Ethyne Reducing Metal-Organic Frameworks to Control Fabrications of Core/shell Nanoparticles as Catalysts

Published in:
ACS Catalysis

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 ACS. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Ethyne Reducing Metal-Organic Frameworks to Control Fabrications of Core/shell Nanoparticles as Catalys

Chenghua Zhang,*,a,b Xiaoxue Guo,b Qingchun Yuan,*,a Rongle Zhang,a,b Qiang Chang,a,b Ke Li,a,b Bo Xiao,*,d Suyao Liu,a,b Caiping Ma,a,b Xi Liu,a,b Yiqun Xu,a,b Xiaodong Wen,a,b Yong Yang,a,b Yongwang Li*,a,b

a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China.
b National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101407, People’s Republic of China
c Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, the United Kingdom.
d School of Chemistry and Chemical Engineering, Queen’s University Belfast, BT9 5AG, the United Kingdom.

ABSTRACT

An approach using cobalt metal-organic frameworks (Co-MOF) as precursors is established for the fabrication of cobalt nanoparticles in porous carbon shells (core/shell Co@C). Ethyne deposition is used for controlling the reduction of cobalt nanoclusters in the MOF and the spontaneous formation of the porous carbon shells. The metallic cobalt cores formed are up to 4 - 6 nm with the crystal phase varying between hexagonally-close-packed (hcp) and face-centre-packed (fcc). The porous carbon shells change from amorphous to graphene with the ethyne deposition temperature increasing from 400 to 600 °C. The core/shell Co@C nanoparticles exhibit high catalytic activity in selectively converting syngas (CTY: 254.1 - 312.1 μmolCO g⁻¹ Co⁻¹ s⁻¹) into hydrocarbons (4.0 - 5.2 gHC g⁻¹ cat⁻¹ h⁻¹) at 260 °C. As well as the crystal size and phase, the coordination numbers of the cobalt to oxygen and to other cobalt atoms on the surface of the cobalt nanoparticles, and the permeability of the porous carbon shell have been related to the catalytic performance in FTS reactions.

Keywords: Metal-organic-framework, catalysts, chemical vapour deposition, cobalt nanoparticles in carbon, surface chemistry, Fischer-Tropsch synthesis
Table of Content Graphic
1. Introduction

Research interests in metal-organic frameworks (MOFs) have undergone exponential growth over the past decade, which has led to many attractive applications.1-6 The MOFs contain single metal atoms or nanoclusters in the framework that are orderly separated by organic ligands in a coordinated manner. An extended network is hence built with diverse pore structures and surface functionalities that are tailorable for promoting catalysis, gas adsorption and medicine delivery. The formulation of MOF-based catalysts is especially interested here, which can be classified into two categories. The first, directly using the integral structure of MOFs to integrate structures directly, which this method has been widely reported. The catalytic site is either the metal sites, the functional groups of the organic ligands, the foreign active sites introduced in the pores by post modification or their combination. The second is to convert the well-separated metal nanoclusters in the MOFs to fabricate new structural metal or metal oxide nanoparticles in new structures as catalysts or other type of functional materials.7-15

Metal nanoparticles such as Fe,7,8 Co,9-13 and Pd,14,15 have been prepared by sacrificing different types of MOFs such as Fe-BTC,7,8 ZIF-67,12,13 MOF-515 and MOF-74,9,10 the metal nanoparticles of Fe,7,8 Co,9,10 and Pd,14,15 have been prepared. They contain are the re are one popular type of metal-active sites for heterogeneous catalysis, for example, cobalt ones (Co0) such as cobalt for in Fischer-Tropsch synthesis (FTS). The Co nanoparticles supported by carbon or silica have been prepared from Co-containing MOFs such as MOF-71,9 Co-MOF-7410 and ZIF-6712 by direct pyrolysis, and tested as the FTS catalysts they showed very competitive activity and selectivity. In these typical examples, examples as the metal nanoparticles embedded in carbon or silica have been, which are derived from a direct pyrolysis carbonization of MOFs. As the Fischer-Tropsch catalyst, the carbon- and/or silica-supported Co nanoparticles from Co-containing MOFs such as MOF-71,9 Co-MOF-7410 and ZIF-6712 have been tested as Fischer-Tropsch catalysts and showed very competitive activity and selectivity. The Co nanoparticles in fcc phase supported by amorphous carbon showed a C5+ space-time yield of 0.77 g g-cat-1h-1 at 300 °C and 3.0 MPa. By doping with Si species, the Co nanoparticles were partially transformed into hcp phase via a CoC intermediate and showed an unprecedented high C5+ space-time yield of 1.45 g g-cat-1h-1, which is higher than that from a comparison with the conventional Co catalysts.9

