A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC ($P = 9.2 \times 10^{-20}$), ER-negative BC ($P = 1.1 \times 10^{-13}$), BRCA1-associated BC ($P = 7.7 \times 10^{-16}$) and triple negative BC (P-diff $= 2 \times 10^{-5}$). Genotype-gene expression associations are identified for candidate target genes ANKLE1 ($P = 2 \times 10^{-3}$) and ABHD8 ($P < 2 \times 10^{-3}$). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3’-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.

Correspondence and requests for materials should be addressed to A.C.A. (email: aca20@medschl.cam.ac.uk).

#A full list of authors and their affiliations appears at the end of the paper.
Genome-wide association studies (GWAS) have identified more than 100 different genetic susceptibility regions for breast cancer (BC)\(^1\)\(^-\)\(^8\) and 20 regions for epithelial ovarian cancer (EOC)\(^7\)\(^-\)\(^13\). A few of these regions, and in some cases the same genetic variants, are associated with risks of both cancers (pleiotropy), suggesting there may be underlying functional mechanisms and biological pathways common to different cancers. The TERT-CLPTM1L locus (5p15) is one such example in which the same variants are associated with risks of oestrogen receptor (ER)-negative BC, BC in BRCA1 mutation carriers and serous invasive OC\(^10\).

Few studies have comprehensively described the functional mechanisms underlying common variant susceptibility loci\(^10\),\(^14\)\(^-\)\(^18\). More than 90% of risk alleles lie in non-protein-coding DNA and there is now unequivocal evidence that susceptibility regions are enriched for risk-associated single-nucleotide polymorphisms (SNPs) intersecting regulatory elements, such as transcriptional enhancers, predicted to control the expression of target genes in cis\(^19\)\(^-\)\(^21\). Establishing causality for risk SNPs is very challenging; of the thousands of risk associations identified by GWAS, functional validation of causal variants using genome editing has only been experimentally performed for two SNPs, one for prostate cancer\(^22\) using the CAUSEL pipeline and the other for obesity\(^23\).

Thus, there is a critical need to identify the causal risk SNP(s) and the overlapping regulatory element(s) and the target gene(s) regulated in an allele-specific manner.

Breast and high-grade serous OC share common genetic and non-genetic risk factors, with mutations in BRCA1 and BRCA2 the most significant risk factors for both cancers, suggesting similar biological mechanisms drive breast and OC development. A region on chromosome 19p13.1 has previously been associated with susceptibility to BC and OC in the general population, and to modify the risks of BRCA1-related BC and BRCA2-related OC\(^9\)\(^,\)\(^24\)\(^-\)\(^27\). Initial studies indicated that the association signal was centred around the SNP rs8170 located in the BRCA1-interacting gene BABAM1 (ref. 9), and subsequent studies have refined the subtype specific BC risks associated with these SNPs\(^24\)\(^-\)\(^26\),\(^28\).

In the current study, we hypothesized that the same functional mechanism underlies the 19p13.1 risk association in both BC and OC. To evaluate this hypothesis we performed genetic fine mapping in BC and OC patients and in BRCA1 mutation carriers, and performed a wide range of functional assays in breast and ovarian tissues and in vitro models to identify the likely causal alleles, and target regulatory elements and susceptibility gene(s). Our data indicate that multiple SNPs are involved in the regulation of \(ABHD8\) and perhaps \(ANKLE1\) at this locus.

Results

Genetic association analyses with breast and OC risks. A total of 438 SNPs spanning 420 kb at the chromosome 19p13 locus (nucleotides 17,130,000–17,550,000 (NCBI build 37)) were genotyped successfully in the following populations: 46,451 BC cases (of which 7,435 cases had ER-negative tumours) and 42,599 controls from the Breast Cancer Association Consortium (BCAC); 15,438 cases of EOC (of which 9,630 were of serous histology) and 30,845 controls from the Ovarian Cancer Association Consortium (OCAC); and 15,252 BRCA1 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA; 7,797 with BC and 7,455 unaffected; Supplementary Table 1).

Genotypes for variants identified through the 1,000 genomes project (minor allele frequency (MAF) > 0.1%) were imputed for all participants of European ancestry. A total of 2,269 genotyped and imputed SNPs were analysed for their associations with ER-negative BC risk in the general population, 2,311 SNPs with BC/OC risk for BRCA1 mutation carriers, and 2,565 SNPs with risk of serous OC. Results for all SNPs associated with these phenotypes at \(P < 10^{-4}\) are illustrated in Fig. 1 and Supplementary Fig. 1. Two perfectly correlated SNPs rs61494113 and rs67397200 located between the ANKLE1 and \(ABHD8\) genes demonstrated the strongest association with BC risk among BRCA1 mutation carriers (\(\chi^2\)-test \(P = 7.8 \times 10^{-16}\)) and ER-negative BC in BCAC (\(\chi^2\)-test \(P = 1.3 \times 10^{-13}\)). There was no association for ER-positive BC (\(\chi^2\)-test \(P = 0.21\) for rs61494113). The strongest association with invasive and serous OC was for rs4808075 (correlated with rs61494113 with \(r^2 = 0.99\)) located in the BABAM1 gene (\(\chi^2\)-test \(P = 9.2 \times 10^{-20}\)). We observed no associations with risk of other histological subtypes of invasive OC (Supplementary Table 2). The correlations between the SNP exhibiting the strongest risk association (rs67397200) in the meta-analysis of BC risk for BRCA1 mutation carriers and ER-negative BC, with the previously reported risk-associated SNPs.

![Figure 1](image_url)
Figure 1 | Regional association plot disease-specific risk associations. Results for ER negative breast cancer from BCAC, for ovarian cancer from OCAC and for BRCA1 mutation carriers with breast cancer from CIMBA are shown. Also shown are the results of a meta-analysis for BRCA1 and general population ER negative breast cancer cases. The grey bars indicate the boundaries of the two association peaks, and the dotted horizontal line indicates the cutoff for genome-wide significance (\(\chi^2\)-test \(P = 5 \times 10^{-8}\)). Previously identified GWAS SNPs are indicated with italic font. Genes in the region are displayed beneath the association results.
for breast, OC and BRCA1-associated BCs can be found in Supplementary Table 3.

All SNPs with an association P value < 0.001 with each phenotype were included in forward stepwise Cox regression models for risks of BRCA1 BC, and logistic regression models for ER-negative BC and serous OC. The most parsimonious models for ER-negative BC and serous OC each included one SNP, rs67397200 for ER-negative BC and rs4808075 for serous OC (referred to as Peak 1). The most parsimonious model in the analysis of BC risk for BRCA1 mutation carriers included two virtually uncorrelated SNPs (pairwise correlation $r^2 = 0.018$) rs61491131 (P value = 4.4×10^{-15} in conditional regression analysis), and rs3786515 (Peak 2, conditional regression P value = 9.6×10^{-5}, pairwise correlation $r^2 = 0.018$; Fig. 1). No other SNP was retained in the model at the P value threshold of 0.0001.

Candidate causal variants. Peak 1 includes SNPs that encompass the BARRA1, ABHD8 and ANKLE1 gene and are associated with serous OC, ER-negative BC and BC risk for BRCA1 mutation carriers (Fig. 1 and Supplementary Fig. 1); Peak 2 includes SNPs located in the MTO9B gene associated only with BC risk in BRCA1 mutation carriers. SNPs in Peaks 1 and 2 are virtually uncorrelated.

