected), tumor
grade (1–3), tumor size (≤10, 11–20, .20 mm) and tumor
morphology (ductal, lobular), was assessed by applying polyto-
mous logistic regression to cases only, with the number of rare
alleles as the outcome and restricting, for each explanatory vari-
able, the beta coefficient for the comparison of 2–0 minor alleles

to be double that for the comparison of 1–0 minor alleles. Linear
trends were tested by fitting as continuous variables values 1, 2
and 3 for grade and the median value for each the defined cat-
egories of size. ORs specific to disease subtypes defined by ER
status were estimated for Europeans using polytomous logistic
regression with control status as the reference outcome. All stat-
istical tests were two sided. The term ‘genome-wide statistically
significant’ is taken to imply P , 5 × 1028; otherwise ‘statistic-
ally significant’ implies P , 0.05. Power calculations were
carried out using Quanto v.1.2.4 (http://biostats.usc.edu/softwa
re). All other analyses were conducted using Stata: release 10
(27). The analysis pipeline is summarized in the Supplementary
Material, Fig. S1.

Genotype data for iCOGS SNPs in regions surrounding
rs6864587 and rs1053338 were used to estimate genotypes
for other common variants across those regions for the BCAC
study subjects by imputation, using IMPUTE v2.2 and the

Figure 2. Per-allele OR estimates for ATXN7-K264R (rs1053338) for European women by study, based on data from the Breast Cancer Association Consortium.
MAF, minor allele frequency; pHWE, P-value for departure from Hardy–Weinberg equilibrium; CI, confidence interval.
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March 2012 release of the 1000 Genomes Project as reference
panel. SNPs with an imputation r2 , 0.80 were excluded.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Beate Pesch, Sylvia Rabstein, Anne Lotz), Institute of Occupa-
tional Medicine and Maritime Medicine, University Medical
Center Hamburg-Eppendorf, Germany (Volker Harth)],
Tuomas Heikkinen, Irja Erkkilä, Kirsimari Aaltonen, Karl von
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