The all factors of Co nanoparticles such as surface chemistry, energy and active site population on the surface contribute to impact the catalyst performance in the FTS catalysis,16 among which the surface chemistry and energy are not only determined by crystal phases and facets but also by their size and their interaction with the carrier.17 Dispersing Co metallic cobalt nanoparticles to increase active sites and catalytic activity has been a long-standing challenge,18 so does fully reducing cobalt species into metallic cobalt nanoparticles for an efficient utilization of the noble metal.12 Porous inorganic materials built from silica, alumina, titania and zirconia are commonly used to carry metal nanoparticles through impregnation in their salt solutions. However, metal species can readily react with these supporting carrier materials in the catalyst.
processing (drying, calcining and reducing) to form complex compounds such as cobalt silicates and aluminates in Fischer-Tropsch catalysts which are difficult to be reduced and have little activity. This complexity restricts the study of catalytic mechanisms and is a threshold for the development of high-efficient catalysts. MOFs as precursors has shown better outcomes than its counterpart of inorganic salts. Condensing silica in the pore space of Co-containing MOF not only generate highly loaded cobalt nanocomposites (~50 wt % Co), but also cause a high cobalt oxide reducibility of cobalt oxide (up to 80%) in an order of 80-90% and with a good Co nanoparticle distribution (8-14 nm Co nanoparticles). This type of cobalt catalysts exhibits good activity (CTY 78 μmol CO·g⁻¹·s⁻¹) and high C₅+ selectivity (85%) at 210 °C and 26 bar. Theoretically, the smaller the metal nanoparticles, the larger the surface energy, and the higher the activity. The smaller metal nanoparticles also give rise to a higher dispersion for more active sites. However, the FTS catalysis is very sensitive to the Co₀ nanoparticle size. When the Co₀ nanoparticle is smaller than a critical size, the FTS site activity and the chain growth probability increase with the particle size until reaching a maximum. Above that, the catalytic activity remains the same approximately. The critical size reported is about 5 - 10 nm, depending on the catalyst preparation and reaction conditions. It has been suggested that CO dissociation occurs more easily on larger Co nanoparticles. Small cobalt nanoparticles normally possess a larger fraction of low-coordinated surface sites (i.e. corner, kink and edge), which tend to irreversibly bond CO molecules and hence block part of the cobalt active surface. This blocking hampers CO dissociation and CH₄ hydrogenation.

This paper reports our recent development in the precisely-controlled manufacture of ultra-small Co₀ nanoparticles in porous carbon shells (core/shell Co@C) from Co-containing MOFs. Such core/shell particle structures were achieved by chemical vapour deposition and decomposition of ethyne over MOFs. Ethyne deposition has been well studied for the preparation of carbon nanotubes or the carbon-encapsulated metal particles which also called metal@carbon-onions. However, the previous studies were more focused on the graphitization of ad-carbon materials. The metal nanoparticles in reported metal@carbon-onions have a broad metal particle size distribution varying from 10 to hundreds of nanometers and a low metal concentration. More controversially, particularly, the well-graphitized carbon shells are not porous to chemical reactants, low exposure ratio of metal surface area to reactants, which makes the surface of metal nanoparticles difficult to access and is not very ideal for heterogeneous FTS catalysis. This research focuses on achieving uniform stable and active metal nanoparticles with a uniform small size from MOFs, by which we expect that the cobalt nanoclusters in the Co-MOF selected are reduced by the hydrogen released from ethyne in a precisely controllable manner. The reduced cobalt nanoparticles, smaller than the critical sizes reported, are simultaneously encapsulated by the carbon rejected from ethyne decomposition to form the core/shell Co@C nanoparticles, which have a porous carbon shell and perform exceptionally well into facilitate selectively converting syngas into hydrocarbons.

