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Satellite valleys and strained band gap transition of bulk Ge: Impact of
pseudopotential approximations on quasiparticle levels

G. Greene-Diniz∗ and J. C. Abreu and M. Grüning
Atomistic Simulation Centre, Queens University Belfast,

Belfast BT7 1NN, Northern Ireland, United Kingdom
(Dated: February 26, 2018)

A first principles study of the electronic structure of strained Ge is carried out within the frame-
work of plane wave pseudopotential density functional theory (DFT) combined with the GW ap-
proximation to the self-energy. Systematic investigations of the variations of high symmetry quasi-
particle gaps over for a range of pseudopotential approximations are carried out. It is found that
the quasiparticle corrections can be at least as sensitive to the choice of DFT approximation as to
pseudopotential generation scheme, level of core-valence interaction, and pseudopotential electronic
configuration. The latter can be decisive in the resulting prediction of the band gap transition strain,
as the magnitudes of exchange and correlation terms involved in the quasiparticle corrections at the
conduction valleys are largely determined by the arrangement of orbitals at those regions of the
bandstructure, which in turn is determined by the pseudized electronic configuration.

I. INTRODUCTION

Progress in computing technology largely relies on the
concomitant increases in performance and energy effi-
ciency of Complimentary Metal Oxide Semiconductor
(CMOS) devices, which has motivated the study of high
carrier mobility materials. Bulk Ge has attracted a large
proportion of these studies. While the well known is-
sues associated with the native oxides form a major rea-
son for the wide spread use of Si in the CMOS device
industry,1 the higher electron and hole mobility in Ge2,3

make it an attractive material for applications in novel
nanoscale devices such as tunnel field effect transistors.4

In addition, a strain induced transition to a direct band
gap in Ge indicates the possibility of optical electronics
applications.5 This is currently driving the use of strained
Ge in the development of integrated photonic devices
compatible with a conventional Si platform, paving the
way for high-speed, energy efficient optical components
coexisting with electronic devices on the same chip.6–8

Thus, there are significant technological imperatives to
understand the precise nature of the electronic structure
of strained Ge, particularly the electronic bands involved
in the technologically relevant optical transitions.

In the absence of strain, Ge is an indirect gap semicon-
ductor. Recently, experimental photoluminescence (PL)
studies show a sharp increase in the PL spectra associ-
ated with direct electron-hole transitions when sufficient
biaxial strain in the (100) plane is applied, indicating a
transition to a direct band gap in Ge, with the conduc-
tion band minimum (CBM) at the Γ point.9 However, a
review of the reported values of (100) biaxial strain εbiaxdir
required to achieve a direct band gap in bulk Ge—as
predicted from empirical simulations and extracted from
experiments—varies over the range ∼1.7-2.0%.10–14 Ex-
perimental techniques to determine strain magnitude can
disagree by ∼0.3% when the Ge film sample reaches bulk-
like thickness (> 200 nm).14 Such spreads in data often
motivate calculations using first principles methods. In
particular, density functional theory (DFT)15–18 repre-

sents arguably the most popular and successful method
for calculating properties of solid state materials rele-
vant to technology from first principles. Within the
Kohn-Sham (KS) framework, DFT19 replaces the many
body problem of interacting electrons with noninteract-
ing fermions moving in an effective mean field potential
(with the condition that the noninteracting system re-
produces the electron density of the interacting one).
Though in principle DFT is a ground state theory, it
is commonly used to estimate the quasiparticle energies
and band gaps from the KS bandstructure. The band
gaps resulting from KS-DFT calculations however are
systematically underestimated,20–22 and the state-of-the-
art to obtain quasiparticle energies and band gaps from
first principles relies on the DFT+GW approach. In the
latter approach, based on Green’s function many-body
perturbation theory,23 the KS bandstructure is pertur-
batively corrected to the first order within the so-called
GW approximation. First principles atomistic simula-
tions based on DFT(+GW ) thus can complement ex-
periments and help their interpretation by providing an
unbiased description of the material’s structural and elec-
tronic properties.

However, a significant spread in the theoretical value of
εbiaxdir also exists in the results of DFT simulations. Look-
ing at recent literature in this area, there is currently a
spread of about 0.5% or more—values of 1.5% to over
2%24–27 have been reported—which significantly reduces
the effectiveness of these methods as a useful complement
to experimental results. On the other hand, such a spread
is not surprising when considering the different choices of
approximations involved in such calculations. One cru-
cial choice within a KS-DFT is the exchange-correlation
(XC) functional which affects how many-body effects are
approximated in the KS effective mean-field potential.
The most common approximations for the XC functional
are the local density approximation (LDA)28,29 and the
generalised gradient approximation (GGA).30 Results in
this paper show that in fact LDA and GGA lead sub-
stantially to the same results. Other choices are related
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to the particular implementation of DFT. A popular im-
plementation, adopted in this work, is to build the single
particle wavefunctions from plane wave basis functions.18

Within the plane-wave implementation of DFT, in order
to make the calculations computationally viable, atomic
pseudopotentials (PPs) replace the real ionic potentials
such that the core electrons are not explicitly considered
and the valence electrons are described by pseudowave-
functions with fewer nodes,16,31–34 which decreases the
computational cost.35

A host of alternative pseudization techniques exist, and
the interrelated choices of PP generation method, the
description of the core-valence interaction, and the de-
sired electronic configuration following the pseudization
process (i.e. the remaining “pseudovalence”), all have
significant effects on the DFT ground state and hence
the resulting GW correction can also clearly be influ-
enced by these choices. Establishing meaningful com-
parisons between results reported for methods such as
DFT+GW can therefore often be difficult, as many ap-
plications of this technique rely on pseudopotentials to
establish a ground state starting point. In this paper, we
investigate the extent to which these choices affect the
calculation of the quasiparticle gaps of pure Ge, and how
these effects in turn translate to differences in the pre-
dictions of the strain induced transition from an indirect
to direct quasiparticle band gap of Ge. The effect of the
PP on the accuracy of GW was recently analyzed and
discussed for ZnO in Ref. 36.37 Here, we use plane wave
based PP DFT calculations to investigate the effect of
PP and other approximations on the GW correction for
Ge.

