
Large Scale RO PUF Analysis over Slice Type, Evaluation Time and
Temperature on 28nm Xilinx FPGAs

Hesselbarth, R., Wilde, F., Gu, C., & Hanley, N. (2018). Large Scale RO PUF Analysis over Slice Type,
Evaluation Time and Temperature on 28nm Xilinx FPGAs. In 2018 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST): Proceedings (pp. 126-133). IEEE Computer Society.
https://doi.org/10.1109/HST.2018.8383900

Published in:
2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST): Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:20. Aug. 2022

https://doi.org/10.1109/HST.2018.8383900
https://pure.qub.ac.uk/en/publications/64522e67-41f8-4bb5-a3b8-28780f57655d

Large Scale RO PUF Analysis over Slice Type,
Evaluation Time and Temperature

on 28nm Xilinx FPGAs
Robert Hesselbarth

Fraunhofer Institute for
Applied and Integrated Security (AISEC),

Munich, Germany
robert.hesselbarth@aisec.fraunhofer.de

Florian Wilde
Technical University of Munich (TUM),

Munich, Germany
florian.wilde@tum.de

Chongyan Gu and Neil Hanley
Center for Secure Information

Technologies (CSIT),
Queen’s University Belfast,

Belfast, UK
{c.gu, n.hanley}@qub.ac.uk

Abstract—Runtime accessible, general purpose, secure secret
storage based on physical unclonable functions (PUFs) imple-
mented within the programmable logic fabric is one of the
most interesting applications of PUFs on field programmable
gate arrays (FPGAs). To properly evaluate the quality of a
PUF design, data from a large number of devices is required.
This work therefore publishes a dataset containing 100 repeated
measurements of 6592 ring oscillators (ROs) on 217 Xilinx Artix-
7 XC7A35T FPGAs. This is both larger, and based on a more
recent technology node than other publicly available datasets of
related work.

Apart from making the raw data publicly available, a thorough
analysis is performed. The location and type of slice is found to
affect the RO frequency by approx. 5 MHz, fast switching logic
decreases the frequency by approx. 10 MHz, and ROs adjacent
to clock routing resources showed an expected frequency of
20 MHz less than others on the device. We also address the
time-to-response of ring oscillator PUFs (RO-PUFs), which can
be large, by optimizing the evaluation time with regard to the
measurement precision and found 70.71 µs to be optimal for the
device and architecture under test. The temperature induced bit
error rate was estimated to be 3.5 % and 5.8 % for temperature
differences of 60 ◦C and 100 ◦C respectively.

Finally, access to the FPGA array used to obtain the data will
be granted to interested researchers.

I. INTRODUCTION

PUFs are circuits that are designed to extract information
from the manufacturing variations between individual ICs,
which are caused by the limited precision inherent to any
manufacturing process. Two applications can be built upon the
information provided by a PUF output, or response, which
is unique to the physical device: Extraction of secret keys,
e.g. for encryption [1], [2], and challenge-response based
authentication protocols [3], [4].

Although FPGA manufacturers today also provide security
features as hard-cores built into their devices, these are often
restricted to specific tasks, such as bitstream encryption, and
cannot be used for other purposes. Furthermore, they cannot
always be updated in the field, leading to high costs for
replacement of hardware where vulnerabilities are discovered.
PUFs, which are implemented within the fabric of an FPGA

and hence are reconfigurable, do not suffer from these down-
sides.

A large number of circuits have been proposed as PUF
architectures, with the SRAM-PUF [5], the arbiter PUF [4],
the RO-PUF [6], and their variants, among the most popular.
However, only few of these are suitable for the use on FPGAs.
SRAM-PUFs require access to uninitialized blocks of SRAM,
but many of today’s FPGAs initialize their SRAM by default.
The arbiter PUF and similar designs like bistable ring PUF
(BR PUF) [7] and the twisted bistable ring PUF (TBR PUF)
variant [8] require careful balancing of two signal paths to
provide useful responses. As noted in [9], this is a non-trivial
task on FPGAs because the designer can only choose from
predefined paths to route the signal such that the difference
between them is minimised. Hence, RO based designs which
don’t require this mirrored symmetric routing are a promising
approach on FPGAs [9].

The design of an RO-PUF still requires some of these effects
to be taken into account: The ROs need to be placed and
routed such that their expected output frequency is equal in
order to prevent a biased output response and reduced entropy.
The frequency of a RO is also known to be strongly temper-
ature dependent. While well designed key extraction schemes
counter this effect by evaluating the frequency relative to those
of other ROs on the same device, a difference in temperature
coefficients can still lead to incorrect responses. Additionally,
to maintain power consumption at acceptable levels, the ROs
are often measured sequentially one at a time. However this
leads to RO-PUFs taking considerably longer than many other
PUF types to produce its response. The evaluation time per
RO, i.e. how long the RO runs to measure its frequency,
therefore should be minimized while still long enough to
provide sufficient accuracy.