To identify the strongest candidate causal SNPs, we computed likelihood ratios of each SNP relative to the BRCA1 breast cancer with the strongest association in each peak for risks of each phenotype. Due to the similarities in associations between ER-negative BC and BRCA1-associated BC in Peak 1, we computed the likelihood ratios on the basis of the meta-analysis results. Table 1 includes the SNPs that cannot be excluded at a likelihood ratio of > 1:100 fold. In Peak 1, all but 12 SNPs can be excluded from being causal for ER-negative BC and BRCA1-associated BC. An additional SNP (rs10424198) cannot be excluded from being causal for serous OC. All 13 SNPs were highly correlated ($r^2 > 0.95$) and spanned a region of 19.4 kb. In Peak 2, the likelihood ratios of each SNP were calculated on the basis of the BRCA1 association analysis conditional on the top SNP rs61494113. All but seven SNPs correlated with rs3786515 ($r^2 > 0.10$) cannot be excluded from being the causal SNP for BRCA1-associated BC risk. With the exception of rs3786514 (pairwise r^2 with rs3786515 = 0.87) all other SNPs had r^2 with rs3786515 between 0.13 and 0.20.

Table 1 | SNPs associated with risk ovarian cancer, ER-negative breast cancer or breast cancer in BRCA1 carriers at the 19p13 locus.

<table>
<thead>
<tr>
<th>SNP*</th>
<th>Nucleotide position (build 37)</th>
<th>Allele freq.</th>
<th>HR (95% confidence intervals)</th>
<th>OR (95% confidence intervals)</th>
<th>HR (95% confidence intervals)</th>
<th>OR (95% confidence intervals)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4808075 (I)</td>
<td>17390291</td>
<td>0.30</td>
<td>0.59 (1.14–2.41)</td>
<td>4.42 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs10419937 (I)</td>
<td>17391328</td>
<td>0.30</td>
<td>0.48 (1.14–1.24)</td>
<td>2.55 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs6569439 (I)</td>
<td>1739925</td>
<td>0.30</td>
<td>0.77 (1.14–1.24)</td>
<td>2.22 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs4808076 (I)</td>
<td>17395401</td>
<td>0.30</td>
<td>0.33 (1.14–1.24)</td>
<td>2.99 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs11916176 (I)</td>
<td>17398085</td>
<td>0.30</td>
<td>0.60 (1.14–1.24)</td>
<td>2.63 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs13299271 (I)</td>
<td>17400765</td>
<td>0.30</td>
<td>0.48 (1.14–1.24)</td>
<td>2.40 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs67397200 (G)</td>
<td>17401404</td>
<td>0.30</td>
<td>0.88 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs661494113 (I)</td>
<td>17401859</td>
<td>0.30</td>
<td>0.77 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs6808616 (G)</td>
<td>17403330</td>
<td>0.30</td>
<td>0.14 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs55924783 (I)</td>
<td>17404072</td>
<td>0.30</td>
<td>0.48 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs28473003 (I)</td>
<td>17406167</td>
<td>0.30</td>
<td>0.48 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs13343778 (I)</td>
<td>17407695</td>
<td>0.30</td>
<td>0.48 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
<tr>
<td>rs10424198 (I)</td>
<td>17409671</td>
<td>0.30</td>
<td>0.48 (1.14–1.24)</td>
<td>2.10 (1.11–1.21)</td>
<td>1.16 (1.11–1.21)</td>
<td>1.19 (1.14–1.23)</td>
<td>1.97 (1.9–2.0)</td>
</tr>
</tbody>
</table>

*SNPs in Peak 2 (conditional P values on top SNP from Peak 1) were not included in the analysis.

Associations for BRCA1 and BRCA2 mutation carriers. SNPs in Peak 1 were only associated with risk of ER-negative BC for BRCA1 mutation carriers and provided no evidence of association with ER-positive BC for BRCA1. SNPs in Peak 1 were also associated with OC risk for BRCA1 mutation carriers. SNPs in Peak 2 were also primarily associated with BRCA1-related ER-negative BC but there was no evidence of association with OC risk (Supplementary Table 4). SNPs in peak 1 were not associated with overall risk of BC in BRCA2 carriers (for example, rs67397200 HR for BC = 1.00 (95% confidence interval (CI): 0.93–0.89)); however, SNP rs67397200 showed evidence of...
association with OC for BRCA2 mutation carriers (hazards ratio (HR) = 1.18, 95% CI: 1.06–1.36, \(\chi^2 \)-test \(P = 0.0056 \)). SNPs in peak 2 did not show any evidence of association with breast or OC risk for BRCA2 mutation carriers.

Associations with risk among BC subtypes. None of the Peak 1 SNPs were associated with risk of ER-positive BC. When analyses were restricted to triple negative BC, the odds ratio (OR) estimates for SNPs in Peak 1 were larger than the corresponding OR estimates for ER-negative disease (Supplementary Table 4). There was no evidence of association with ER-negative and HER2-positive BC risk, with the association restricted only to triple-negative BC (test of difference between triple-negative versus ER-negative/HER2+, \(P \)-diff = \(2.2 \times 10^{-5} \) for SNP rs61494113).

Analysis in Asian and African ancestry studies. None of the SNPs in the fine-mapping region were associated with ER-negative BC in samples of Asian ancestry after adjusting for multiple testing (\(P \) values ≥ 0.0018). However, the risk alleles of the 13 candidate causal SNPs in Peak 1 are uncommon in the Asian population (MAF = 0.0079–0.011); hence, the power to detect an association was limited and, due to the wide CI s for the estimated ORs for these SNPs, we cannot rule out that the minor allele of these SNPs in Asian subjects is associated with similar level of risk as in Europeans. In samples of African ancestry only rs4808616 (MAF = 0.22) showed evidence of association with risk for overall BC or ER-negative disease (OR for BC = 1.19, 95% CI: 1.02–1.39, \(\chi^2 \)-test \(P = 0.03 \); OR for ER-negative BC = 1.59, 95% CI: 1.02–2.49, \(\chi^2 \)-test \(P = 0.04 \)).

Functional characterization of the 19p13.1 region. Functional characterization focused on the 13 candidate causal SNPs for ER-negative and BRCA1-associated BC and serous OC in Peak 1, based on the hypothesis that the functional mechanisms mediated by one or more of these SNPs were the same for these phenotypes.

Genotype-gene expression associations. We used expression quantitative trait locus (eQTL) analyses to evaluate associations between risk SNPs and the expression of genes in a 1 Mb region spanning rs4808075 in: 135 normal breast tissues, 29, 60 normal ovarian/fallopian tube epithelial cell cultures. The horizontal line indicates the median expression, the limits of the boxes denote the first and third quartiles, and the whiskers represent 1.5 times the interquartile range of the data. Outliers are indicated with circles.

![Figure 2](image-url) **Figure 2 | Expression quantitative trait locus analyses.** Significant eQTL associations identified between rs4808616 and ABHD8 expression in (a) ovarian cancer tissues and (b) in normal breast tissues. (c) A significant association was also identified between rs4808616 and ANKLE1 expression in primary normal ovarian/fallopian tube epithelial cells. The horizontal line indicates the median expression, the limits of the boxes denote the first and third quartiles, and the whiskers represent 1.5 times the interquartile range of the data. Outliers are indicated with circles.
regulatory elements that were reproducible in two biological replicate samples (Fig. 4). Three SNPs were located in epigenetic marks in breast and/or ovarian cells: rs55924783 coincided with insulator marks in HMECs and enhancer marks in ovarian cells; rs113299211 coincided with enhancer marks in ovarian cells and is predicted to alter transcription factor binding sites for ELF1, ELK4 and GABP; and rs56069439 coincided with experimentally derived ChIP-seq footprints (for CTCF, ATF2 and ZNF263), enhancer marks in ovarian cells and both enhancer (H3K4me1) and insulator (CTCF) marks in breast cells. Two SNPs were located in 3′-untranslated regions (UTRs) of protein coding genes: rs111961716 in ANKLE1 and rs4808616 in ABHD8. rs4808616 also coincided with enhancer marks in ovarian and breast cells. Finally, rs10419397 lay within the putative promoter of ANKLE1, ~1,200 bp from the transcription start site.