After a short review of the computational methods
(Sec. II), we calculate the GW corrected gaps of relaxed
bulk Ge (Sec. III A) in order to test a range of popular
norm-conserving PPs31–34 which have often been applied
to bulk Ge.6,26,27,38–40 Systematic investigations are car-
ried out to test the range of variation of the gaps as a
function of the PP generation technique, level of DFT
approximation, pseudovalence configuration, and inter-
action of the outer 4th shell electrons with the (semi-
)core 3rd shell. The latter are investigated by studying
and comparing 4-valence PPs (Ge4+) with different un-
occupied orbitals remaining in the PP configuration fol-
lowing pseudization, with and without the popular non-
linear core correction of Louie Froyen and Cohen,41 and
contrasting these with PPs which explicitly include the
3s23p63d10 electrons (Ge22+) in the PP valence.

It is found that the range of variations of the satellite
valleys of Ge due to different PP generation techniques
are significant and comparable to the variations from
alternative approximations to the exchange-correlation
(XC) functional, different choices of the PP valence
configuration, as well different descriptions of the core-
valence interaction. This has important consequences for
the next study presented in this paper, which investigates
the reordering of satellite valleys as a function of hydro-
static and biaxial strain (Sec. III B). It is found that the

value of εdir for biaxial and hydrostatic strain (εhydrodir ),
extracted from quasiparticle gaps, can vary by about
0.4% as a function of the PP. Also, the fact that the elas-
tic strain dependence of band gaps exhibits only a small
difference between certain PPs is anticipated38,42,43 and
significant for understanding the variation in εdir. This
indicates that the discrepancy in the band gap transition
strains is mainly caused by the difference in the quasipar-
ticle satellite valley positions calculated at zero pressure.
The causes for the difference in these quasiparticle lev-
els is thus investigated by analyzing the contribution to
the self-energy corrections and the relative contribution
of atomic states at the band edges.

II. METHODS

Properties of solid state systems derived from the to-
tal energy, which involves only occupied states, are of-
ten described to satisfactory accuracy within DFT.18 On
the other hand, DFT band gaps are systematically un-
derestimated as a result of the derivative discontinuity
of the exchange-correlation (XC) energy functional Exc

upon addition or removal of an electron.20–22 This jus-
tifies the so-called DFT+GW approach where total en-
ergies, forces, and stresses are minimized within DFT to
obtain a relaxed atomic configuration for the bulk ma-

terial, while the quasiparticle levels EQP
nk (the indexes n

and k indicate the band and the crystal momentum re-
spectively) are obtained by correcting perturbatively the
KS eigenvalues εKS

nk within the GW approach:

EQP
nk = εKS

nk + 〈ψnk|Σ(E)− Vxc|ψnk〉. (1)

In Eq. 1, the XC potential is Vxc = δExc/δρ where ρ is
the density and Exc is the XC energy functional. The
energy-dependent self-energy Σ(E) is obtained from a
convolution of the Green’s function G and the dynam-
ically screened Coulomb interaction W (hence GW ). G
and W are both calculated from KS wavefunctions ψnk.

Pseudopotential plane wave DFT calculations are per-
formed using the Quantum Espresso (QE) software
package.44 Subsequent GW corrections to the DFT band
gap are performed using the YAMBO code.45 All ge-
ometry relaxations are performed using a 12×12×12
Monkhorst-Pack (MP)46 k-point mesh to a force toler-
ance of less than 10−4 Rydberg/bohr per unit cell, result-
ing in highly converged crystal structures. Subsequent
DFT single-point calculations using 8x8x8 MP k-points
with a large number of unoccupied states are performed
at the relaxed geometries to obtain the KS wavefunctions
used to calculate G and W . Reducing the density of k-
points from 12×12×12 to 8×8×8 results in significant
savings in computational load at the DFT and GW steps
and very little (3–4 meV or less) change in the quasipar-
ticle gaps. 40 Rydberg kinetic cutoff Ecut of the plane
wave basis set is used for all Ge4+ PPs, which achieves
convergence of the total stress per unit cell to less than
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10−4 Rydberg/Bohr3. A much larger value of Ecut = 260
Rydberg is needed for Ge22+ to achieve the same level of
convergence.

Based on the results presented in Table I, two norm-
conserving LDA PPs are selected to calculate the high-
symmetry satellite valleys of bulk Ge under hydrostatic
and (100) biaxial strain within the DFT+GW approach.
This involves relaxing the crystal structure for a given Ge
PP within DFT, and subsequently introducing strain rel-
ative to the relaxed structure. The latter involves fixing
the (100) bulk lattice constants (alat) to equally strained
values for hydrostatic strain, or straining alat,100 and
alat,010 while allowing alat,001 to relax for biaxial strain.

GW corrections to the KS eigenvalues are calculated
at the highest occupied state at Γ, and lowest unoccu-
pied states at Γ, L, X, and the X valley which lies at
∼85% of the Γ−X k-path in the Ge Brillouin Zone (BZ).
In all GW calculations, the size of the dielectric response
matrix εG,G' is converged to better than 5 meV change
in the quasiparticle gaps per increase of 1 Ha in the en-
ergy cutoff (proportional to the number of off-diagonal
elements of εG,G'). The number of unoccupied states
is also increased until the change in the quasiparticle
gaps is less than 5 meV per increase of 100 unoccupied
states. We find that including 496 unoccupied states in
G and W consistently achieves this level of accuracy for
all Ge4+ PPs, while 978 unoccupied states are needed for
the Ge22+ PP (see Table I).