Contribution: This work provides raw data of 217 Xilinx
Artix-7 XC7A35T FPGAs, each containing a total of 6592
ROs, comprised of six different routing paths with 550 to
1696 instances per type. The ROs cover the entire fabric of
the FPGA except for one clock tile that is required for control
and communication. This allows us to investigate the impact

of routing, location, and slice type on RO populations. The
data includes 100 repetitions each of 15 different evaluation
times, allowing the efficiency of the evaluation to be analysed
in order to find the optimal evaluation time for the design. To
investigate the temperature dependency and temperature in-
duced response error probability, 50 devices were additionally
measured in a temperature chamber at controlled temperatures
in steps of 10 �C from 5 �C to 55 �C.

The raw data will be made publicly available to enable
the research community to use it both as reference for other
designs and as input for key extraction or other post-processing
algorithm validation (see Section VI). Additionally, we intend
to make the actual FPGA array used in this work available to
interested researchers who want to evaluate new FPGA based
PUF designs.

Related work: A number of works have previously looked
at ROs on FPGAs in the context of PUFs [6], [10]–[12],
as well as for investigating process design variations [13],
[14]. However, the only other RO-PUF dataset on FPGAs
of similar size is the one provided by Maiti et al. [15]. It
is also publicly available, but the number of FPGAs (193)
and the number of ROs per device (512) is less, and as the
FPGAs were borrowed from students, they have unknown
aging status and experiments are not repeatable. Their data
comes from Spartan-3 FPGAs, which have to be considered
outdated compared to the current FPGA families. Some other
publications claim to provide a large dataset, however instan-
tiate multiple copies of the design on each FPGA device [16].
While this can be acceptable for some types of analysis, it
does not allow for accurate inter-device variation analysis. The
UNIQUE project also investigated, among other types, RO-
PUFs on an acceptably large number (96) of devices [17], but
on 65 nm ASICs instead of FPGAs.

The rest of this work is organized as follows: Section II
provides a detailed description of the RO-PUF design used in
this work, followed by a description of the evaluation setup in
Section III. The experimental analysis section in Section IV is
split into subsections investigating the influence of location
and slice type IV-A, the effect of the evaluation time on
the frequency precision IV-B, and the effect of temperature
variations IV-C. Finally, conclusions are drawn in Section V.

II. FPGA RING-OSCILLATOR DESIGN UNDER TEST

In an RO based PUF, the frequencies of the ROs are
processed by some algorithm to derive an output, which is
usually a sequence of bits. A number of different algorithms
have been proposed in the literature, such as the original RO-
PUF proposal [6], the PUFKY [1] or the SUM-PUF [18]. In
order to not limit our analysis to a specific algorithm we
only implemented the core RO on the FPGA. This allows
us to apply any algorithm for the subsequent PUF response
generation to the raw frequencies. However, this is not the
main focus of this work.

The design under test is a three stage RO, as illustrated in
Figure 1. It has an enable input, to start or stop the oscillation
as required, and an output buffered by a toggle flip flop

Figure 1: Ring-oscillator architecture.

M
atrix

Sw
itch

M
atrix

Sw
itch

CLB

SLICEL
pL

SLICEL
bL

SLICEM
bM

CLB

SLICEL
qL

SLICEL
dL

SLICEM
dM

Interconnect

Figure 2: Constellations of CLB to switch matrix location,
slice location and slice type resulting in 6 RO implementation
types

resulting in a signal that is half the actual RO frequency.
The entire architecture can fit in a single Xilinx Artix-7 slice
[19]. On the Artix-7 there are two slice variants: SLICEL
and SLICEM. All logic components required for our RO
implementation are available on both slice variants, hence
there is no restriction as to where on the FPGA that the RO
can be placed. To do so, we had to map 5 logic gates onto the
four LUT6 elements in a slice. We achieved this by placing
the NAND and inverter elements surrounded by the dotted box
in Figure 1 in a single LUT6, which is used here as two 5
input LUTs. The remaining inverters are placed in separate
LUT6 elements each. The output buffer is automatically held
in a reset state until such time the enable signal is applied to
ensure all ROs start in an identical state.

In order to construct a PUF we want to use the RO’s
frequencies to detect variations in the hardware parameters
not only from device to device, but also from RO to RO on
the same device. We ensured this by calling scripts within
the Xilinx Vivado 2014.3 tool flow to fix both placement and
routing of the RO components. Due to the physical layout of
the FPGA device, it was not possible to identically route all
ROs exactly the same resulting in 6 different RO types. As
shown in Figure 2, for the Artix-7 device under consideration
the slices are paired up in configurable logic blocks (CLBs).
Depending on the position within a CLB, the RO type is
identified as upper or lower. The routing switch matrix can
be to the left or to the right of the CLB hence we further
identify the type as left or right. Since there are two slice
variants we also have to identify the RO type as SLICEL or
SLICEM with only the lower slices containing SLICEMs.

The names of the 6 different RO types are listed in the
second column of Table I. The RO type pairs (dL, dM) and
(bL, bM) have similar routing paths, differing only in the slice

Table I: RO types mapped to FPGA designs and number of
instances.