2. Experimental

2.1 Chemicals and Co-MOF synthesis
A typical Co-MOF (Co(Cdhpt)(H2O)x.H2O; dhtp: 2,5-dihydroxy-terephthalate; also called CPO-27-Co or Co-MOF-74) was selected for this FTS study. Cobalt acetate (> 99 %, Sigma Aldrich, UK) and 2,5-dihydroxy-terephthalic acid (> 98 %, Hangzhou Sage Chemical Co. Ltd. and TCI (Shanghai) Development Co. Ltd) were used in the synthesis of the Co-MOF. In a typical synthesis, a solution of cobalt acetate (0.373 g, 1.5 mmol) in deionized water (10 mL) and a solution of 2,5-dihydroxyterephthalic acid (0.149 g, 0.75 mmol) in THF (10 mL) were mixed and sealed in a Teflon-lined steel autoclave of 50 mL. The autoclave was kept in an oven where the temperature was maintained at 110 °C for 72 hours. The Co-MOF formed was filtrated and repeatedly washed for characterization and catalysis applications. The solvent Tetrahydrofuran in HPLC grade was from Sigma-Aldrich, UK and Sinopharm Chemical Reagent Co., Ltd.

2.2 Chemical vapour deposition and Fischer-Tropsch catalysis tests

Chemical vapour deposition and FTS tests were performed continuously in stainless steel fixed-bed reactors. The beds have an inner diameter of 6 - 12 mm. Typically, a Co-MOF sample of 1.0 ml was packed in the isothermal region of the reactor. The remaining volume was filled with quartz granules of 80 - 100 mesh. The chemical vapour deposition of ethyne on the Co-MOF was carried out in the flow of 2.0 % C2H2 in Helium (50 ml min⁻¹) at a heating rate of 2 °C min⁻¹ to a given temperature for 1 h.

The FTS test used the syngas with a molar ratio of H2/CO = 2.0 and 3.0 MPa in pressure at a temperature specified. Before each FTS test, the mixed syngas composition was analyzed by an online GC and metered by a wet gas flow meter as tail gas. The online gas chromatograph (Model 7890B, Agilent, USA) is equipped with an HP-PONA column, a GS-GASPRO capillary column, an HP-PLOT 5A Molsieve porous layer open tubular column and an HP-PLOT-Q packed column to separate the tail gas mixture, which was then identified by one TCD and two FID detectors.

Each test lasted for over 100 hours. The water, oil and wax in the product were collected in a hot trap (150 °C) and a cold trap (0 °C) and analyzed by offline GCs. Carbon balances were calculated daily to ensure correct metering. For all the tests, the carbon balances were in the range of 97 – 101 %. To avoid large temperature fluctuation in the catalyst bed, the CO conversion was maintained within 10 – 20 % by setting different gas hourly space velocity (GHSV). The as-prepared and spent catalysts were taken out from the reactor under the protection of N2 in a glove box and then sealed in FTS wax for characterization.

2.3 Characterization of MOFs and catalysts

A FEI Talos™ 200A microscope operated at 200 kV was employed to conduct structural investigations of various catalysts by using TEM, HRTEM, and STEM mode. The elemental maps were obtained by using high-angle annular dark-field scanning TEM (HAADF-STEM) of energy-dispersive X-ray (EDX) mode.

The X-ray diffraction pattern was recorded with an advanced D8 powder diffractometer (Bruker, Germany) using Cu Kα radiation (λ = 0.179 nm) in the range of 2θ = 5 - 80 °. The scan step was 0.02 °. The Co phase distribution is calculated by means of the Rietveld refinement. The average phase crystal size is calculated by Debye–Scherrer equation at the peak of 52.2 °.
Co K-edge X-ray absorption fine structure (XAFS) spectra were collected at beamline 1W1B of the Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences. The typical storage ring energy was 2.5 GeV with a maximum current of 250 mA. The XAS spectra were taken repeatedly in the “transmission mode” from the wax-sealed samples. The Si (111) double crystal monochromator was used and detuned 35% for Co in order to reduce the amount of higher harmonics in the beam. The photon energy was calibrated for each scan with the first inflexion point of the Co K edge (7709 eV) in Co metal foil. Fourier transform of the EXAFS spectra was carried out in the k-range of 3.0 to 12.8 Å⁻¹. The IFFEFIT 1.2.11 date analysis package (Athena, Artemis, Atoms, and FEFF9.6) was used for the data analysis and fitting.