We employ norm-conserving,47 separable48 pseudopo-
tentials, which are available from the QE website49

and the Theory and Simulation of Materials (THEOS)
website.50 These include Bachelet-Hamann-Schlüter
(BHS),31,32 Troullier-Martins (TM),33 Goedecker-Teter-
Hutter (GTH),? GTH1996 We also generate PPs using
the ONCV code51 and the Atomic Pseudopotentials En-
gine (APE).52 In section III.A the Ge4+ PP valence is
used to compare a range of popular norm-conserving
pseudization approaches31–34,51 and XC functionals at
zero pressure. The effect of an approximate description
of the core-valence interaction by comparing pseudopo-
tentials generated with and without a nonlinear core cor-
rection (NLCC)41 is also studied. The method in Ref. 53
is then selected to test the effect of the inclusion of the
electrons from the second outer most shell, such that in-
teractions between valence and semicore electrons are in-
cluded explicitly.

Results are compared to previous39,54,55 DFT+GW ; in
all of these previous works the lattice constant was fixed
to the experimental value, which can facilitate compar-
isons of band gaps between methodologies due to the
sensitivity of the gaps to crystal structure. However,
calculating bandstructures at fixed lattice constant has
a deleterious effect on investigations involving strain, as
the equilibrium geometry is not obtained in that case. To
allow for consistent comparisons with results in the lit-
erature, we calculate band gaps for relaxed structures as
well as for cases in which alat is fixed to experiment. This
also provides an initial rough estimate of the sensitivity

of energy gaps to hydrostatic strain.

III. RESULTS

A. Zero pressure quasiparticle gaps

Focusing first on the band gaps obtained for relaxed
Ge, the results are summarized in Table I. The first
observation to make is the very wide spread of GW re-
sults within a typical set of DFT and PP approxima-
tions. Depending on the combination of the PP gen-
eration method, XC functional and description of the
pseudovalence, band gaps at relaxed geometries can vary
widely; we observe a maximum variation of the 1.53 eV,
0.70 eV, and 0.53 eV for the Γ, L and X valleys obtained
at relaxed alat.

1. Comparison with the experiment.

We start by comparing the results obtained at the re-
laxed geometry a0lat (i.e. minimum energy atomic config-
urations) with the experiment.
a. XC functional: When no NLCC is included (see

below), the corrected LDA energy gaps of the valleys are
generally in qualitative and in few cases even in good
quantitative agreement with the experiment. On the
other hand, the corrected GGA30 energy gaps are largely
underestimated and Ge is predicted to be a direct gap
semiconductor or even a semimetal. The difference of
performance is mostly due to the differences in the DFT
electronic structure, though also the GW corrections for
the GGA are systematically smaller (by about 80–180
meV).
b. PP method: We find that both PP 1 (TM) and

PP 2 (GTH) gives a good quantitative agreement with
gaps within 10–15% the experimental value and predict-
ing the correct valley ordering.
c. NLCC: As it has been shown previously,55 the in-

clusion of the usual NLCC41 to account for core-valence
interaction does not necessarily improve the bandstruc-
ture of Ge with respect to experiment.2 In fact, the
following trend can be observed: for all entries which
include NLCC (PP 6–9), zero pressure energy gaps at
the satellite valleys are out of order relative to experi-
ment and significantly lower relative to comparable en-
tries (similar PP method and Vxc, see PP 1–5) which do
not include NLCC. This trend also holds when compar-
ing with the LDA PP calculation of Shirley et al.55 It is
interesting to note that when comparing the Ge4+ LDA
PPs (PP 1–3 compared to PP 6 and 8) at zero pressure,
the GW corrections are consistently smaller, typically by
50–100 meV, for PPs which incorporate the NLCC. How-
ever, we need to stress that we do not treat consistently
the NLCC in the GW framework: in Eq. 1 the Vxc is
evaluated at the valence density rather than at the total
density (including the model core density), which is used
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TABLE I. Energy gaps of the Γ, L and ∼0.85X (minimum along Γ−X k-path) valleys, and the gap at the X point, relative to
the VBM at Γ, calculated from DFT+GW. Values in brackets denote the magnitude of the GW correction relative to the DFT
gap. For results from the literature, the GW correction is included only where available. Underlined values indicate L gaps
which correspond to the minimum gap. Units of energy gaps and corrections are in eV. Columns 2–4 signify the PP generation
method, XC functional, and the pseudovalence electronic configuration (PP 1–9 correspond to Ge4+, and PP 10 to Ge22+).
Column 5 denotes whether a nonlinear core correction (NLCC) is present. PPs used for calculations performed in this work are
labelled 1 to 10. PPs 1–4 were obtained from the QE distribution,44,49 PPs 5–7 from THEOS,50 PPs 8 and 9 were generated
using the ONCVPSP code,51 and PP 10 was generated using the APE code.52

PP label Method Vxc config. NLCC alat (Å) Γ L Xmin X
1 TM LDA 4s24p24d04f0 no 5.57 0.87 (0.59) 0.76 (0.53) 0.96 (0.51) 1.15 (0.51)

5.66a 0.37 (0.51) 0.56 (0.48) 0.98 (0.47) 1.17 (0.47)
2 GTH LDA 4s24p24d0 no 5.57 1.01 (0.64) 0.84 (0.56) 1.00 (0.53) 1.19 (0.53)

5.66a 0.50 (0.56) 0.63 (0.50) 1.01 (0.58) 1.24 (0.52)
3 BHS LDA 4s24p2 no 5.62 1.30 (0.55) 0.98 (0.52) 1.05 (0.52) 1.24 (0.53)

5.66a 0.99 (0.51) 0.86 (0.49) 1.05 (0.49) 1.24 (0.50)
4 TM GGA 4s24p24d04f0 no 5.77 -0.12 (0.41) 0.27 (0.31) 0.86 (0.23) 1.00 (0.16)

5.66a 0.49 (0.50) 0.52 (0.39) 0.82 (0.30) 1.00 (0.30)
5 GTH GGA 4s24p24d0 no 5.75 0.19 (0.56) 0.46 (0.42) 0.90 (0.30) 1.09 (0.39)

5.66a 0.70 (0.62) 0.64 (0.45) 0.86 (0.33) 1.05 (0.26)
6 TM LDA 4s24p2 yes 5.70 0.41 (0.49) 0.54 (0.44) 0.91 (0.41) 1.09 (0.42)