FPGA design RO type #ROs
Upper left qL 1600
Upper right pL 1696

Lower left dL 800
dM 800

Lower right bL 550
bM 1146
Total �: 6592

Clock tile X1Y1:
MicroBlaze processor

(a) One of 4 ring-oscillator
FPGA design floor-plans.

(b) RO-type mapping.

Figure 3: FPGA Layout.

type and junction nodes. Hence, these pairings allow us to
investigate the influence of the slice type on the RO frequency,
and whether they can be used interchangeably or not. All other
type combinations have different routing and slice position
with respect to the switch matrix and within the CLB.

Restricting the entire RO to a single CLB, and in the case
here a single slice of the CLB, is important as it means the
routing can be constrained within the local interconnect and
does not need to pass through the general interconnect.

In order to take measurements from the ROs we imple-
mented a soft-core MicroBlaze processor [20], which handled
the RO frequency measurements and external communication.
We confined the processor to one of the six clock tiles in the
FPGA to avoid interference with the ROs. The processor can
be seen in the floorplan shown in Figure 3a, located in clock
tile X1Y1 which is on the mid-right.

We used the remaining clock tiles to fit as many ROs on the
FPGA as possible. The orange components in Figure 3a are
the directly placed logic, i.e. the RO architecture. Note that
the blank white parts of the image relate to non-slice logic
such as DSP and RAM blocks. We mapped the 6 RO types

into 4 seperate FPGA designs (bitfiles) as listed in Table I,
which also lists the number of ROs we implemented of each
type, with a total of 6592 ROs per FPGA when all 4 designs
are combined.

The distribution of these 6 RO types is spread throughout
the FPGA logic as shown in Figure 3b. We used the same
colors as in Figure 2 to identify the RO-type at each position.
Red squares represent the location of slices to the left of the
local switch matrix, with blue to the right of it. The darkest
and lightest of the two colours represent the lower SLICEMs
and SLICELs respectively.

III. EXPERIMENT SETUP AND DATA ACQUISITION

The design described in Section II was run on a large FPGA
array to obtain a sufficient amount of data for reasonable
statistical analysis. The array contains a total of 234 Xilinx
Artix-7 XC7A35T FPGAs on Digilent Basys3 boards [21].
It is built out of 4 modules to keep the size and weight
of each module reasonable and such that a module fits into
the available temperature chamber. Each module contains
approximately 60 boards, which are connected via USB hubs
to a Raspberry-Pi that acts as intermediate control server
on module level. The USB connection powers the FPGA
boards and provides two interfaces via an FTDI chip: A JTAG
interface to program the FPGA with the design under test
and a UART interface to communicate with the configured
design and receive the measurement results. The Raspberry-Pi
communicates over local area network (LAN) with the global
experiment control server, which also stores the measured data.
The array was built as part of the FP7-Sparks project, and a
more detailed description of the setup can be found in [22].

The experiment is divided into two parts because of the
limited availability of the temperature chamber. In the first
part, the whole array was measured at room temperature
for analysis that does not require data at multiple temper-
atures. The frequency was measured indirectly by counting
the positive edges of the toggle flip-flop (cf. Figure 1) during
an evaluation time D, with a range of different evaluation
times from 0:50 µs to 10:00 ms tested. This produced a dataset
containing the edge count k of Nn = 6592 ROs on Ni = 217
FPGA boards for Nd = 15 different evaluation times D with
every measurement repeated Nr = 100 times. Due to problems
with the USB hubs, not all 234 boards where measured, but
17 boards where skipped during acquisition. The ROs on each
board were evaluated one after another as it is common for
RO-PUFs. This provides two benefits: First, cross-coupling
and locking between ROs is avoided. Second, the power
consumption remains low during the whole experiment, which
avoids an otherwise noticeable temperature increase of the
FPGA die.

In the second part of the experiment, one module was
placed in a temperature chamber to obtain the data required
for analysing the influence of temperature on the ROs. This
produced a dataset containing the edge count k of Mn = 6592
ROs on Mi = 50 FPGA boards for D = 1 ms, repeated

Mr = 101 times, at Mt = 6 different ambient temperatures T
from 5 �C to 55 �C in steps of 10 �C.

IV. ANALYSIS OF EXPERIMENT RESULTS

From the datasets described in Section III, the actual fre-
quency of an RO can be calculated by

fr;n;i;d;t = 2 · kr;n;i;d;t
D

(1)

because the toggle flip-flop divides the frequency by a factor
of two and edges where only counted during the evaluation
time D. Index r iterates through repetitions, n through ROs,
i through FPGAs, d through evaluation times, and t through
temperatures. Index t is omitted in the first dataset, as it only
contains data for room temperature. Index d is omitted in the
second dataset, as it only contains data for a single evaluation
time.

A. Location and Slice Type

Our first analysis investigates the effects of location and
slice type on the RO frequency. This is important to avoid
systematic bias in the response, which can reduce entropy
in derived keys or otherwise impair security. To exclude the
effects of evaluation time and temperature, which are investi-
gated separately, we use the dataset at room temperature and
select measurements with longest evaluation time D = 10 ms.