3 Results and discussions

Commercially, cobalt (Co) or iron (Fe)-based catalysts are used in the FTS process at 190 - 360 °C and 1.5 - 5.0 MPa. The Co-based catalysts are normally used in the low-temperature range (190 - 240 °C), while the Fe-based catalysts can be extended to medium (260 - 300 °C) and high (320 - 360 °C) temperature ranges. Cobalt is more active than iron in FTS reaction. It has the advantage in limiting water-gas shift, yielding desired long-chain hydrocarbons (C₅⁺) at temperatures below 240 °C, and resists to deactivation with a lifetime of over 10000 h. At temperatures above 240 °C, cobalt catalysts do perform more actively but simultaneously promotes methanation resulting in much-lowered selectivity to the desired C₅⁺. This causes the space-time yield of oil not more than 0.5 kg kg-cat⁻¹ h⁻¹ in the existing industrial plants, inhibiting the running of cobalt-catalyzed FTS at above 240 °C. Fabricating cobalt catalysts to have both exceptionally high selectivity and activity at above 240 °C is hopeful to overcome this limitation.

In the initial stage of this work, we heated the Co-MOF in helium at 500 °C for 1 hour. The catalyst obtained (denoted as Co@C-500-He) showed the characteristic XRD patterns of the Co-MOF, cobalt oxide and metallic cobalt, suggesting only partial decomposition and reduction of the Co-MOF occurred in the pure Helium atmosphere (Figure S1, SI). The average crystal sizes calculated are 4.1 nm for the metallic phase. The catalyst was tested under the FTS reaction condition (H₂/CO = 2.0, 200 °C, 3.0 MPa). After the reaction, the Co⁰ crystal size dramatically increased to 18.8 nm. In contrast, the sample Co@C-500- C₂H₂ was prepared in the atmosphere of 2.0% C₂H₂ in Helium. Its XRD identified the Co⁰ phase mainly, suggesting a very high degree reduction of the Co-species. The Co⁰ crystal size is at 2.5 nm. After FTS tests, the Co⁰ crystal size increased to 5.0 nm. The preliminary studies verified that the C₂H₂ plays a crucial role in facilitating reduction of the Co-MOF and the formation of smaller and more stable cobalt crystals as the high-performance FTS catalysts in a controllable manner (see more results in Table S1 and Figure S1, SI).

3.1 Core/shell Co@C nanoparticles prepared from Co-MOF

Ethyne starts a significant decomposition at the temperature of ~350°C (Figure S2, SI). The temperatures of 400, 450, 500, 550 and 600 °C were thus systematically applied for converting the Co-MOFs to the core/shell Co@C catalysts in the presence of ethyne in He gas. The catalysts are denoted as Co@C-400, 450, 500, 550 and 600, respectively. The porosity and elemental and porosity analysis results in Table 1 show the samples increase their cobalt content and BET area and cobalt contents. Both reach the maximum values as the
temperature increases to 4500 and 4500 °C, respectively, above which these parameters decline. The trends reflect the carbon deposition amount increasing with temperature and the carbon deposited has the highest porosity at the temperature 500 °C and becomes denser after that.

<table>
<thead>
<tr>
<th>Table 1. Properties of the Co MOF precursor and Co@C catalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalysts</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Co-MOF</td>
</tr>
<tr>
<td>Co@C-400</td>
</tr>
<tr>
<td>Co@C-450</td>
</tr>
<tr>
<td>Co@C-500</td>
</tr>
<tr>
<td>Co@C-550</td>
</tr>
<tr>
<td>Co@C-600</td>
</tr>
</tbody>
</table>

* Analysed by XPS.
b Determined by XRD using Debye–Scherrer equation at the peak of 52.2 °.
c Determined from TEM by counting more than 200 particles.

The TEM/HRTEM analyses in Figure 1 clearly show the round-shaped Co° nanoparticles are encapsulated in carbon shells. The carbon shells in the Co@C-400 and 450 are amorphous, while in the Co@C-500, -550 and -600 show layered-graphene sheets of 2 - 10 layers. Interestingly, the layer spacing is approximately 0.34 nm matching well with the graphite interplanar spacing (002) of 0.335 nm. Some graphene layers have dislocated, disordered or a combination of both lattice defects (Figure 12f and h), which form the pores in the carbon shell. The Co° nanoparticles appear in the size range of 2.0 - 10.0 nm (Figure 2). Statistically, the particle size distributions centre at 3.2, 4.5, 2.8, 4.7 and 6.2 nm for Co@C-400, -450, -500, -550, and -600, respectively.
Figure 1. TEM images of the as-prepared Co@C-400 (a, b), 450 (c, d), 500 (e, f), 550 (g, h), and 600 (i). Scale bar (a, b, c, g, i): 100 nm; (d): 5 nm; (e, f, h): 2 nm.