5.66a 0.69 (0.54) 0.65 (0.48) 0.90 (0.45) 1.09 (0.45)
7 TM GGA 4s24p2 yes 5.86 -0.22 (0.41) 0.27 (0.28) 0.92 (0.20) 1.03 (0.16)

5.66a 0.93 (0.57) 0.72 (0.42) 0.85 (0.31) 1.03 (0.30)
8 ONCV LDA 4s24p2 yes 5.63 0.56 (0.54) 0.61 (0.49) 0.91 (0.47) 1.10 (0.48)

5.66a 0.37 (0.51) 0.53 (0.47) 0.92 (0.45) 1.11 (0.46)
9 ONCV GGA 4s24p2 yes 5.76 0.11 (0.53) 0.43 (0.40) 0.91 (0.30) 1.10 (0.30)

5.66a 0.67 (0.60) 0.63 (0.44) 0.81 (0.32) 1.06 (0.32)
10 TM LDA 3s23p63d104s24p2 no 5.66 0.54 (0.80) 0.51 (0.53) 0.73 (0.34) 0.94 (0.30)

11c HSCd LDA 4s24p2 yes 5.66a 0.53 (0.62) 0.70 (0.69) 1.28 (0.78)
12c CPPb HF 4s24p2 N/A 5.66a 0.85 0.73 1.09
13e BHS LDA 3s23p63d104s24p2 no 5.66a 0.81 0.71
14f Kerkerg LDA 3s23p63d104s24p2 no 5.66a 0.85 (1.11) 0.65 (0.69) 0.98 (0.42)

AEh LDA 5.66a 0.89 (0.97) 0.57
AEi LDA 1.11 (1.31) 0.51 (0.16) 0.49 (-0.17)

Experiment2 5.66 0.90 0.74 1.16

a Lattice constant alat fixed to experimental value,2 alat is relaxed in all other cases. For PP 10, the relaxed alat equals the
experimental value.

b Correction due to core-valence interaction is provided by the core-polarization-potential,55 derived from the interaction of valence
electrons with induced core dipoles. This approach accounts for the core-valence correlation via a dynamical screening term which is
used to construct the GW correction, core-valence exchange is treated within Hartree-Fock theory.55

c Shirley et al.55,56
d Norm-conserving Hamann-Schlüter-Chiang PP.47
e Rohlfing et al.39
f Tiago et al.54
g The Kerker PP generation method57 was used here.54
h Full potential, all electron (AE) calculations of Kotani and Schlifgaarde.58 Corrections due to spin-orbit interactions are not included

for comparison.
i Full potential, all electron (AE) calculations of Ku and Eguiluz with a non-selfconsistent GW correction.59 alat not specified in Ref. 59.

to determine the DFT eigenenergies and eigenfunction.
This introduces an error that may explain the poor per-
formance of the PP with NLCC. Preliminary results60 in
which the NLCC to the Vxc were taken into account in
Eq. 1 show that indeed the corrections are larger than
that presented in Table I, and in particular too large.
Furthermore, the order and relative energy of the satel-
lites valleys is completely wrong. This seems to suggest
that the core contributions need to be accounted for both

in the self-energy Σ and XC potential Vxc, as there is a
partial cancellation of errors (see discussion below for the
PP with semicore electrons). Hence, the apparent trend
in results shown here are not necessarily indicative of a
weakness in the NLCC which leads to a smaller GW cor-
rection to the gap.
d. Semicore electrons: The effect of core-valence

partitioning and the role of semicore electrons have
been previously studied for a range of compound
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TABLE II. Variations of energy gaps of the Γ, L and X (min-
imum along the Γ−X k-path) valleys relative to the VBM at
Γ, calculated from DFT+GW when calculated at the relaxed
lattice constant a0lat rather than at the experimental lattice
constant aexplat . The first column reports the PP (numbering
as in Table I), the second reports ∆alat = aexplat −a

0
lat; columns

3–5 report the variations with the lattice constant of the en-
ergy gaps at Γ, L and Xmin (minimum along the Γ−X k-path)
relative to the VBM with in parenthesis the variation of the
GW correction.

PP ∆alat Γ L Xmin

LDA+GW

1 −0.09 0.50(0.08) 0.20(0.05) −0.02(0.04)
2 −0.09 0.51(0.08) 0.21(0.06) −0.01(0.05)
3 −0.04 0.31(0.04) 0.12(0.03) 0.00(0.03)
6 +0.04 −0.28(−0.05) −0.11(−0.04) 0.01(−0.04)
8 −0.03 0.19(0.03) 0.08(0.02) −0.01(0.02)

PBE+GW

4 0.11 −0.61(−0.09) −0.25(−0.08) 0.04(−0.07)
5 0.09 −0.51(−0.06) −0.18(−0.03) 0.04(−0.03)
7 0.20 −1.15(−0.16) −0.45(−0.14) 0.07(−0.11)
9 0.10 −0.56(−0.07) −0.20(−0.04) 0.10(−0.02)

semiconductors,61,62 and for Ge.39,54 When including ex-
plicitly the semicore electrons, we obtain the correct or-
der for Γ, L, and X valleys (PP 10) once the GW cor-
rection is applied—in qualitative agreement with previ-
ous calculations39,54,58—although in all cases involving
Ge22+, satellite valleys are underestimated compared to
experiment. It is also noted that at the LDA level, the
energy gaps are in agreement with all electron results. In
particular, Ge is predicted to be a semimetal, e.g. it has
a negative energy gap at Γ of −0.26 eV, which agrees ex-
actly with the full potential calculations of Shirley et al.56

Also, for the direct Γ gap, reasonable agreement with the
all electron calculations of Ku and Eguiluz (who reported
−0.20 eV) is obtained at the LDA level.59 Then, though
the corrected band gap at Γ is smaller than in the exper-
iment, the GW correction is the significantly larger than
those obtained without semicores.