Figure 4 shows heatmaps of the expected frequency and
its standard deviation among devices, and of the expectation
and standard deviation among repetitions. The slice indexing
scheme of the Xilinx 7-series FPGAs is such that the two
slices inside a CLB have different, consecutive ‘x’ indices
but the same ‘y’ index, even though these two slices are
arranged vertically as depicted in Figure 2. In our heatmaps we
used the slice indices for both axis, but we plotted the pixels
corresponding to the slices of a CLB in the same column as
represented in the Vivado toolset. As a result the x-axis value
increments by two per pixel, while the y-axis value increments
only with every second pixel. The exact mapping of each
pixel in the heatmaps corresponds to the RO type as shown in
Figure 3b.

Focusing on Subfigure 4 (a) which shows the expected RO
frequency for a given device, three points can be noticed. First,
the area around the MicroBlaze in the mid right is darker
than the rest, corresponding to a lower expected frequency
of ≈450 MHz in the vicinity of the MicroBlaze compared to
≈460 MHz elsewhere. Whether this is due to the MicroBlaze
or due to the FPGA design requires further testing with the
MicroBlaze processor restricted to different locations, however
it was shown by Merli et al. that surrounding logic can
effect ring oscillator frequencies [23]. Second, at Y-indices
{25; 75; 125} there is a clear horizontal line of slices (both L
and M) which have an expected frequency of ≈20 MHz less
than other slices. Closer inspection reveals that in each case the
slices containing these slower ROs are immediately adjacent
to the clock distribution network for the clock tile [24]. Third,
in some columns light and dark shades interleave in close
proximity, while in other columns the color changes only

0

150

0 66
0

150

0 66

0

150

0 66
0

150

0 66

Sl
ic

e-
Y

Slice-X

(a) mean8i(mean8r(fr;n;i))

425 MHz

430 MHz

435 MHz

440 MHz

445 MHz

450 MHz

455 MHz

460 MHz

465 MHz

Sl
ic

e-
Y

Slice-X

(b) std8i(mean8r(fr;n;i))

19.5 MHz

20.0 MHz

20.5 MHz

21.0 MHz

21.5 MHz

22.0 MHz

22.5 MHz

23.0 MHz

23.5 MHz

24.0 MHz

24.5 MHz

Sl
ic

e-
Y

Slice-X

(c) mean8i(std8r(fr;n;i))

40 kHz

60 kHz

80 kHz

100 kHz

120 kHz

140 kHz

160 kHz

Sl
ic

e-
Y

Slice-X

(d) std8i(std8r(fr;n;i))

0.0 Hz

200.0 kHz

400.0 kHz

600.0 kHz

800.0 kHz

1.0 MHz

1.2 MHz

1.4 MHz

1.6 MHz

Figure 4: Heatmaps of expectation and standard deviation
among repetitions and devices.

gradually. As not all columns contain SLICEM type slices,
this indicates that ROs in such slices might be systematically
slower than those in a SLICEL. This finding is confirmed in
the results presented in columns one and two of Table II, where
the expected frequency for each RO type is listed. Both dM and
bM are ≈5 MHz slower than their SLICEL counterpart. This
means that dispite the seeming similarities our SLICEL and
SLICEM RO implementations cannot be used interchangeably.

Subfigure 4 (b) shows that the standard deviation among
FPGAs is ≈5 MHz larger in the upper half left corner than
in the lower right corner. This is an interesting behaviour
we could not find an explanation for. However, even for the
lower right corner the standard deviation among FPGAs is
≈ 100 times larger than the standard deviation among repeated

Table II: RO type statistics.

RO �f �norm
f;FPGA �norm

f;RO �norm
f;Rep

MHz % % %
qL 456.8 4.750 0.9653 0.0125
pL 456.3 4.773 0.9967 0.0125
dL 457.2 4.843 1.084 0.0128
dM 450.8 4.806 1.058 0.0127
bL 455.2 4.885 1.061 0.0129
bM 451.7 4.849 1.087 0.0128

measurements averaged over FPGAs, which is depicted in
Subfigure 4 (c). Therefore the risk of measuring a response
closer to the expectation of another device than the one
the measurement is taken is acceptably low. Subfigures 4 (c)
and 4 (d) further reveal that seven ROs produce unreliable
frequency readings at least on some FPGAs. They are easily
spotted as yellow pixels in the plots.