Functional analysis of promoter and enhancer SNPs. Seven of the 13 candidate causal SNPs in Peak 1 resided either in the ANKLE1 promoter or in putative regulatory elements (PREs-A-C) in breast and ovarian normal and cancer cell lines (Figs 4 and 5a). SNP rs10419397 fell within the ANKLE1 promoter region, but had no effect on promoter activity (Fig. 5c). PRE-A contained SNP rs56069439, PRE-B contained SNPs rs113299211, rs67397200, rs61494113 and PRE-C contained SNPs rs4808616 and rs55924783. We examined the effect of these PREs, and of the risk alleles of each SNP cloned into luciferase constructs containing the ABHD8 or ANKLE1 promoters. Inclusion of the reference allele of PREs A, B and C significantly increased ABHD8 promoter activity in both OC (A2780) and normal breast (Bre80) cell lines (Fig. 5). Constructs containing the risk alleles further enhanced ABHD8 promoter activity compared with the reference allele for PREs A, B and C in Bre80 cells (P values = 0.0027, 0.0308 and 0.0342, respectively, two-way analysis of variance (ANOVA)) and for PREs A, B and C in A2780 cells (P values = 0.0193, 0.0115 and <0.0001, respectively, two-way ANOVA; Fig. 5d,e). Constructs containing the reference allele of PRE-A showed a silencing effect on the ANKLE promoter in both cell types with the risk allele further silencing the activity of the

Figure 3 | Chromosome conformation capture analysis of long-range interactions at the 19p13 region. 3C interaction profiles in breast and ovarian cell lines. 3C libraries were generated with NcoI, with the anchor point set at the ABHD8 promoter region. (a) A physical map of the region interrogated by 3C is shown, with annotated genes shown in blue, the 13 risk-associated SNPs shown in red, the ABHD8 promoter fragment shown in green and the position of the interacting NcoI fragment represented by the purple bar (not to scale). (b) Relative interaction frequencies between the ABHD8 promoter and regions spanning risk associated SNPs in normal breast (Bre80) and ovarian (IOSE11) epithelial cell lines, and in breast (MCF7) and ovarian (A2780) cancer cell lines. A peak of interaction with the ABHD8 promoter was observed for one region (purple bar) in all four cell lines. There were no interactions detected between the purple region and the BAMBAM or USHBP1 promoters. The interacting region contains four candidate causal SNPs (from left to right) rs4808075, rs10419397, rs56069439 and rs4808076. Error bars represent s.d. (N = 3).

Functional analysis of candidate causal SNPs in UTRs. We evaluated the effects on mRNA stability of the SNPs located in 3′ UTRs of ANKLE1 (rs111961716) and ABHD8 (rs4808616, Figs 4 and 5a) in normal primary ovarian epithelial cell lines carrying different SNP genotypes. RNA transcript abundance was measured after blocking mRNA transcription by treating cells with actinomycin D. For rs111961716, ANKLE1 transcript expression was significantly more stable in cell lines homozygous for the A (risk) allele of rs111961716 compared with heterozygous cells or cells homozygous for the C allele (P = 0.006, analysis of variance; Fig. 5b). There was no association between ABHD8 mRNA stability and genotypes of rs4808616 (Fig. 5b).
reference allele in A2780 cells ($P = 0.0049$, two-way ANOVA). The reference allele of PRE-B had no effect on ANKLE1 promoter activity, while the risk allele significantly increased activity compared with the reference allele in A2780 cells ($P = 0.0034$, two-way ANOVA). Constructs containing the reference allele of PRE-C significantly increased ANKLE promoter activity in both ovarian ($P = 0.0004$, two-way ANOVA) and breast cell lines ($P = 0.0067$, two-way ANOVA). However the risk allele showed a silencing effect on the reference allele in only Bre80 cells ($P = 0.0289$, two-way ANOVA; Fig. 5d,e).

Functional effects of rs56069439 deletion. Collectively, the data above suggested that rs56069439 may regulate the expression of ANKLE1 and/or ABHD8. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-mediated genome editing to delete a 57 bp region containing the regulatory region that includes rs56069439 in breast (MCF10A) and ovarian (IOSE19) epithelial cells (Fig. 6a). Analysis of multiple clones containing confirmed homozygous deletions (Fig. 6b,c) indicated a significant reduction in ANKLE1 expression compared with parental cells ($P = 0.025$, two-tailed paired T-test) and a trend towards reduced ANKLE1 expression in IOSE19 cells ($P = 0.29$, two-tailed paired T-test; Fig. 6d). Expression of ABHD8 and BABAM1 was unchanged following deletion of the region containing rs56069439.

In vitro functional analysis of candidate genes. We analysed the effects of perturbing ABHD8, ANKLE1 and BABAM1 expression in *in vitro* models of ‘normal’ breast (MCF10A) and ovarian (IOSE19 (ref. 32)) epithelial cells. For each gene, we overexpressed full length, green fluorescent protein-tagged constructs, because genes at 19p13 were frequently overexpressed in ovarian and BCs9 and because eQTL analyses indicated that risk alleles were associated with increased expression of ABHD8 and ANKLE1. After confirming gene overexpression (Supplementary Fig. 3a) we evaluated cell growth, migration and invasion, and anchorage-independent growth (Fig. 7 and Supplementary Fig. 3b). Overexpression of ABHD8 caused a significant reduction in cell migration ($P = 0.007$ in MCF10A; $P = 0.047$ in IOSE19, two-tailed paired T-test) and a decrease in invasion ($P = 0.018$ in MCF10A; $P = 0.063$ in IOSE19, two-tailed paired T-test; Fig. 7). BABAM1 and ANKLE1 overexpression had no effect on these cellular phenotypes for either cell type.

Discussion

Through fine-scale mapping of the 19p13.1 region we have found evidence of two independent regions of genetic association with BC and/or OC risk among women of European ancestry. The minor alleles of all candidate causal variants in Peak 1 conferred increased risks of ER-negative BC and serous OC and increased risks of both cancers for *BRCA1* mutation carriers. We were able to rule out associations with ER-positive BC and risks for other OC histotypes. There was weaker evidence that SNPs in Peak 2 were independently associated with BC risk among *BRCA1* mutation carriers only. When analyses in BCAC were restricted to triple-negative BC, the strength of association was greater and there was no evidence of association with ER-negative/HER2-positive BC. Thus, our results suggested that these variants are primarily associated with triple-negative BC, the predominant tumour subtype in *BRCA1* mutation carriers9. These results are in line with previous findings for the initial SNPs identified through GWAS26.

The increased sample size resulting from combining data from BCAC, OCAC and CIMBA for variants in Peak 1 have enabled us to restrict the likely functional variants at 19p13.1 to 13 SNPs.

Figure 4 | Epigenetic marks intersecting candidate causal SNPs in the 19p13 susceptibility region and analyses of UTR SNPs. The thirteen candidate SNPs were aligned with open chromatin and enhancer marks (H3K27ac and H3K4me1) in high-grade serous ovarian cancer cells (UWB11289 and CaOV3) and ovarian cancer precursor cells (ovarian epithelial cells, IOSE and fallopian epithelial cells, FT). Enhancer and insulator (CTCF) data for human mammary epithelial cells (HMECs) were obtained from ENCODE. Five SNPs coincide with biofeatures in breast and/or ovarian cells (indicated in red).
The 13 candidate causal risk SNPs in this region were the same for both BC and OC leading us to hypothesize that the underlying functional mechanisms are the same in both cancers and the overlap between these SNPs and functional elements provided multiple testable hypotheses, necessitating a range of different functional assays to evaluate their possible causality. Multiple assays were performed in breast and ovarian tissues and cell lines to establish if there is true evidence of pleiotropy. The candidate causal SNPs in Peak 1 clustered around two candidate genes, ANKLE1 and ABHD8, neither of which have been previously implicated in BC or OC. Proximal to these SNPs is BABAM1, a gene involved in recruiting BRCA1 to sites of DNA damage and therefore a compelling candidate gene at this locus. While gene regulation can be mediated across long genomic distances, the majority of interactions occur over a distance of 1 Mb or less. We, therefore, evaluated all candidate genes within a 1 Mb region centred on the Peak 1 risk SNPs for eQTL associations. We found significant eQTL associations for ABHD8 in OCs and normal breast tissues, plus allele-specific expression of ABHD8 in BCs, but no compelling evidence for any other gene at this locus. Nonetheless, the identification of ABHD8 as the most likely target susceptibility gene must be treated with some caution as it is plausible that more distant cis-eQTL or even trans-eQTL associations exist for these risk SNPs. Unfortunately, the limited power of eQTL analysis based on the current sample size precluded us from performing genome-wide eQTL analysis to address these hypotheses.