2. Effect of the lattice constant

In Table II we analyze the impact of calculating the
GW gaps at either the experimental lattice constant aexplat
or at the relaxed geometry a0lat. Since a0lat is influenced
by the choice of the XC functional we group the results
depending on the level of approximation: the LDA tends
to underestimate the lattice constant (with the excep-
tion of PP 6), whereas the GGA tends to overestimate
it. Then, at the experimental lattice constant, the band
gaps are effectively calculated under tensile strain for
the LDA (except PP 6) and under compressive strain
for the GGA (and the PP 6). As a consequence of the
band gap pressure dependence, for the LDA (again ex-

cluding the PP 6), the band gaps Γ − Γ and Γ−L are
consistently smaller at aexplat than at a0lat and, with the
exception of PP 3, the fundamental gap is direct at Γ.
Conversely, for the GGA (and the PP 6), the band gaps
Γ−Γ and Γ−L are consistently larger at aexplat than at a0lat
and, with the exception of PP 4, the fundamental gap is
indirect (Γ−L). The largest contribution to these differ-
ences comes clearly from the difference in the DFT band
gaps: the contribution from the GW correction is about
6–8 times smaller for Γ− Γ and about 3–4 times smaller
for Γ−L. The overall effect of the GW correction is then
to increase—in relative terms—the pressure dependence
coefficient of the Γ − Γ gap with respect to the Γ−L
gap. The band gap Γ−Xmin has an opposite and much
weaker dependence of the pressure than Γ−Γ and Γ−L.
The effect of the GW correction in this case is relatively
large and has opposite sign with respect to the overall
difference, meaning that the GW correction weakens the
pressure dependence with respect to the DFT results for
the Γ−Xmin band gap.

The PP method affects a0lat as well. Specifically, for the

LDA, the difference a0lat − a
exp
lat ranges between −0.09 Å

and +0.04 Å whereas for the GGA ranges between 0.09 Å
and 0.20 Å. Regarding the calculated pressure depen-
dence, PP 1, PP 2, PP 4, PP 5, PP 7, and PP 9 give
values between 15.28 meV/kbar and 17.33 meV/kbar for
Γ − Γ, and between 5.72 meV/kbar and 6.78 meV/kbar
for Γ−L, in reasonable agreement with the experimental
values (see Table III), although slightly overestimated.
On the other hand, the agreement with experiment is
worse for PP 3, PP 6 and PP 8, which largely overesti-
mate the experimental values.

To summarise, due to the strong pressure dependence
of the electronic structure, the results change drastically
when considering either aexplat or a0lat. In particular, results
for the band gap at Γ can vary as much as by 1.15 eV
(PP 7) and consequently the system can change from a
semimetal to an indirect band gap semiconductor. Here
we use the values at aexplat only to facilitate the comparison
of the results, while results at a0lat are used as reference
for the calculations under tensile strain.

TABLE III. Hydrostatic pressure coefficients of quasiparticle
conduction band valleys in Ge, obtained from DFT+GW cal-
culations on PP 1 and PP 2. Values in parenthesis correspond
to uncorrected DFT energies. The pressure per unit cell (in
kbar) is extracted for each value of strain and the quasiparti-
cle levels are fitted to a line. Units are in meV/kbar.

Γc Lc

PP 1 16.00 (15.61) 6.25 (5.99)

PP 2 16.09 (15.87) 6.57 (6.05)

Exp 15.3±0.563 5.0064
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3. Analysis of the results at aexplat

In order to elucidate the impact of the PP generation
method and how this compares to variations due to differ-
ing XC functionals, comparisons at fixed alat can be made
between different PP methods which utilize the same Vxc,
and between different forms of Vxc for a given PP method.
This is shown in Table IV. Here, comparisons are made
by fixing one choice of approximation (where possible)
and observing the resulting change in the high symme-
try quasiparticle gaps as the other approximations are
altered. In our classification, we neglect the difference in
the LDA correlation of PW-LDA and PZ-LDA.29 Hence
PPs generated using PZ-LDA and PW-LDA are catego-
rized under the same functional in Table I, II and IV.

a. XC functional: Variations of the gaps due to the
choice of XC functional typically fall within the range of
0.2−0.3 eV (Γ) and 0.05−0.1 eV (L and X). As discussed
in Sec. III A 2, at the experimental lattice constant the
LDA is under tensile strain, while the GGA under com-
pressive strain and as a consequence the energy gaps at Γ
and L relative to the VBM are significantly larger within
the GGA (this trend is reversed when the energy gaps at
the relaxed geometry are considered).

b. NLCC and semicore electrons: Due to the inclu-
sion of the NLCC (which as discussed in Sec. III A 1 are
not considered in the GW corrections), the energy gap
at Γ varies between 0.3 − 0.5 eV while it stays within
0.2 eV for L and X. To note that, since the lattice con-
stant a0lat predicted with the inclusion of NLCC is larger
than without, at aexplat the PP with NLCC are in a better
agreement with the experiment than without NLCC, in
contrast to what observed at a0lat. Surprisingly, the ex-
plicit inclusion of semicore electrons (PP 10) agrees mod-
erately well with the 4 electron TM LDA pseudopotential
(PP 1), when alat is fixed to the experimental value for
PP 1. However, one should note that this is the result of
comparing different LDA band gaps with very different
GW corrections (see Table I).
c. PP method: The largest variations are observed

for the Γ point gap (up to 0.63 eV), while the X valley
varies the least—typically remaining within 0.1 eV. This
was expected since the conduction band at the Γ point
has s character, with the s being atom-centered, meaning
that it is the most sensitive to the core-valence treatment
as argued in Ref. 65. Contrasting the BHS generated PP
(PP 3, 4s24p2) with TM (PP 1, 4s24p24d04f0) or GTH
(PP 2, 4s24p24d0) results in large variations for Γ and
L, the sum of which exceeds that of the other compar-
isons. The GTH and TM Ge4+ PPs (PP 1 and PP 2)
are in better agreement with each other, compared to
the difference of PP 1 or PP 2 with PP 3, and this rela-
tively better agreement holds to within ∼10 meV when
the lattice constant is allowed to relax. This indicates
the changes associated with BHS vs. GTH and BHS vs.
TM are due to an accumulation of the effects of chang-
ing PP generation method and changing PP configura-
tion (i.e. the inclusion of unoccupied 4d and 4f states);