Table II additionally shows the average of the normalized
standard deviations over the FPGA instances, over the ROs and
over the repetitions for the 6 RO types. Using the frequency
mean of each RO on each device (i.e. the ‘correct’ frequency)
fn;i = mean8r (fr;n;i), the normalized standard deviation
over the FPGA instances is defined as

�norm
f;FPGA = mean

8n

std8i

�
fn;i

�
mean8i fn;i

!
: (2)

It indicates how much the frequency of the ROs vary between
the FPGA instances. Its values lie around 4.8 % for all RO
types. However, for RO-PUFs this value is less important
because usually the frequencies from a single device are
compared against each other, which cancels out the variations
of the absolute frequency values over the instances. The
normalized standard deviation over the ROs indicates how
much the frequency of the ROs vary within each FPGA. Thus
it is actually more relevant than �norm

f;FPGA for PUF applications.
It is defined as

�norm
f;RO = mean

8i

std8n

�
fn;i

�
mean8n fn;i

!
: (3)

Here, the values lie around 1 %, which is almost 5 times
smaller than �norm

f;FPGA. The normalized standard deviation
over the repetitions indicates the noise level of the frequency
evaluation. It is defined as

�norm
f;Rep = mean

8n;8i

std8r (fr;n;i)

fn;i

!
: (4)

It is important that its value is significantly lower in com-
parison to �norm

f;RO in order to allow the generation of stable
bits. Its values lie around 0.013 %, which is almost two
orders of magnitude lower compared to �norm

f;RO. Hence, this
implementation allows the extraction of reliable bits.

The bit generation in RO-PUF architectures usually relies
on the frequency comparison between pairs of RO in order
to compensate for influences from environmental conditions.
However, this comparison is very sensitive to systematic
differences between the ROs causing biases in the generated

Table III: RO type comparison with t-welch test. Percentage
of instances with p-value > 0:05

RO qL pL dL dM bL bM

qL 100.00
pL 34.10 100.00
dL 21.66 17.51 100.00
dM 0.00 0.00 0.00 100.00
bL 14.29 21.20 8.29 2.30 100.00
bM 0.00 0.00 0.46 19.35 2.30 100.00

bits, which reduce entropy. This raises the question if it is
possible to use ROs of different types for the comparison. We
tested this for each combination of our 6 RO types applying
the t-Welch test. For each FPGA instance we calculated the p-
value for each pair of RO type populations. Here, a low p-value
indicates that the respective means of the two populations are
not the same. Table III shows the percentage of FPGA devices
where the p-value was greater than 0.05 for each RO type
combination. Note that as the table is symmetrical we removed
the upper half for readability. By design, the p-value of the
test is always 1 for identical combinations, e.g. qL with qL.
Hence, the values on the diagonal of the table are 100 %. The
best case non-identical type combination is qL with pL, which
allows a fair comparison on 34 % of the FPGAs. Hence, the
comparison is unfair in the majority of the FPGA instances for
this or any other non-identical combination. This confirms that
it is good practice to only compare ROs which have exactly
the same routing paths for RO-PUF bit generation.

B. Frequency Precision vs. Evaluation Time
When using edge counting to measure frequency, there is a

degree of freedom in the evaluation time D. Longer evaluation
time improves frequency resolution, but also increases the
overall acquisition time. Given that RO-PUFs take longer than
most other PUF types to produce a response, reducing this
gap by minimizing the total acquisition time, while retaining
sufficient frequency precision, is an import goal. We there-
fore acquired frequency measurements for different evaluation
times D ∈ {0.50 µs, 1.01 µs, 2.06 µs, 4.17 µs, 8.47 µs, 17.18 µs,
34.86 µs, 70.71 µs, 0.143 45 ms, 0.291 02 ms, 0.590 38 ms,
1.197 71 ms, 2.429 78 ms, 4.929 28 ms, 10.000 00 ms}. For
each evaluation time we calculated the standard deviation over
the repeated measurements and divided it by the measured
frequency.

�norm
fn;i;d

=
std8r (fr;n;i;d)

mean8r (fr;n;i;d)
(5)

The resulting normalized standard deviations are then averaged
over all ROs and FPGAs

�norm
fd

= mean
8n;8i

�
�norm
fn;i;d

�
: (6)

and plotted in Figure 5a with regard to the evaluation time D.
The thin gray line is the lsb error �lsb; which is calculated by

�lsb;d =
|k − k0|

2
· 1

mean8r;8n;8i (kr;n;i;d)
(7)

=
1

2
· 1

mean8r;8n;8i (kr;n;i;d)
: (8)

10�6 10�5 10�4 10�3 10�2

D [s]

10�4

10�3

10�2
�

n
o
rm

f

dL

dM

qL

bL

bM

pL

Maiti
�lsb

(a) Normalized frequency stan-
dard deviation versus evaluation
time in seconds.

10�6 10�5 10�4 10�3 10�2

D [s]

10�6

10�5

10�4

�
0

dL

dM

qL

bL

bM

pL

(b) Optimal evaluation time.

Figure 5: RO evaluation time.

This is the normalized standard deviation of the frequency
value assuming that the edge count in repeated measurements
takes two equally likely values k and k0, where |k − k0| = 1.
We regard this as the theoretical minimum of the achievable
normalized standard deviation for a given evaluation time.

In the log-log plots of the normalized standard devia-
tion �norm

fd
of the frequency versus evaluation time D, shown

in Figure 5a, we can distinguish three sections. For short
evaluation times the normalized frequency error decreases with
increasing evaluation time. Up to about 2 µs the normalized
frequency error is proportional to 1

D and its absolute values are
close to �lsb;d. After 2 µs it transitions to the second section,
where it is also proportional to 1

D but its absolute values are
≈ 5 times higher than �lsb;d. At around 0.1 ms the normalized
frequency error transitions into the third section, where it
asymptotically approaches a constant value of 0.013 % for
D = 10 ms.

