Complete nucleotide sequence of φCHU: A Luz24likevirus infecting Pseudomonas aeruginosa and displaying a unique host range

Published in:
FEMS Microbiology Letters

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© FEMS 2015.
This is a pre-copyedited, author-produced PDF of an article accepted for publication in FEMS Microbiology Letters following peer review. The version of record “Complete nucleotide sequence of phiCHU: A Luz24likevirus infecting Pseudomonas aeruginosa and displaying a unique host range, Damian J. Magill, Olga V. Shaburova, Elena N. Chesnokova, Elena A. Pleteneva, Victor N. Krylov, Leonid A. Kulakov is available online at: http://dx.doi.org/10.1093/femsle/fnv045

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Complete nucleotide sequence of phiCHU: A Luz24likevirus infecting Pseudomonas aeruginosa and displaying a unique host range

Damian J Magill¹, Olga V Shaburova², Elena N Chesnokova², Elena A Pleteneva², Victor N Krylov², Leonid A Kulakov¹

¹Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland

²Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia

Keywords: bacteriophage; antibiotic resistance; phage therapy

Correspondence: Leonid A Kulakov, Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, Tel: +44 (0)28 9097 2799, Fax: +44 (0)28 9097 5877, Email: l.kulakov@qub.ac.uk
Abstract

A complete nucleotide sequence of the new *Pseudomonas aeruginosa Luz24-like virus* phiCHU was obtained. This virus was shown to have a unique host range whereby it grew poorly on the standard laboratory strain PAO1, but infected 26 of 46 clinical isolates screened, and strains harboring IncP2 plasmid pMG53. It was demonstrated that phiCHU has single strand interruptions in its genome. Analysis of the phiCHU genome also suggested that recombination event(s) participated in the evolution of the leftmost portion of the genome, presumably encoding early genes.
Pseudomonas aeruginosa strains are opportunistic pathogens and a significant source of morbidity and mortality (e.g. in cystic fibrosis patients). In the wake of growing antibiotic resistance, a resurgence of interest in bacteriophage therapy has taken place to relieve the growing burden observed in healthcare systems (Burns *et al.* 2012; Weinstein *et al.* 2001).

P. aeruginosa bacteriophages (phages) are an extremely heterogeneous assemblage and in this work a novel phage of the Luz24likevirus genus, phiCHU, was characterized. PhiCHU was isolated from a small pond in the Moscow locality and shown to
have a unique host range; it grew poorly on the standard \textit{P. aeruginosa} laboratory strain PAO1, but infected efficiently a number of clinical isolates resistant to other phages and lysed mucoid strains isolated from wound infections revealing itself to be a potential therapeutic agent. How it can circumvent mucoidy is currently unknown. Table S1. shows a comparative analysis of phiCHU’s host range against known lytic phages phiKZ, EL, Lin68, PB1, 14/1, phiKF77, and phiKMV (Mesyanzhinov et al. 2002, Hertveldt et al. 2005, Krylov et al. 2007, Ceyssens et al. 2009, Kulakov et al. 1986, 1991, Lavigne et al. 2003). Of the 46 isolates tested phiCHU grew well on 26, but exhibited turbid growth and varying plaque morphologies on a number of other strains. Our inability to isolate lysogens from any strains led us to conclude that phiCHU behaves like a virulent phage, at least in these instances. The \textit{Luz24likevirus} genus has previously been reported as containing lytic phages apart from PaP3 (Tan et al. 2007). PhiCHU’s virulence and broad host range means that it is most likely suitable for use within therapeutic preparations. Importantly, phiCHU demonstrated good growth on PAO38; a \textit{P. aeruginosa} strain containing the IncP2 plasmid pMG53. Figure S1. demonstrates the growth of phiCHU along with 8 other phages on \textit{P. aeruginosa} strains. IncP2 plasmids confer a broad spectrum of traits to pseudomonads including, but not limited to, multiple forms of antibiotic resistance and metabolism of unusual carbon sources (Jacoby et al. 1983). IncP2 being the most abundant plasmids found in nosocomial strains of \textit{P. aeruginosa} (Hanson & Olsen, 1978) were also shown to confer resistance to many phages of \textit{P. aeruginosa} through interference in their intracellular development. This growth inhibition of different phages has been reported to be under the control of different loci within this plasmid
group (Freizon et al. 1989). We subsequently investigated whether pMG53 promotes efficient phiCHU growth, by conjugatively
transferring this plasmid to PAO1. Upon carrying this out, PAO1 acquired sensitivity to phiCHU.

The need for phage genomics is paramount from a clinical perspective. Many phages can transfer bacterial genes by transduction, which poses a significant problem with respect to the potential dissemination of pathogenicity and resistance factors. Apt examples here would be the *P. aeruginosa* phages E79 and phiKZ (Morgan 1979, Dzhusupova 1982). Genomic analysis can help to elucidate whether these processes are likely to take place and therefore, whether a given phage is suitable for clinical use. Bacteriophage phiCHU particles were purified using isopycnic CsCl density gradient centrifugation and genomic DNA was extracted as described by Sambrook and Russell (2001). The phage was sequenced by the dideoxy method and both shotgun and primer walking on the whole genomic DNA was employed.