The weight of our functional data, in particular the eQTL associations, indicates that ABHD8 is a target of functional SNPs at this locus, and therefore a novel breast and OC susceptibility gene. 3C identified an interaction between a region containing four candidate causal SNPs and the ABHD8 promoter in both breast and OC and normal epithelial cell lines. The luciferase assays of three PREs (including one encompassing rs56069439 in the interacting region) consistently showed that they act as enhancers, and furthermore the risk-associated alleles of rs56069439, rs113299211, rs67397200, rs61494113, rs4808616 and rs55924783 (within PREs A-C) further increase ABHD8 promoter activity in both breast and ovarian cells. These results were consistent with our eQTL studies and support the hypothesis that increased ABHD8 expression is associated with an increased cancer risk. ABHD8 is a poorly studied lipase. The Achilles heel project identified ABHD8 as a lineage-specific cancer cell vulnerability in OC cell lines and a recent study identified ABHD8 as a potential OC susceptibility gene through its participation in a homeobox transcription factor-centred gene network associated with serous OC risk. Overexpression of ABHD8 led to significant reductions in the invasive and migratory potential of breast and ovarian cells and enriched for genes involved in cellular movement.
signalling (MCF10A), consistent with the observed changes in invasion and migration. The direction of the effect was opposite to what we might expect from the eQTL data, which might reflect different functions of ABHD8 in different contexts, similar to the observations for another BC susceptibility gene, TOX3 (ref. 41).

For example, under specific microenvironmental cues or in a tumour cell (rather than the normal cells used in these experiments) increased ABHD8 may promote rather than inhibit migration and invasion.

Nonetheless, we cannot unequivocally exclude other genes as the targets of candidate causal variants at this locus, in particular ANKLE1. The close proximity of the candidate causal SNPs to the ANKLE1 gene precluded 3C analysis; but in the luciferase assays, these same PREs and SNPs had variable, context-dependent
Figure 7 | Phenotypic effects of overexpressing full length ABHD8GFP fusion transcript in normal breast and ovarian epithelial cells. (a) ABHD8 overexpression induced a significant decrease in migration in both breast (MCF10A) and ovarian (IOSE19) cells; (b) ABHD8 overexpression induced a significant decrease in invasion in breast epithelial cells and a similar trend of decreased invasion in ovarian epithelial cells.

Methods

Study populations. All specimens used in this study were collected with informed consent and under the approval of local Institutional Review Boards. We used epidemiological and genotype data from studies participating in the BCAC44, the OCAC12 and the CIMBA45 that have been genotyped using the iCOGS array that included ~200,000 SNPs.

BC association consortium. Data were available from 52 BC case-control studies, 41 studies of European ancestry, 9 studies of Asian ancestry and 2 studies of African-American ancestry. Details of all studies, the genotyping process and the quality control process have been described elsewhere6,44, standard sample and genotyping QC criteria were applied. After the quality control process, data on 46,451 cases and 42,599 controls of European ancestry, 6,269 cases and 6,624 controls of Asian ancestry and 1,117 cases and 932 controls of African-American ancestry were available for analysis. Data on the BC ER status were available for 34,509 cases of European ancestry, 7,435 (22%) of whom had ER-negative tumours.

OC association consortium. Data were available from 41 case-control studies of EOC from OCAC that were genotyped using the iCOGS array12. In addition to the OCAC iCOGS data, genotype data were available for stage 1 of three population-based OC genome-wide association studies. The final data set comprised genotype data for 11,069 cases and 21,722 controls from COGS (‘OCAC-iCOGS’), 2,165 cases and 2,564 controls from a GWAS from North America (‘US GWAS’),46, 1,762 cases and 6,118 controls from a UK-based GWAS (‘UK GWAS’),7, and 441 cases and 441 controls from the Mayo Clinic. All subjects included in this analysis provided informed consent as well as data and blood samples under ethically approved protocols. Overall, 43 studies from 11 countries provided data on 15,437 women diagnosed with invasive EOC, 9,627 of whom were diagnosed with serous EOC and 30,845 controls from the general population.
Consortium of investigators of modifiers of BRCA1/2. Data on BRCA1 mutation carriers were obtained through CIMBA. Eligibility in CIMBA is restricted to females 18 years or older with pathogenic mutations in BRCA1 or BRCA2. The majority of the participants were sampled through cancer genetics clinics, including some related participants. Fifty-one studies from 25 countries contributed data on BRCA1 mutation carriers who were genotyped using the iCOGS array. After quality control of the genotypes and phenotypes, data were available for 12,472 BRCA1 mutation carriers of whom 7,455 had been diagnosed with BC, 2,639 with ER-negative BC and 1,724 with OC, all of European ancestry. Analyses in BRCA1 mutation carriers focused on assessing associations with BC risk, following the evidence from the original GWAS in BRCA1 mutation carriers.44

iCOGS SNP selection for fine mapping and imputation. The fine mapping region was defined as Chromosome 19: 17,100,000–17,550,000 (NCBI build 37). To identify the set of variants potentially responsible for the original GWAS results, we considered all variants with minor allele frequencies of > 0.02 from the 1,000 Genomes Project (March 2010 version) and selected all SNPs correlated (r² > 0.9) to either of the two SNPs that had been identified through the BRCA1 and EOC GWAS studies (rs8170 and rs3263956).45–47 An additional set of SNPs that tagged all remaining SNPs in the region with r² > 0.9. A total of 438 SNPs that were included on iCOGS in the 19p13 region passed QC and were available for the analyses. Data on these SNPs were used to impute the genotypes of all known variants from the 1,000 genomes project (1000 Genomes Project, 2012 release) using the IMPUTE (version 2) software. After excluding SNPs with MAF < 0.001 and SNPs with imputation r² accuracy score of < 0.3, there were 2,269 imputed SNPs in BCAC, 2,565 in OCAC and 2,311 in BRCA1 mutation carriers.

BCAC and OCAC association analysis and logistic regression. To evaluate the association of each SNP with breast and EOC risk in BCAC and OCAC we used a Wald test statistic based on logistic regression, by estimating the per-allele OR and its s.e. Analyses restricted to specific tumour subtypes (ER-negative BC or high-grade EOC) were assessed separately using all available controls. All analyses were adjusted for principal components, described in more detail elsewhere.44,46 Conditional logistic regression was used to assess the evidence that there are multiple independent association signals in the region, by evaluating the associations of genetic variants in the region while adjusting for the smallest P value. We considered only SNPs with P values of association of < 1 × 10⁻³ and MAF > 0.1% and the most parsimonious model was identified using step-wise forward logistic regression and a threshold of P < 10⁻³ for retaining SNPs in the model.