Because of this saturation in the precision of the frequency
measurement, increasing D beyond a certain value will only
increase the overall acquisition time without providing a higher
precision. However, averaging multiple measurements can
increase the precision further. The available evaluation time D
might thus be split into N measurements, each with an
evaluation time Det. Hence there is an optimal trade-off for
N that maximizes the precision. In general, the standard
deviation of the mean of a sample of statistically independent
measurements (repetitions) is

�mean =
�√
N

= �N�
1
2 ; (9)

where � is the standard deviation among repetitions and N
the number of repetitions, which equals bD=Detc in our case1.
Thus, the standard deviation of the sample mean can be written
as a function of the overall evaluation time D

�mean(D) = �

�
D

Det

�� 1
2

; (10)

which produces a slope of − 1
2 in a log-log plot of �mean versus

D. It is thus only worth increasing the evaluation time Det if

1Assuming the overhead for repeating an evaluation is negligible

Table IV: Normalized frequency standard deviation �norm
f and

evaluation time D for our designs and the design used by Maiti
et al. [25].

Design
�norm
f �norm

f �norm
f

@0.07 ms @1.25 ms @10 ms
% % %

Maiti 0.0278
dL 0.0233 0.0128
dM 0.0223 0.0127
qL 0.0224 0.0125
bL 0.0255 0.0129
bM 0.0242 0.0128
pL 0.0255 0.0125

the reduction in standard deviation is stronger than that of
averaging, i.e. if the slope in Figure 5a is < − 1

2 . Since there
are multiple points in Figure 5a where the plots transition
through − 1

2 , there are multiple candidates for the best eval-
uation time. In order to find the best of the candidates, we
introduce �0, which we define by adding 1

2 to the slope of the
log-log plot of �norm

fd

log10 (�0d) = log10

�
�norm
fd

�
+

1

2
log10 (Dd) (11)

�0d = �norm
fd

·
p
Dd: (12)

The candidates for best evaluation time are now local ex-
trema and the global minimum identifies the optimal evalu-
ation time D for a measurement. Figure 5b shows the plots
of �0 for the six RO types. In all cases the global minimum
is located at D = 70:71 µs. Table IV shows the evaluation
time and the normalized frequency standard deviation for our
six RO types and the dataset provided by Maiti et al. [25].
The normalized frequency standard deviation figures for our
designs, measured with an evaluation time of 70.71 µs, are
slightly lower than for the Maiti design, which was measured
with an evaluation time of 1.25 ms.

C. Temperature Analysis

It is well known that the frequency of ROs is sensitive to
changes in the operating temperature. In order to investigate
the effect of temperature changes on our RO designs, we took
measurements for all of our 6 RO types on 50 devices at 6
temperatures in steps of 10 �C from 5 �C to 55 �C.

Figure 6b shows a box plot of the expected frequency
for each of the RO designs at the different temperatures.
The first observation is a noticeable non-linearity in the rela-
tionship between frequency and temperature. At temperatures
below 35 �C the frequency rises with increasing temperature,
reaches a plateau around 45 �C and start to fall again with
rising temperatures starting from 55 �C. We speculate that at
different temperatures different device parameters dominate
the determination of the oscillating frequency of the RO.
For instance, at lower temperatures the frequency might be
determined predominantly by the mutual conductance of the
transistors, which would cause the oscillation frequency to
increase with temperature, while at higher temperatures the
on-resistance of the transistors might dominate, which would

(a) Temperature
coefficients

(b) RO type frequency distribution.

Figure 6: RO frequency versus temperature.
Table V: Temperature coefficient statistics by RO type

RO �� ��;RO �f;RO(25 �C) PBE(�60 �C) PBE(�100 �C)
kHz/�C kHz/�C kHz % %

qL 27.582 7.909 4424 3.401 5.631
pL 29.149 8.125 4550 3.398 5.626
dL 22.589 9.029 4926 3.486 5.770
dM 26.869 7.843 4757 3.138 5.201
bM 24.994 8.994 4882 3.505 5.800
bL 17.269 8.315 4826 3.279 5.431

cause the oscillation frequency to decrease with temperature.
We leave the exact analysis of the observed non-linearity and
its origin to future work.

For our further analysis we calculated a linear approxima-
tion of the temperature coefficient � for each RO averaged over
all FPGA devices. Figure 6a shows all coefficients mapped to
their corresponding location on the FPGA. There is not only a
variation around the clock distribution lines as seen before in
Section IV-A, but also around the physical edges of the FPGA
indicating an uneven heating of the device.