TABLE IV. Absolute variations of energy gaps of the Γ, L
and X (minimum along the Γ−X k-path) valleys relative to
the VBM at Γ, calculated from DFT+GW . Comparisons are
made for different PP generation methods at the same Vxc,
different Vxc used to generate the PP for the same generation
method, similar PP methods with and without NLCC, and
similar PP methods with and without semicore electrons. To
facilitate comparisons between the various methods, all re-
sults are taken from calculations in which alat is fixed to the
experimental value. All units are in eV.

|∆Γ| |∆L| |∆Xmin| Total
fixed Vxc

LDA
TM vs. GTH 0.13 0.07 0.03 0.23
GTH vs. BHS 0.49 0.23 0.04 0.76
BHS vs. TM 0.62 0.30 0.07 0.99

GGA
TM vs. GTH 0.23 0.12 0.05 0.39

LDAa

TM vs. ONCV 0.32 0.12 0.02 0.46

GGAa

TM vs. ONCV 0.27 0.09 0.02 0.38

fixed PP method
GTH

LDA vs. GGA 0.20 0.01 0.15 0.36

TM
LDA vs. GGA 0.12 0.04 0.16 0.32

TMa

LDA vs. GGA 0.24 0.07 0.05 0.37

ONCVa

LDA vs. GGA 0.30 0.10 0.10 0.49

effect of NLCC
TM, LDA

w/ vs. w/out 0.32 0.09 0.08 0.49

TM, PBE
w/ vs. w/out 0.45 0.20 0.03 0.68

effect of semicore
TM, LDA

Ge4+ vs. Ge22+ 0.18 0.05 0.25 0.47

a NLCC included in both PPs for this comparison.

different PPs that include unoccupied states but differ
in the generation method exhibit better agreement than
PPs that differ in the generation method and the inclu-
sion of unoccupied states (PP 3 having only occupied
states), resulting in better agreement between PP 1 and
PP 2.
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4. Choice of PP method for calculations with biaxial strain

It is noted that the equilibrium lattice constant of
PP 10 coincides with the experimental value, and PP 10
also exhibits the correct ordering of the satellite energies,
with an indirect Γ−L gap, at zero pressure. This high-
lights the importance of the 3s23p63d10 semicore shell for
structural properties, and the correct order of L, Γ and X
indicates that PP 10 would be a suitable choice to study
the biaxial strain dependence of the quasiparticle gaps.
However, an unreasonably large computational cost is re-
quired to obtain accurate, converged GW corrections for
PP 10; the presence of semicore orbitals translates to
the requirement of a much higher number of unoccupied
states for numerical convergence. Also, the reduced sym-
metry of anisotropically strained unit cells results in the
requirement of a larger number of k-points to sample the
BZ, relative to unstrained (or isotropically strained) cells.
Therefore, using PP 10 to study biaxial strain requires a
very high computational cost.

Thus, in order to balance physically reasonable accu-
racy with reasonable computational expense, we select
PP 1 and PP 2 to study the variation of the high symme-
try quasiparticle gaps as a function of tensile hydrostatic
and (100) biaxial strain. It is noted that PP 2 exhibits
a valley near the X point that is slightly lower with re-
spect to the VBM compared to the Γ valley, which is
unrealistic for Ge at zero pressure. Nevertheless, PP 2
is used to provide a comparison with PP 1 as they both
exhibit an indirect minimum gap at L at zero pressure.
As is shown below, these PPs yield significant differences

in the theoretical values of εbiaxdir and εhydrodir . Despite the
small differences in the pressure dependencies of PP 1 and
PP 2, the results below indicate that the discrepancies in

εbiaxdir and εhydrodir between the PPs are mostly accounted
for by the differences in the zero pressure satellite valley
energies obtained from each PP.

B. Tensile strained quasiparticle gaps

TABLE V. Matrix elements of the various terms in the self-
energy corrections applied to KS conduction states at Γ and
L. The exchange term (Σx − Vxc), where Σx is HF exchange)
is enhanced relative to the dynamic screening term (Σc) for
PP 2. All units are in eV.

εKS
nk Σx − Vxc Σc Σ –Vxc EQP

nk

PP 1
Γv 0.00 −0.61 0.05 −0.56 −0.56
Γc 0.29 2.67 −2.65 0.02 0.31
Lc 0.23 2.65 −2.68 -0.03 0.20

PP 2
Γv 0.00 −0.61 0.05 -0.56 -0.56
Γc 0.38 2.76 −2.69 0.07 0.45
Lc 0.28 2.69 −2.69 0.00 0.28

FIG. 1.(a) and FIG. 1.(b) show the movement of the
high symmetry valleys as a function of hydrostatic and bi-
axial strain obtained from DFT+GW calculations. Com-
paring both cases, 0.5-0.6% hydrostatic strain for PP 1
(LDA Vxc, TM generation method) and 0.8-0.9% PP 2
(LDA Vxc, GTH generation method) result in a direct

band gap transition, with εhydrodir of PP 2 being in good
agreement with standard deformation potential theory.66

In FIG. 1.(a) it can be seen that for the TM generated
PP, biaxial strains greater than 1.5% result in a direct
minimum band gap at the Γ point. The lowering of the Γ
valley below the L valley is expected due to the larger hy-
drostatic deformation potential at Γ compared to L.66,67

This value of εbiaxdir is in agreement with previous studies
which used a similar PP26 and here we show the range of
GW corrected Γ, L, and X quasiparticle band gaps over
a 3% range of (100) biaxial strain. Comparing this with
FIG. 1.(b), similar qualitative behaviour can be observed
for results derived from the GTH generated PP, while the
value of εbiaxdir is again increased by about 0.4%.