CIMBA retrospective cohort analysis. All associations between genotypes and BC risk in BRCA1 mutation carriers were evaluated using a 1 df per allele trend-test (P-trend), based on modelling the retrospective likelihood of the observed genotypes conditional on BC phenotypes.49 To allow for the non-independence among related individuals, an adjusted test statistic was used which took into account the correlation in genotypes.48 Per allele HR estimates were obtained by maximizing the retrospective likelihood. All analyses were stratified by country of residence. To identify the most parsimonious model that includes multiple SNPs, forward-selection Cox regression analysis was performed, using the same P value thresholds as in the BCAC and OCAC analysis. This approach provides valid tests of association, although the parameter estimates can be biased.49,50 Parameter estimates for the most parsimonious model were obtained using the retrospective likelihood approach.

Meta-analysis. It is well established that the majority of BCs in BRCA1 mutation carriers are ER-negative.51 To increase the statistical power for identifying the most likely causal variants, we also performed a meta-analysis of the associations of BC risk for BRCA1 mutation carriers and ER-negative BC in the general population (in BCAC) for both genotyped and imputed SNPs. We used an inverse variance approach assuming mixed effects, by combining the logarithm of the per-allele HR for the association with BC risk for BRCA1 mutation carriers and the logarithm of the OR estimate for the association with ER-negative BC in BCAC.

eQTL and allele-specific expression analyses. Germline genotype data were obtained from the Affymetrix SNP 6.0 (METABRIC) and Illumina 1M-Duo (TCGA HGSOC). No SNPs from Peak 1 and 2 were present on the Affymetrix platform so these genotypes were imputed into the 1000 Genomes European reference panel (March 2012, version 3) using IMPUTE version 2 (ref. 52). All analyses were restricted to patients of > 90% European ancestry and eQTL estimates and SNPs with info score > 0.3. For METABRIC, gene expression data consisted of probe-level measurements from the Illumina HT-12 v3 microarray for a total of 135 samples obtained from normal breast tissue adjacent to tumour and 59 samples obtained from ER-negative breast tumours were analysed. Illumina 1M-Duo and Affymetrix SNP 6.0 calls were consistent in 99% of the measurements from the Agilent 244 K microarray for 340 HGSOC tumours downloaded from the cBioPortal. Only genes and probes < 1 Mb from the top Peak 1 SNP were analysed. Tumour gene expression data was first adjusted for copy number (TCGA and METBRIC, Affymetrix SNP 6.0 calls) and methylation (TCGA only, Illumina 27 K beadchip). Expression data were imputed using the AldiPLAN method and expressed as the correlation in genotypes.48 Per allele HR estimates were obtained by maximizing the likelihood approach.

Sixty early passage primary normal OSECs and fallopian tube epithelial cells were collected and cultured as previously described. Briefly, they were harvested from ovaries using a sterile cytobrush and cultured in Medium 199 and MCD105, mixed in a 1:1 ratio and supplemented with 15% fetal bovine serum (FBS, HyClone), 10 ng ml⁻¹ epidermal growth factor, 0.5 mg ml⁻¹ hydrocortisone, 3 mg ml⁻¹ insulin (all Sigma, St. Louis, MO, USA) and 34 mg protein per ml bovine pituitary extract (Life Technologies). Fresh fallopian specimens were subjected to 48–72 h Pronase (Roche) and DNase I digests to release the epithelial cells. Epithelial cells were pelleted and cultured on collagen in DMEM/F12 supplemented with 10% FBS (Serva). RNA was isolated from cell cultures harvested at ~ 80% confluency using the QiAgen microRNAasy kit with on-column DNase 1 digestion. 500 ng of RNA was reverse transcribed using SuperScript III First-Strand Synthesis System (Invitrogen). The cDNA was diluted to 10 ng ml⁻¹ and 12.5 ng was used in target specific amplification before real-time PCR using TaqMan PreAmp Master Mix Kit (Applied Biosystems) following Fluidigm’s Specific Target Amplification Protocol. 1.25 ml of the 25 μl pre-amplified cDNA was added to each chip. Each sample was run in triplicate and each experiment included no template controls. The Genotyping C4 fluidics conditions. 96.96 Dynamic Array Integrated Fluidic Circuits (Fluidigm) were loaded with 96 pre-amplified cDNA samples and 96 TaqMan gene expression probes (Applied Biosystems) using the BioMark HD System (Fluidigm). Expression levels for each gene were normalized to the average expression of control genes (GAPDH and ACTB). Relative expression level was calculated using the ΔΔCT method. Correlations between genotype and gene expression were calculated in R 2.14.1. Genotype specific gene expression was compared using the Jonckheere-Terpstra test. Genes with significant eQTL results were validated by individual Taqman (Applied Biosystems, Warrington UK) reactions run on ABI 7900HT Sequence Detection System equipment and analysed with SDS software according to the manufacturer’s instructions. Normal cell line DNAs were analysed on iCOGS arrays to obtain genotype information. We analysed all protein-coding genes within a 1 Mb region of the risk association. The method for allele specific expression analysis has been described previously.55

Breast and ovarian normal and cancer cell lines. Breast and OC cell lines MCF7 (ER +, breast; ATCC #HTB-22) and A2780 (ER -, ovarian; kindly provided by Thomas Hamilton, NCI, Maryland) were grown in RPMI medium with 10% FBS and antibiotics. The normal breast epithelial cell lines Br-80 (kindly provided by Roger Reddel, CMRI, Sydney) and MCF10A (ATCC #CRL-10317) were grown in DMEM/F12 medium with 5% horse serum, 10 ng ml⁻¹ insulin, 0.5 mg ml⁻¹ hydrocortisone, 20 ng ml⁻¹ epidermal growth factor, 100 mg ml⁻¹ gentamycin, 0.1 ml⁻¹ hydrocortisone, 1 ml⁻¹ insulin and 10% FBS and antibiotics. The phenotypically normal TERT immortalized ovarian cell lines IOSE11 and IOSE19 (ref. 32) were grown in NOSE-CM. All cell lines were maintained under standard conditions, were routinely tested for Mycoplasma and were profiled with short tandem repeats to confirm their identity.

Functional annotation of risk SNPs. FAIRE-seq and ChIP-seq for H3K27ac and H3K4me1 marks in normal ovarian (IOSE, IOSE11) and fallopian epithelial cell lines (FT33, FT246) and OC cell lines (CaOV3, UWB1.289) were generated in-house using standard protocols and have been previously described.56 Epigenetic marks in HMECs were downloaded from ENCODE (genome.ucsc.edu).

Chromosome conformation capture. 3C libraries were generated using Ncol as described previously.57 To quantify interactions by real-time quantitative PCR (qPCR) was performed using primers listed in Supplementary Table 9. All qPCRs were performed on a RotorGene 6,000 using MyTag HS DNA polymerase with the addition of 5 mM of Syto9, annealing temperature of 66 °C and extension of 30 s. Each experiment was performed three times in duplicate. The BAC clone (CTD-227810) covering the 19p13 region was used to normalize for PCR efficiency and a by reference region with GAPDH was used to calculate relative interaction frequencies. All qPCR products were resolved on 2% agarose gels, gel purified and sequenced to verify the 3C product.

RNA stability assays. For each genotype (two homozygotes and the heterozygote) two early passage primary normal ovarian epithelial cell lines were incubated with actinomycin D for 20 h. RNA was extracted using the QiAgen RNaseasy extraction kit and reverse transcribed using MMLV RT enzyme and random hexamers (Promega). Quantitative PCR was performed using TaqMan gene expression probes for ABHD8 (Hs00225984_m1) and ANKLE1 (Hs01094637_g1). Signal for each gene of interest was normalized to signal for ACTB (Hs01006656_g1) and
GAPDH (Hs00725899_g1) and relative gene expression calculated using the ΔΔCT method, relative to untreated cells. 18s rRNA (Hs99999901_s1) and MYC (Hs00133408_m1) mRNA levels were included as internal controls.