The genomic map of phiCHU is presented in Fig 1. phiCHU was shown to have a linear dsDNA genome of 45,626 bp with a GC content of 52.02%. 73 ORFs were predicted and annotated in Artemis (Rutherford et al. 2000) and functionality was assigned to 22 of these. Five ORFs encode proteins associated with genome replication, recombination and repair, 9 encode various structural proteins, 3 encode portal and terminase subunits, 2 encode the lysis machinery and the other 2 encode a putative gamma-glutamyl cyclotransferase and L-Glutamine-D-Fructose-6-Phosphate amidotransferase. All predicted genes lie in two bidirectionally transcribed units separated by a double intrinsic terminator; a structure indicative of the *Luz24likevirus* genus. Three tRNA genes
(tRNAAsn, tRNAAsp, and tRNAPro) were predicted which are clustered at the extreme right of the genome. The genome is delineated by 185 bp direct terminal repeats. This genomic organization and a high nucleotide homology of 94.79\% to the Luz24likevirus vB\textsubscript{PaeP_C1-C14_Or} (Its closest relative) (Accession: HE983844) demonstrates that phiCHU unequivocally belongs to the Luz24likevirus genus of the family Podoviridae.

Alignments of phiCHU and closely related Luz24likeviruses infecting \textit{P. aeruginosa} with the Progressive Mauve algorithm (Darling \textit{et al.} 2010) highlighted the presence of a gap of approximately 1.5 kb encompassing gp1 – gp4 (Fig. S2). This region shows a greater homology (94\%) to different phages of the group (Luz24 and TL) (Ceyssens \textit{et al.} 2008, Accession: NC_023583), which also exclusively infect \textit{P. aeruginosa}. This finding suggests that the phiCHU genome may have evolved as a result of recombination between ancestors of vB\textsubscript{PaeP_C1-C14_Or} and Luz24.

Knowledge of the nature of receptors utilized in phage adsorption is important for therapeutic applications. Investigations into tail fibre proteins can yield useful information with respect to variations in host range. A number of authors have implicated the presence of glycine rich regions in the identification of tail fibre proteins (Lucchini \textit{et al.} 1999; Nilsson \textit{et al.} 2000; Tetart \textit{et al.} 1998). 20 of the 50 C-terminal residues of ORF 58 are glycines, thereby making this a likely candidate as one constituent of the tail fibre complex. Variations in this ORF were investigated amongst Luz24likeviruses and it was found that phiCHU differed by only a single
residue from phiMR299-2 (Alemayehu et al. 2012). At this point (residue 267) phiMR299-2 like other Luz24likeviruses, possess the isoteric residues serine or threonine (Fig S3). phiCHU however, possesses proline at this point. Molecular modelling and alignment of phiCHU and phiMR299-2 putative tail fibres (Fig S4) demonstrated the extent to which this substitution alters protein structure and therefore, this may represent one mechanism contributing to altered host specificity of phiCHU.

It was previously demonstrated that a *P. putida* phage tf, which is distantly related to Luz24likeviruses has localized single-strand interruptions (nicks) in its genome (Glukhov et al. 2012). This genomic feature was not previously demonstrated for Luz24likeviruses infecting *P. aeruginosa*. Here it was shown that denatured phiCHU DNA produces multiple bands on agarose gels, which disappeared upon ligation (Fig. S5a). The use of total genomic DNA as a template in sequencing reactions permitted the localization of nicks (Fig. 1 and Fig. S5b) and allowed the identification of the consensus associated with this feature (5’ – TACT/RTGMC – 3’). This proved to be the same consensus as previously reported in tf (Glukhov et al. 2012). 14 such sites were reported for tf and 15 for the *P. fluorescens* phage UFV-P2 (Eller et al. 2014, Glukhov et al. 2012). phiCHU possesses 7 instances of this consensus. The purpose of this enigmatic feature in phage genomes remains unknown.

In this work, a novel member of the Luz24likevirus genus of phages infecting *P. aeruginosa* was isolated and characterized. phiCHU was shown to possess localized single-strand interruptions in its genome. It was also found that this phage exhibited a
unique host range, whereby it grew well on PAO1 only in the presence of a plasmid from the IncP2 group. In addition, we found some evidence suggesting that recombination within disparate members of the genus contributed to the evolution of phiCHU.

Genbank Accession Number: KP233880

Acknowledgements

This research was funded by the School of Biological Sciences, Queens University Belfast. We are extremely grateful to Dr Anna Kulakova for technical assistance.

Supporting Information

Additional supporting information can be found in the online version of this article:

Table S1. Sensitivity of clinical strains to phages.

Fig S1. Comparison of the sensitivity of *P. aeruginosa* strains to phages.

Fig S2. Progressive Mauve alignments of phiCHU with closely related *Luz24likeviruses*.

Fig S3. Sequence alignment of *Luz24likevirus* putative tail fibre proteins.

Fig S4. Structural alignment of phiMR299-2 and phiCHU tail fibre molecular models.
Fig S5a. Visualization of localized single-strand interruptions in phiCHU DNA.

Figure S5b. Localization of single-strand interruptions through sequencing on whole genomic DNA.

References

Figure Legends

Figure 1. Genome map of the *P. aeruginosa* bacteriophage phiCHU.

Predicted ORFs are displayed as arrows indicating the direction of transcription. Functional annotations (if any) are displayed above ORFs and colour/symbol codes are presented at the bottom of the figure. Sequences associated with localized nicks are displayed at their respective positions.