One parameter for selecting an appropriate error correcting
code is the error probability of the bits generated from the raw
RO frequencies. In order to compensate for the frequencies’
temperature dependency, the response bits are often generated
by comparing the frequencies of RO pairs. If the temperature
coefficients of all ROs are the same, then the result of the
frequency comparison is always the same, and there is no
additional contribution to the bit error probability. However,
in reality the temperature coefficients vary from RO to RO.
Table V shows the mean of the temperature coefficients ��
for each RO type. The values range from 17.3 kHz/�C to
29.2 kHz/�C. This shows yet again, that comparing ROs of

different types with each other for bit generation is bad prac-
tice, because even if the mean frequencies were comparable at
some temperature, the different temperature coefficients would
result in a strong systematic temperature sensitivity of the
generated bits. Even within the same RO type the temperature
coefficients differ as quantified by their standard deviation
��;RO, which is shown the third column of Table V. As can be
seen in Figure 6a the temperature coefficients of the same RO
type change noticeably in y-direction but change very little in
x-direction. This indicates that for bit generation comparing
pairs of ROs with the same y-coordinate would result in more
stable bits.

We can estimate the error probability of generated bits
by a frequency comparison given an operating temperature
range. Let us assume the frequency difference between the
two ROs is �f at the reference temperature T0 and the
difference between their temperature coefficients is ��. Then
the temperature TE at wich the sign of the frequency difference
flips, and hence the generated bit, is

TE =
�f

��
+ T0: (13)

Assuming that �f is normally distributed according to
N
�

0; 2 · (�f;RO (T0))
2
�

and that �� is normally distributed
according to N

�
0; 2 · ��;RO

2
�
, then the error temperature TE

is distributed with a ratio distribution, whose cumulative dis-
tribution function FTE

(�T) gives us the bit error probability
when the operating temperature changes by �T

PBE (�T) = FTE
(�T) =

1

�
tan�1

�
�T · ��;RO

�f;RO (T0)

�
; (14)

where �T = |TE − T0|. While just an estimation, this method
allows us to approximate bit error probabilities for different
target operating temperature ranges by extrapolating from
measurements recorded across a smaller temperature range.
Using our measurement data we conducted this estimation
for a reference temperature T0 of 25 �C and a temperature
change �T of 60 �C and 100 �C corresponding to worst
case operating temperatures of 85 �C and 125 �C respectively.
Table V shows in column 4 the frequency standard deviation
over the ROs �f;RO(25 �C) used for these estimations. The
results PBE(�60 �C) and PBE(�100 �C) are shown in column
5 and 6 respectively.

V. CONCLUSION

In this work we presented a large scale characterization of
ROs on 217 Xilinx Artix-7 XC7A35T FPGAs, with 50 of
them also characterized over temperature. The entire fabric
was covered by 6592 distinct ROs of six types corresponding
to six different routing paths due to the physical layout of the
FPGA. The resulting dataset exceeds that of the closest related
work [15] both in size and precision.

We showed using multiple t-Welch tests that it is strongly
advisable to compare ROs only within the same type, in order
to avoid bias of the response. For example, ROs implemented
in a SLICEM where found to be ≈5 MHz slower on average

than those in a SLICEL. For the same reason, slices in the
vicinity of clock routing resources – impact ≈20 MHz – or
other fast switching circuitry – impact ≈10 MHz – should
also be avoided. Large time-to-response is a severe issue for
RO-PUFs in general, we therefore explained how to minimize
it by finding the optimal trade-off between evaluation time
and measurement precision. For the given architecture and
design, this optimal trade-off was 70.71 µs. Data from different
operating temperatures was used to model the temperature
behaviour of the six RO types. These models where used
to estimate bit error probabilities for the popular case of
pairwise comparison, obtaining PBE(�60 �C) = 3:5% and
PBE(�100 �C) = 5:8% for type bM , which had the largest
bit error rate over temperature.

VI. AVAILABILITY

The raw RO frequency data is publicly available at
science.robert-hesselbarth.de/2018fpga-ro-data to advance
research on RO-PUFs. Additionally, access to the FPGA array
used to obtain the data will be granted to interested researchers
to allow the evaluation of other PUF circuits.

ACKNOWLEDGMENTS

This work was supported by the SPARKS project, funded by
EU 7th Framework Programme (FP7/2007-2013, grant agree-
ment no. 608224; www.project-sparks.eu), by the Institute for
Information & Communications Technology Promotion (IITP)
grant funded by the Korea government (MSIT) (No. 2016-0-
00399, Study on secure key hiding technology for IoT devices
[KeyHAS Project]), and by the German Federal Ministry of
Education and Research in the project secUnity through grant
number 16KIS0394.

REFERENCES

[1] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A fully
functional PUF-based cryptographic key generator,” in Cryptographic
Hardware and Embedded Systems – CHES 2012, ser. Lecture Notes
in Computer Science, E. Prouff and P. Schaumont, Eds., vol. 7428.
Leuven, Belgium: Springer, Heidelberg, Germany, Sep. 9–12, 2012, pp.
302–319.

[2] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Cryptographic Hardware and
Embedded Systems – CHES 2007, ser. Lecture Notes in Computer
Science, P. Paillier and I. Verbauwhede, Eds., vol. 4727. Vienna,
Austria: Springer, Heidelberg, Germany, Sep. 10–13, 2007, pp. 63–80.