FIG. 1.(a) and FIG. 1.(b) show that there is reasonable
agreement between both PPs for the strain dependencies
of the quasiparticle band gaps at Γ and L. For example,
if one rigidly shifts the Γ and L lines of PP 1 for biax-
ial strain (right panel of FIG. 1.(a)) to reflect the zero
strain Γ−L separation of PP 2 (0.17 eV) (thus keeping
the slopes of PP 1 for the Γ and L gaps with respect to
biaxial strain) then one finds a value of εbiaxdir of 1.8%, in
close agreement with the value obtained for PP 2. Sim-
ilarly, shifting the PP 2 lines to reflect the zero strain
Γ−L separation of PP 1 (0.11 eV), one obtains a εbiaxdir
of 1.4%, only slightly below the value obtained for PP 1.
Thus, the major cause of the discrepancy in the predicted
values of εdir is narrowed down to the differences in the
zero pressure satellite valley positions.

Thus an investigation into the underlying causes of the
difference in the calculated zero pressure quasiparticle
gaps between these two pseudopotentials is undertaken,
in order to explain the disagreement in the predicted
εbiaxdir . We first note that the majority of the difference
in the Γc−Lc separation between the PPs is accounted
for by the KS eigenvalues εKS

nk . FIG. 2.(a) and FIG. 2.(b)
show the atomic orbital projected bandstructures, calcu-
lated for both PPs near the relevant band edges under
0% strain, in which the orbital projected density of states
gives a normalized weight for each band. In both cases,
the conduction valley at the Γ point is strongly s-like
while the valence band maximum is strongly p-like. In
general, both PPs show heavy contributions from 4s and
4p states in the vicinity of the band edges. However, PP 2
exhibits a much larger contribution from the 4d orbital
compared to PP 1 in this region of the bandstructure,
particularly at the L valley. PP 2 also yields a larger
separation in energy between the L and Γ valleys. As is
explained below, these findings are related.

It is important to note that the self-energy contribu-
tion to quasiparticle energies can be decomposed into an
exchange term Σx and a correlation term Σc.

45 Relative
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(a)

(b)

FIG. 1. (Top row) (a) shows quasiparticle gaps at Γ, L and ∼0.85(Γ−X) high symmetry satellite valleys calculated from
DFT+GW for hydrostatic (left) and biaxial (right) tensile strain in bulk Ge, using PP 1 (Ge4+, TM, LDA, no NLCC).
(Bottom row) (b) shows quasiparticle gaps at Γ, L and ∼0.85(Γ−X) high symmetry satellite valleys calculated from DFT+GW
for hydrostatic and biaxial tensile strain in bulk Ge, using PP 2 (Ge4+, GTH, LDA, no NLCC).

to the DFT gap, the effect of Σx (i.e. the Hartree-Fock
term or HF self-energy) is to increase the band gap to val-
ues above the experimental gap, while Σc decreases the
gap relative to the HF gap, leading to good agreement
with experimental band gaps for many semiconductors
and insulators.65 The relative contribution of Σx com-
pared to Σc is thus a major factor in determining the
magnitude of the resulting quasiparticle band gaps. To
investigate this, we show the self-energy correction ma-
trix elements for exchange and correlation at the valence
and conduction band edges at L and Γ obtained for both
PPs in Table V. It is observed that the PP 2 (with a
greater 4d -like character near the band edges—compare
right panels of FIG. 2.(a) and FIG. 2.(b)) exhibits more
positive self-energy corrections to the conduction band
states, especially at the Γ point. This increases the sep-
aration between Γc and Lc by a larger amount for PP 2

compared to the Γc−Lc separation for PP 1. Also, for
PP 2 the exchange contribution at Lc is large enough to
cancel the contribution from dynamic correlation, which
nullifies the net GW correction at Lc; the latter is nega-
tive for PP 1, so this also contributes to the result that
the Γc−Lc separation is larger for PP 2. Bands involving
the hybridization of atomic orbitals exhibit increased ex-
change terms if there is increased spatial overlap of the
orbitals.68–70 On the other hand, coincidence in energy
would increase the magnitude of dynamic correlation.

Also note that covalent bonding in Ge occurs through
s-p hybridization, with the occupied 4p orbital situated
along the Ge-Ge bond (consistent with the valence band
being strongly p-like),71 and the 4s orbital centered on
atomic sites. 4d orbitals, which are not strongly involved
in bonding could also be localized, at least partially, near
atomic sites. A larger 4d contribution at the relevant
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(a)

(b)

FIG. 2. (Top row) (a) Orbital projected DFT bandstructure of unstrained Ge along the L−Γ k-path for the s, p, and d states,
plotted near the band edges, using PP 1 (TM, 4s24p24d04f0). The f orbital has 0 weight in this region and is not shown.
(Bottom row) (b) Orbital projected bandstructure of unstrained Ge along the L−Γ k-path for the s, p, and d states, plotted
near the band edges, using PP 2 (GTH, 4s24p24d0). The band edges for PP 2 show a higher proportion of d states compared
to PP 1, while the s and p weight is approximately similar for PP 1 and PP 2 in this region of the bandstructure.

band edges for PP 2 could lead to larger exchange inter-
actions relative to PP 1, if the 4d and other orbitals asso-
ciated with these bands share similar localization proper-
ties. As a preliminary test of the locality of the 4d states,
we plotted the pseudowavefunctions of the 4th shell for
the isolated pseudoatoms, and indeed find significant lo-
calization of the 4d orbitals near the atomic centre (not
shown for brevity). This prompts a further investiga-
tion of the locality of the 4th shell orbitals in the bulk
material.

To investigate the origin of the enhanced exchange
energy, the 3-dimensional isosurfaces for densities
(|ψnk(r)|2) corresponding to the relevant band edges are
plotted near a Ge atom and shown for both PPs in FIG.
3.(a) and FIG. 3.(b). Clearly, the wavefunction of the
L valley overlaps significantly in space with that of the
Γ valley, for both PPs. Thus, for PP 2, the 4d orbital
contributing to the L valley overlaps significantly with
atom-centered 4s orbitals of the CB edge at Γ.