Promoter and allele specific enhancer assays. A 1119 bp fragment containing the ABHD8 promoter was cloned into the pGL3 basic luciferase reporter. Reference and risk associated ANKLE1 promoter fragments were synthesized by GenScript and cloned into pGL3 basic. We generated PCR fragments corresponding to PRE A and PRE B and had PRE C haplotype fragments synthesized by GenScript and these were also sub-cloned into ABHD8 and ANKLE1 promoter constructs. PCR primers are listed in Supplementary Table 10. BstEII and Zta70I were tran- siently transfected with equimolar amounts of luciferase reporter constructs using Renilla luciferase as an internal control reporter. Luciferase was measured 24 h after transfection using Dual-Glo Luciferase (Promega). To correct for any differences in transfection efficiency or cell lysate preparation, Firefly luciferase activity was normalized to Renilla luciferase, and the activity of each construct was measured relative to the promoter alone construct, which had a defined activity of 1. Association was assessed by log transforming the data and performing two-way ANOVA, followed by Dunnett’s multiple comparisons test; for ease of interpretation, values were back transformed to the original scale for the graphs.

In vitro analysis of candidate genes. The three candidate genes were overexpressed as green fluorescent protein fusion proteins. The BARBAMI overexpression construct was a kind gift from Dr S Elledge, ANKLE1 and ABHD8 contracts were purchased from Genecopoeia. Virus was made in-house by cotransfection of HEK293T cells and used to transduce MCF10A and IOSE19 cells. Positive cells were selected using 400 ng ml−1 puromycin. Anchorage dependent and independent growth assays Millipore luminescent transwell assays (24 well plate format) were used, following the manufacturer’s protocol.

Data availability. The relevant SNP genotype data underpinning these analyses can be accessed by applying to the OCAC, BCAC and CIMBA consortia (see URLs). EQTL data are available in supplementary information. All other data are available on request.

References.

We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out, in particular those involved in the COGS project: Rosalind A. Eles, Ali Amin Ol Alama, Zoofia Kote-Jarai, Sara Benluch (PRACTICAL), Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, the staff of the CNIO genotyping unit, Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Genome Quebec Innovation Centre, Sune F. Nielsen, Borge G. Nordgaardt, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Höller, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