[3] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, September 2002.

[4] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in CCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security. New York, NY, USA:
ACM, 2002, pp. 148–160.

[5] Intrinsic-ID, “SRAM PUF – The secure silicon fingerprint,”
Online, accessed 20th Jul 2017, https://www.intrinsic-id.com/
sram-puf-secure-silicon-fingerprint/.

[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device au-
thentication and secret key generation,” Design Automation Conference,
2007. DAC ’07. 44th ACM/IEEE, pp. 9–14, 2007.

[7] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The
bistable ring PUF: A new architecture for strong physical unclonable
functions,” in IEEE Int. Symposium on Hardware-Oriented Security and
Trust, June 2011.

[8] D. Schuster and R. Hesselbarth, “Evaluation of bistable ring pufs using
single layer neural networks,” in Trust and Trustworthy Computing,
ser. Lecture Notes in Computer Science, T. Holz and S. Ioannidis,
Eds. Springer International Publishing, 2014, vol. 8564, pp. 101–109.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-08593-7 7

[9] S. Morozov, A. Maiti, and P. Schaumont, “A comparative analysis
of delay based PUF implementations on FPGA,” Cryptology ePrint
Archive, Report 2009/629, 2009, http://eprint.iacr.org/2009/629.

[10] A. Maiti and P. Schaumont, “Improving the quality of a physical unclon-
able function using configurable ring oscillators,” in 19th International
Conference on Field Programmable Logic and Applications (FPL),
2009. FPL ’09., 2009.

[11] D. Merli, F. Stumpf, and C. Eckert, “Improving the quality of ring
oscillator PUFs on FPGAs,” in 5th Workshop on Embedded Systems
Security (WESS’2010). Scottsdale, AZ, USA: ACM, October 2010.

[12] F. Kodỳtek and R. Lórencz, “A design of ring oscillator based puf
on fpga,” in Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2015 IEEE 18th International Symposium on. IEEE, 2015,
pp. 37–42.

[13] H. Onodera, “Variability: Modeling and its impact on design,” IEICE
transactions on electronics, vol. 89, no. 3, pp. 342–348, 2006.

[14] L.-T. Pang and B. Nikolic, “Measurements and analysis of process
variability in 90 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 44,
no. 5, pp. 1655–1663, 2009.

[15] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale
characterization of RO-PUF,” in IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2010, pp. 66–71.

[16] W. Che, V. K. Kajuluri, M. Martin, F. Saqib, and J. Plusquellic, “Analysis
of entropy in a hardware-embedded delay puf,” Cryptography, vol. 1,
no. 1, p. 8, 2017.

[17] S. Katzenbeisser, Ü. Kocabas, V. Rozic, A.-R. Sadeghi, I. Verbauwhede,
and C. Wachsmann, “PUFs: Myth, fact or busted? a security evaluation
of physically unclonable functions (PUFs) cast in silicon,” in Crypto-
graphic Hardware and Embedded Systems – CHES 2012, ser. Lecture
Notes in Computer Science, E. Prouff and P. Schaumont, Eds. Springer
Berlin Heidelberg, 2012, vol. 7428, pp. 283–301.

[18] M.-D. M. Yu and S. Devadas, “Recombination of physical unclonable
functions,” in 35th Annual GOMACTech Conference. Reno, NV: United
States. Dept. of Defense, March 2010.

[19] Xilinx, “7 Series FPGAs Configurable Logic Block - UG474 (v1.8),”
2016, http://www.xilinx.com.

[20] ——, “MicroBlaze Processor Reference Guide - UG984 (v2014.1),”
2014, http://www.xilinx.com.

[21] Digilent, “Basys 3 Artix-7 FPGA Trainer Board,” Online, accessed 26th
Sep 2016, http://store.digilentinc.com/.

[22] C. Gu, N. Hanley, R. Hesselbarth, M. Hutle, and G. McWilliams,
“Sparks Deliverable 4.2: PUF enhanced smart meter hardware
architecture and an authentication/key management deployment
architecture (interim),” August 2015, http://project-sparks.eu/
wp-content/uploads/2014/04/SPARKS D4 2 PUF enhanced smart
meter architecture interim.pdf.

[23] D. Merli, F. Stumpf, and C. Eckert, “Improving the quality
of ring oscillator pufs on fpgas,” in Proceedings of the 5th
Workshop on Embedded Systems Security, WESS 2010, Scottsdale,
AZ, USA, October 24, 2010. ACM, 2010, p. 9. [Online]. Available:
http://doi.acm.org/10.1145/1873548.1873557

[24] Xilinx, “7 Series FPGAs Clocking Resources - UG472 (v1.13),” 2017,
http://www.xilinx.com.

[25] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large
scale characterization of RO-PUF,” in HOST 2010, Proceedings
of the 2010 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), 13-14 June 2010, Anaheim Convention
Center, California, USA, J. Plusquellic and K. Mai, Eds. IEEE
Computer Society, 2010, pp. 94–99. [Online]. Available: http:
//dx.doi.org/10.1109/HST.2010.5513108