Interestingly, the exchange and correlation terms of the
GW correction resulting from both PPs are very similar
at the valence band edge Γv. This emphasises that it is
the character of the conduction band states that is re-
sponsible for the discrepancy in the satellite valleys and
ultimately the discrepancy in εdir as these PPs exhibit
similar band gap pressure dependencies. Our analysis
shows that there are enhanced positive exchange contri-
butions at Γc and Lc for PP 2 compared to PP 1, as a
result of the enhanced overlap between atomically local-
ized states contributing to the band edges. This pushes

the Γc valley of PP 2 up higher in energy compared to
PP 1, and this results in the quasiparticle Γc−Lc sepa-
ration being 60 meV greater for PP 2 compared to PP 1
at zero pressure.

The relative contributions of atomic states at band
edges also plays an important role in determining the
allowed optical transitions,72 and thus has a major im-
pact on the photoluminescence and absorption proper-
ties. The selection rules for optical transitions are deter-
mined by the change in orbital angular momentum be-
tween states involved in a transition, and thus on the
symmetry properties of the corresponding bands. As
(001) biaxially strained Ge is currently under investiga-
tion as an optically active material due to the onset of a
direct minimum band gap,6,8 it is important to investi-
gate how the mixing of atomic-like orbitals at band edges
is affected by biaxial strain. Under 0% strain, the direct
Γc − Γv transition involves a s-p change in orbital angu-
lar momentum l, which thus indicates an allowed optical
transition for the direct Γc-Γv gap72 as the associated
transition matrix element does not couple states with the
same symmetry and thus can be nonzero. Strong photo-
luminescence has been measured in biaxially strained Ge
at low temperature,9 suggesting that the ∆l involved in
the Γ point transition remains close to 1. To investigate
this possibility, the orbital projected bandstructures for
a range of strains are plotted along the L-Γ path. PP 1 is
selected for this investigation as the enhanced proportion
of 4d states at the top of the valence band for PP 2 is not
realistic. The orbital projected bandstructures near the
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(a)

(b)

FIG. 3. Isosurfaces of a |ψnk(r)|2 for the band edges at Γ and L. Row (a) was obtained using PP 1, while row (b) was obtained
using PP 2. The localization of the L-valley wavefunction to the atomic site shows that, for PP 2, the 4d orbitals at the L
valley have significant overlap with the 4s states at the Γ valley.

conduction and valence band edges are shown in FIG.
4.(a) and FIG. 4.(b), respectively.

It can be seen from FIG. 3 that, as a function of ten-
sile strain, the relative proportions of 4p states at Γv and
4s states at Γc do not significantly change. With large
strain, as the band edges approach each other, a small
transfer of 4s and 4p weight across the vertical Γ transi-
tion is observed, with the light hole (LH) taking up the
change in orbital weight at the VBM. This may be a con-
sequence of the bands edges (incorrectly) approaching de-
generacy within DFT due to band gap underestimation.
However, it is emphasised that even for highly strained
Ge, Γv and Γc remain strongly p-like and strongly s-like,
respectively, indicating a lack of suppression of optical
transitions due to strain-induced orbital mixing.

IV. CONCLUSIONS

We presented the results of the DFT+GW approach
applied to the calculation of the Γ, L, and X high sym-
metry gaps of the Ge bandstructure, using a range of

different approximations. This work complements previ-
ous works in this area6,24–27 with a systematic study of
the influence of the choice of pseudization method, XC
functional, and the level of approximation of the core-
valence interaction on the Ge quasiparticle satellite val-
leys. Our investigations helped quantify the importance
of these approximations on the indirect-direct band gap
transition as a function of tensile strain.

Comparing the pressure coefficients extracted from
DFT and GW corrected values, and in turn comparing
these to previous theoretical and experimental studies
shows the consistency of these methods in describing the
linearity of the strain induced variation of the satellite
valleys, despite the disagreement in the satellite valley

separations. The predicted values of εbiaxdir and εhydrodir
thus disagree accordingly, such that the prediction of
these transition strains primarily relies on an accurate
assessment of the separation between the quasiparticle
conduction band valleys at zero pressure.

This work shows that while inclusion of unoccupied or-
bitals in the pseudized electronic configuration has ben-
eficial aspects, special attention should be paid to the
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(a)

(b)

FIG. 4. (Top row) (a) shows the orbital projected DFT bandstructures of strained Ge along the Γ−L k-path for the s and p,
plotted near the band edges, with the bands of increasing values of strain superimposed. PP 1 (TM, 4s24p24d04f0) is used
here. The f -orbital has 0 weight in this region and is not shown. For PP 1, the d orbital also has very low weight (see FIG.
2.(a) in this region, which does not change with strain, hence the d orbital is also omitted in this analysis. Four values of
biaxial strain are shown for the conduction bands in the top row, and for the valence bands in the bottom row. Different scales
for the k axis are used for the top and bottom rows; the valence bands are shown close to the BZ center for clarity. The 0
of the energy scales are set to the VBM of unstrained Ge. Note the transition to a direct minimum gap has already accrued
for 1.2% biaxial strain, which is a consequence of using an uncorrected DFT bandstructure. Correcting the eigenvalues with
the GW approximation increases the transition strain to 1.5%. As the light hole (LH) pushes up above the heavy hole (HH)
with tensile strain, the weight of s and p orbitals along the LH band changes slightly with large strain. However, the relative
weights of p orbitals at the VBM (light hole (LH) for tensile strained Ge) and s orbitals at the CBM remain quite similar for
each value of biaxial strain.

resulting orbital hybridization in the conduction band.
In particular, while the zero pressure quasiparticle satel-
lite valleys, obtained from self-energy corrections to KS
states, are correctly ordered in energy which (due to
the reasonable pressure dependencies) leads to reason-
able predictions of the strain induced direct to indirect
band gap transition for both Ge4+ PPs, small differences
in the arrangement of unoccupied pseudo-wavefunctions
leads to significant differences in the prediction of εdir as
obtained by the DFT+GW approach. Finally, by provid-
ing a breakdown of the contributions of atomic orbitals
to the relevant band edges, we show that even for highly
strained Ge, the vertical optical transition at Γ should
not be suppressed by strain-induced orbital mixing.
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