doi:10.1038/ncomms12675
H. Berry, A. Szeszenia-Dabrowska, B. Peplonska, W. Zatonski, A. Soni, P. Chao and N. Hutchinson, N. Szeszenia-Dabrowska, B. Peplonska, W. Zatonski, A. Soni, P. Chao and N. Hacker, D. Marsden; The Netherlands Comprehensive Cancer Organization (NKI); S. Siesling, J.Veroop; The Danish Pathology Registry (PALGA); L.H. Overbeck, The HERON Study is supported by the Dutch Cancer Society grant KWF NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organisation of Scientific Research grant NWO 91109034, the Pink Ribbon grants 110005 and 2014-187.W076, the BBMRI grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HEBON thanks the registration teams of IKNL and PALGA for part of the data collection. (HRBCP) We wish to thank Hong Kong Sanatorium and Hospital for their continual support. (HEBON) We wish to thank the Hungarian Breast and Ovarian Cancer Study Group members (Janos Papp, Tiber Vaszko, Aniko Bozski, Tizme Poczta, Judi Franko, Maria Balogh, Gabriella Domokos, Judit Franko, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study. (HHV) We wish to thank the Oncogenetics Group (WUH), and the High Risk and Cancer Prevention Unit of the University Hospital Vall d’Hebron (ICO) We wish to thank the ICO Hereditary Cancer Program team led by Dr Gabriel Capella. (INHERIT) We would like to thank Dr Martine Dumont, Marine Tranchant for management and skilled technical assistance. J.S. is Chairholder of the Canada Research Chair in Oncogenetics. J.S. and P.S. were part of the QC and Genotyping coordinating group of iCGOG (BCAC and CIMBA), (IPBCS) We wish to thank the Hereditary Breast and Ovarian Cancer Study Group (HBOCS) for their skilful contribution to the study. (KCONFAB) We wish to thank Heather Thorne, Eveline Niedermayer, all the KCONFAB research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to the KCONFAB. (MOSQAD) MODifier Study of Quantitative Effects on Disease (MOSQAD): we acknowledge ModifiersQuAD members Csilla Szabo (National Human Genome Research Institute, National Institutes of Health, Bethesda, MD), Lenka Foretova and Eva Machackova (Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, Brno, Czech Republic) and Michal Zikan, Petr Pohlreich and Zdenek Kleibl (Oncogenetics and Department of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic). (MSKCC) Anne Lincoln, Lauren Jacobs. (NICC) We wish to thank the NICC National Familial Cancer Consultation Service team led by Sara Dishon, the lab team led by Dr Flavio Lekibowicz, and the research field team led by Dr Mila Pinchev. (NRCG) We thank the investigators and research staff involved in the MyBrCa Study for assistance in patient recruitment, data collection and sample preparation. In addition, we thank Phillip Iau, Sng Jen-Hwei and Sharifah Nor Akmal for contributing samples from the Singapore Breast Cancer Study
and the HUKM-HKL Study respectively. The Malaysian Breast Cancer Genetic Study is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM/C/HR/MOHE/06) and charitable funding from Cancer Research Initiatives Foundation. (SMC) SMC team wishes to acknowledge the assistance of the Micravíre comprehension breast cancer center team at the Sheba Medical Center for its assistance in this study. (SWE-BRCA) Swedish scientists participating as SWE-BRCA collaborators are: from Lund University and University Hospital, Helse Domstolene Marit Crona Myking, Helene Londo Bose, and Maria Soller, Ulrika Christoffersson; from Gothenburg Sahlgrenska University Hospital: Anna Överholt, Margareta Nordling, Per Karlsson, Zakaria Einbeigi; from Stockholm and Karolinska University Hospital: Anna von Wachenfeldt, Anneline Lidgren, Annika Lindblom, Brita Arner, Gisela Barbany Bustina, Johanna Rantala; from Umeå University and the University Hospital: Anna Kristina Edvardsson; from Uppsala University: Hans Ehrencreuna, Maritta Hellstrom Pigg, Richard Rosenquist; from Linköping University Hospital: Marie Stenmark-Aksamlin, Sigrun Liedgren.
was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centres in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. (BFBOCC-LT) BFBOCC is partly supported by: Lithuania (BFBOCC-LT): Research Council of Lithuania grant LG-07/2012; (BIIDMC) BIDMC is supported by: Breast Cancer Research Foundation, (BMBSA) BRCA-gene mutations and breast cancer in South African women (BMBSA) was supported by grants from the Cancer Association of South Africa (Cansa) to Elizabeth J. van Rensburg. (BRICHOC) SLN was partially supported by Health Research Biomedical Research Centre at the University of Cambridge. This work was supported by the WWE Foundation. (CNIO) This work was partially supported by Spanish Association against Cancer (AECOC), RTICC 06/0200/1060, FIS/P09/1120, Mutada Madrillena Foundation (FMMA) and SAF 2010-20493 (COH-CGCRN) City of Hope Clinical Genetics Community Network and the here and explained in part by the support of BMBF, for its part by a balance. (RC4A153828) (P.1. W. Weitzel) from the National Cancer Institute and the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute of Health. (CONSORT) Funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-DIstretti strategici project x1000), to Susumano Manoukian. (CORE) The CIMBA data management and data analysis were supported by Cancer Research – UK grants C12292/A11174 and C1287/A10118. SH is supported by an NHSR Program Grant to GCT. ACA is a Cancer Research - UK Senior Cancer Research Fellow. (DEMOKRITOS) This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research and Technology: ARISTEIA. Investing in knowledge society through the European Social Fund (DKFZ) The DKFZ. study was supported by the DKFZ. EMBRACE EMBRACE is supported by Cancer Research UK Grants C1287/A1118 and C1287/A11190. D. Gareth Evans received a NIHR grant to the group at the Breast Cancer Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. (FCCC) The authors acknowledge support from The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program. (GC-HBOC) The German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC) is supported by the German Cancer Aid grant (grant no 109076, Rita K. Schmutzler) and by the Center for Medical Molecular Cognition (CMMC). (GEMO) The study was supported by the Ligue Nationale contre le Cancer; the Association ‘Le cancer du sein, parlons-en!’ Award; the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the French National Cancer Institute (INCa). (GECO) GECO (2012) received from the Non-Therapeutic Subject Registry Shared Resource at Georgetown University (NIH/NCI grant P30-CA050108), the Fisher Center for Familial Cancer Research, and Swing Fore the Cure. (G-Fast) Kim De Leener is supported by GOA grant BOF10/ GOA/019 (Ghent University) and spearheaded financing of Ghent University Hospital. (HCS) HCS was supported by grant R12/006/0006 and 12/00539 from ISCIII (Spain), partially supported by European Regional Development FEDER funds. (HEBCS) The HEBCS was financially supported by the Helsinki University Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation. (HEBON) The HEBON study is supported by the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research of Higher Education (NWO), the BMBRi grant NWO 184.021.007/CP46. HEBON thanks the registration teams of the Comprehensive Cancer Centre Netherlands and Comprehensive Cancer Centre South (the Netherlands Cancer Registry) and PALGA (Dutch Pathology Registry) for part of the data collection. (HRBCC) HRBCC is supported by The Hong Kong Hereditary Breast Cancer Family Registry and the Dr Ellen Li Charitable Foundation, Hong Kong (HUNHCS) Hungarian Breast and Ovarian Cancer Study was supported by Hungarian Research Grants KTIA-OTKA CK-80745, OTKA K-112228 and the Norwegian EEA Financial Mechanism Hitu115/NA2008-3/OP.9. (ICO) Contract grant sponsor: Asociación Española Contra el Cáncer, Spanish Health Research Fund; Carlos III Health Institute; Catalan Health Institute and Autonomous Government of Catalonia. Contract grant sponsor: the American Society of Clinical Oncology Foundation for Research and Education (FCCC) The authors acknowledge support from The University of Kansas Cancer Center (P30 CA168524) and the University of Massachusetts Medical School Cancer Center (UMC). The work was supported by grant R12/006/0006, 12/00539 from ISCIII (Spain), partially supported by European Regional Development FEDER funds. (HEBCS) The HEBCS was financially supported by the Helsinki University Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation. (HEBON) The HEBON study is supported by the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research of Higher Education (NWO), the BMBRi grant NWO 184.021.007/CP46. HEBON thanks the registration teams of the Comprehensive Cancer Centre Netherlands and Comprehensive Cancer Centre South (the Netherlands Cancer Registry) and PALGA (Dutch Pathology Registry) for part of the data collection. (HRBCC) HRBCC is supported by The Hong Kong Hereditary Breast Cancer Family Registry and the Dr Ellen Li Charitable Foundation, Hong Kong (HUNHCS) Hungarian Breast and Ovarian Cancer Study was supported by Hungarian Research Grants KTIA-OTKA CK-80745, OTKA K-112228 and the Norwegian EEA Financial Mechanism Hitu115/NA2008-3/OP.9. (ICO) Contract grant sponsor: Asociación Española Contra el Cáncer, Spanish Health Research Fund; Carlos III Health Institute; Catalan Health Institute and Autonomous Government of Catalonia. Contract grant sponsor: the American Society of Clinical Oncology Foundation for Research and Education (FCCC) The authors acknowledge support from the Ministry of Economic Development, Innovation and Export Trade – grant # PS-SHRI-701. (JOVHBOCS) JOVHBOCS is supported by Ministero della Salute and ‘5 x 1000’ Istituto Oncologico Veneto grant. (IP003) This study was in part supported by Liga Portuguesa Contra o Cancro (KCOINFAB) KCOInfab is supported by grants from the National Institutes of Health (NIH) and the Cancer Research Medical Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia; (KOHBRA) KOHBRA is supported by a grant from the National R&D Program for Cancer Control, Ministry for Health, Welfare and Family Affairs,
Kate Lawrenson1,†, Siddhartha Kar2,* , Karen McCue3, Karoline Kuchenbaekera4, Kyriaki Michailidou4, Jonathan Tyrer2, Jonathan Beesley5, Susan J. Ramus1, Qiuyan Li5,6, Melissa K. Delgado1, Janet M. Lee1, Kristiina Aittomaki7, Irene L. Andrulis8,9, Hoda Anton-Culver10, Volker Arndt11, Banu K. Arun2, Brita Arver13, Elisa V. Bandera14, Monica Barile15, Rosa B. Barkardottir16, Daniel Barrowdale14, Matthias W. Beckmann17, Javier Benitez18,19, Andrew Berchuck20, Maria Bisogna21, Lin Björge22,23, Carl Blomqvist24, William Blot25,26, Natalia Bogdanova27, Anders Bojesen28, Stig E. Bojesen29,30,31, Manjeet K. Bolla1, Bernardo Bonanni15, Anne-Lise Børresen-Dale32,33, Hilmut Brauch34,35,36, Paul Brennan37, Hermann Brenner11,36,38, Fiona Bruinisma39, Joan Brunet40, Shaik Ahmad Buhari41, Barbara Burwinkel42,43, Ralf Butzow44,45, Saundra S. Buys46, Qiuyin Cai25, Trinidad Caldes47, Ian Campbell48, Andrew Bush30, Cezary Cybulski1, Kamila Czene32, Mary B. Daly33, Francesca Damiola44, Agnieszka Dansonka-Mieszkowska45, Hatif Darabi46, Joe Dennis4, Peter Devilee6,67, Orland Diez68, Jennifer A. Doherty69, Susan M. Domchek70, Cecilia M. Dorfling71, Thilo Dörk27, Martine Dumont72, Hans Ehrencrona73,74, Bent Ejlertsen75, Steve Ellis31, EMBRACE6, Christoph Engel76, Eunjung Lee1, D. Gareth Evans77, Peter A. Fasching17,78, Lidia Feliubadalo79, Monique Figueroa80, Dieter Flesch-Janys81,82, Olivia Fletcher83,84, Henrik Flyger85, Lenka Foretova86, Florentia Fostira87, William D. Foulkes88,

Author contributions

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Lawrenson, K. et al. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus. Nat. Commun. 7:12675 doi: 10.1038/ncomms12675 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
2013 Milan, Italy. 183 Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden. 184 Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan. 185 Clalit National Israel Cancer Control Center and Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Haifa, 34362, Israel. 186 Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CITO), Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany. 187 Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510, USA. 188 Division of Gynecologic Oncology, NorthShore University HealthSystem, Evanston, Illinois 60201, USA. 189 Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. 190 Department of Epidemiology, University of Washington, Seattle, Washington 98109, USA. 191 National Cancer Institute, Bangkok 10400, Thailand. 192 Research Oncology, Guy’s Hospital, King’s College London, London SE1 9RT, UK. 193 Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA. 194 Cancer Control and Population Sciences, Duke Cancer Institute, Durham, North Carolina 27710, USA. 195 Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands. 196 Division of Molecular Gynecology-Oncology, Department of Gynaecology and Obstetrics, University of Cologne, 50676 Cologne, Germany. 197 Center for Integrated Oncology, University Hospital Cologne, 50676 Cologne, Germany. 198 Center for Molecular Medicine, University Hospital Cologne, 50676 Cologne, Germany. 199 Center of Familial Breast and Ovarian Cancer, University Hospital Cologne, 50676 Cologne, Germany. 200 Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. 201 School of Public Health, China Medical University, Taichung 404, Taiwan. 202 Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford California 94305, USA. 203 Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon – Centre Léon Bérard, Lyon 69008, France. 204 INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon 69003, France. 205 Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia. 206 Division of Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, S81 83 Linköping, Sweden. 207 Institut Curie, Department of Tumour Biology, Paris, France, Institut Curie, INSERM U830, 75248 Paris, France. 208 Université Paris Descartes, Sorbonne Paris Cité, 75270 Paris, France. 209 Institute of Human Genetics, Department of Cancer Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany. 210 Department of Genetics, Portuguese Oncology Institute, Porto 4020-072, Portugal. 211 Biomedical Sciences Institute (ICBAS), Porto University, Porto 4099-002, Portugal. 212 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York 10027, USA. 213 Department of Clinical Genetics, Odense University Hospital, 5000 Odense C, Denmark. 214 UO Anatomia Patologica, Ospedale di Circolo-Università dell’Insubria, 21100 Varese, Italy. 215 Latvian Biomedical Research and Study Centre, Riga LV-1067, Latvia. 216 Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), 64 - 35128 Padua, Italy. 217 Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA. 218 Welcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK. 219 Institute of Human Genetics, Pontificia Universidad Javeriana, Cra. 7 #40-62 Bogota, Colombia. 220 Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA. 221 Department of Clinical Genetics, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands. 222 Department of Gynecology, Family Cancer Clinic, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands. 223 Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, B-3000 Leuven, Belgium. 224 University Hospital Ulm, 89069 Ulm, Germany. 225 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda Maryland 20892, USA. 226 Multidisciplinary Breast Center, Department of General Medical Oncology, University Hospitals Leuven, B-3000 Leuven, Belgium. 227 Molecular Diagnostics Laboratory, IRPP, National Centre for Scientific Research ‘Demokritos’, Athens 153 10, Greece. 228 Cancer Research Initiatives Foundation, Sime Darby Medical Center, 47500 Subang Jaya, Malaysia. 229 University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, 59110 Kuala Lumpur, Malaysia. 230 Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan. 231 Shanghai Center for Disease Control and Prevention, Shanghai, China. 232 Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA. 233 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. * These authors contributed equally to this work. ** These authors jointly supervised this work. 1 Present addresses: Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA (K.L.); The Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA (S.A.G.). A full list of consortia members are listed below.

Australian Ovarian Cancer Study Group

David Bowtell206,234,235,236,237, Anna deFazio238 & Penny Webb3

GEMO Study Collaborators

239 Service de Génétique, CHU de Besançon, 25030 Besançon, France. 240 Oncogénétique, Institut Bergonié, 229 cours de l’Argonne, 33076 Bordeaux, France. 241 Centre François Baclesse, 3 avenue Général Harris, 14000 Caen, France. 242 Laboratoire de Génétique Chromosomique, Hôtel Dieu Centre Hospitalier, BP 1125 chambré, France. 243 Centre Jean Perrin, BP 392 Clermont-Ferrand cedex, France. 244 Centre de Lutte Contre le Cancer Georges François Leclerc, 1 rue Professeur Marion, BP 77 980 Dijon Cedex, France. 245 Département de Génétique, CHU de Grenoble, BP 217 Grenoble Cedex 9, France. 246 Centre Oscar Lambret, 3 rue Frédéric Combemale, 59020 Lille cedex BP307, France. 247 Département de Medical Oncology, CHU Dupuytren, 87042 Limoges, France. 248 Service de Génétique Moléculaire et Clinique, Hôpital Edouard Herriot, 5 place d’Arsonval, 69437 Lyon cedex 03, France. 249 Centre Léon Bérard, 28 rue Laennec, 69437 Lyon, France. 250 Unité de Prévention et d’Épidémiologie Génétique, Centre Léon Bérard, 28 rue Laennec, 69437 Lyon, France. 251 Département Oncologie Génétique, Prévention et Dépistage, Institut Paoli-Calmettes, 232 boulevard Sainte-Marguerite, 13009 Marseille, France. 252 Unité d’Oncogénétique, CHU Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France. 253 Laboratoire de génétique médicale, Nancy Université, Centre Hospitalier Régional et Universitaire, Rue du Morvan, 54511 cedex 1, Vandœuvre-lès-Nancy, France. 254 Service d’Oncogénétique, Centre René Gauduchon, Boulevard Jacques Monod, 44805 Nantes Saint Herblain Cedex, France. 255 Centre Antoine Lacassagne, 33 Avenue de Valombreuse, 06100 Nice, France. 256 Service de Génétique, Institut Curie, 26, rue d’Ulm, 75248 Paris Cedex 05, France. 257 Inserm U900, Université INSERM U900, centre de recherche de l’Institut Curie, 75013 Paris, France. 258 Inserm U900, Institut Curie, Mines ParisTech, PSL University, 26 rue d’Ulm, 75248 Paris Cedex 05, France. 259 Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard de l’Hôpital, 75013 Paris, France. 260 Service de Génétique Clinique Chromosomique et Moléculaire, Hôpital Nord, CHU Saint Etienne, St Etienne 42055 Cedex 2, France. 261 Unité d’Oncogénétique, Centre Paul Strauss, 3 rue de la Porte de l’Hôpital, BP30042, Strasbourg, France. 262 Oncogénétique, Institut Claudius Regaud, 1 avenue Irène Joliot-Curie, 31059 Toulouse cedex 9, France. 263 Hôpital Bretonneau - CHU de Tours, 2 boulevard Tonnelé, 37004 Tours cedex, France. 264 Service de Génétique, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France.

EMBRACE

Helen Gregory266, Zosia Miedzybrodzka266, Patrick J. Morrison267, Alan Donaldson268, Mark T. Rogers269, M. John Kennedy270,271, Mary E. Porteous272, Angela Brady273, Julian Barwell274, Claire Foo275, Fiona Lalloo276, Lucy E. Side277, Jacqueline Eason278, Alex Henderson279, Lisa Walker280, Jackie Cook281, Katie Snape282, Alex Murray283 & Emma McCann284

266 North of Scotland Regional Genetics Service, NHS Grampian & University of Aberdeen, Foresterhill, Aberdeen AB24 3AA, UK. 267 Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, and Department of Medical Genetics, Queens University Belfast, Belfast BT9 7BL, UK. 268 Clinical Genetics Department, St. Michael’s Hospital, Bristol BS2 BEG, UK. 269 All Wales Medical Genetics Services, University Hospital of Wales, Cardiff CF14 4XW, UK. 270 Academic Unit of Clinical and Molecular Oncology, Trinity College Dublin, Dublin 2, Ireland. 271 St James’s Hospital, Dublin B, Ireland. 272 South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh EH4 2XU, UK. 273 North West Thames Regional Genetics Service, Kennedy-Galton Centre, Harrow HA1 3UJ, UK. 274 Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester LE1 SWW, UK. 275 Department of Clinical Genetics, Alder Hey Hospital, Eaton Road, Liverpool L12 2AP, UK. 276 Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK. 277 North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK. 278 Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK. 279 Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE7 7DN, UK. 280 Oxford Regional Genetics Service, Churchill Hospital, Oxford OX3 7LE, UK. 281 Sheffield Clinical Genetics Service, Sheffield Children’s Hospital, Sheffield S10 2TH, UK. 282 South West Thames Regional Genetics Service, St. George’s Hospital, Cranmer Terrace, Tooting, London SW17 0RE, UK. 283 All Wales Medical Genetics Services, Singleton Hospital, Swansea SA2 BQA, UK. 284 All Wales Medical Genetics Service, Glan Clwyd Hospital, Rhyl LL18 5UJ, UK.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON)

KConFab
Stephen Fox, Judy Kirk, Geoff Lindeman & Melanie Price

Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia. Familial Cancer Service, Department of Medicine, Westmead Hospital, Westmead, New South Wales 2145, Australia. Breast Cancer Laboratory, Walter and Eliza Hall Institute, PO Royal Melbourne Hospital, Parkville, Victoria 3050, Australia. Medical Psychology, University of Sydney, Sydney, New South Wales 2006 Australia.