The XRD studies of these samples in Figure 3a show a significant fraction of Co-MOFs remained in the Co@C-400 and a small fraction in the Co@C-450. At higher temperatures, the Co-MOF diffraction pattern disappeared completely. New wide and weak XRD peaks appear at $2\theta = 43$, 52 and 60°, which are assignable to the CoO phase (JCPDS No. 72-1474), face-centred-cubic (fcc) Co phase (JCPDS No. 01-1259) and hexagonal-close-packed (hcp) Co phase (JCPDS No. 01-1278), respectively. Calculation shows the Co@C-450 contains 19.1 % CoO, 72.6 % fcc and 8.3 % hcp Co; the Co@C-500 5.0 % CoO, 88.5 % fcc and 4.0 % hcp Co; while the Co@C-550 and 600 catalysts contain the fcc Co phase only. Theoretically, the phase transformation of hcp Co to fcc occurs in the range of 430 - 552 °C,42,43 the fcc Co is thermodynamically
Figure 2. Size distributions of the Co nanoparticle in the as-prepared and spent catalysts: (a) Co@C-400; (b) Co@C-450; (c) Co@C-500; (d) Co@C-550 and (e) Co@C-600. The scale reflects the ranges detected.

The XRD studies of these samples in Figure 1a show a significant fraction of Co-MOFs remained in the Co@C-400 and a small fraction in the Co@C-450. At higher temperatures, the Co-MOF diffraction pattern disappeared completely. New wide and weak XRD peaks appear at \(2\theta = 43, 52\) and 60°, which are assignable to the CoO phase (JCPDS No.72-1474), face-centred cubic (fcc) Co\(^0\) phase (JCPDS No.01-1259) and hexagonal-close-packed (hcp) Co\(^0\) phase (JCPDS No.01-1278), respectively. Calculation shows the Co@C-450 contains 19.1 % CoO, 72.6 % fcc and 8.3 % hcp Co\(^0\); the Co@C-500 5.0 % CoO, 88.5 % fcc and 4.0 % hcp Co\(^0\); while the Co@C-550 and 600 catalysts contain the fcc-Co\(^0\) phase only. Theoretically, the phase transformation of hcp-Co\(^0\) to fcc occurs in the range of 430 – 552 °C,\(^41\)\(^42\) the fcc-Co\(^0\) is thermodynamically more stable than the hcp-Co\(^0\) at temperatures > 450 °C. Their coexistence has been found at temperatures up to 500 °C.\(^43\) These explain the fcc-Co\(^0\) phase dominates in these samples. Both hcp and fcc phases are found in the Co@C-400. The hcp phase amount decreases with the treatment temperature and disappears at the temperatures > 500 °C e.g. the Co@C-550 and 600 contain purely fcc-Co\(^0\). The Co\(^0\) crystal size is observed in the range of 2.4 – 3.7 nm (see Table 1).
more stable than the hcp Co0 at temperatures > 450 °C. Their coexistence has been found at temperatures up to 500 °C.44 These explain the fcc Co0 phase dominates in these samples. Both hcp and fcc phases are found in the Co@C-400. The hcp phase amount decreases with the treatment temperature and disappears at the temperatures > 500 °C e.g, the Co@C-550 and 600 contain purely fcc Co0. The Co0 crystal size is observed in the range of 2.4 - 3.7 nm (see Table 1).

To detail the chemical states of cobalt in the Co@C catalysts, the X-ray absorption spectroscopy (XAS) has been applied with Co0 foil and CoO used as references. The Co K-edge X-ray absorption near edge spectra (XANES) are shown in Figure 4b.3b The position of K edge shifts towards a lower energy and the dramatic decrease of the white line intensity with the treatment temperatures show the reduction degree of reduction of the Co-MOF. As a direct measure of the density of empty states of the cobalt species at the Fermi level, the white line of the less reduced Co-MOF is stronger in intensity, while the fully reduced samples feature a very weak white line towards that of the Co0 foil. This suggests a high reduction of -CoO- to Co0 has been achieved in the Co@C-550 and 600, while the Co@C-400, -450 and -500 prepared at the lower temperatures contain Co in oxidized states. Quantitative analysis by a linear combination of the Co0 foil and CoO spectra gives the Co0 contents of 6.5, 54.7, 69.2, 87.8 and 94.1 % for the Co@C-400, 450, 500, 550 and 600, respectively.

More detailed Co coordination structures in the Co@C catalysts have been analyzed by Co K-edge \textit{k}3-weighted extended X-ray absorption fine structure (EXAFS) spectra, as shown in Figure 4c.3c The EXAFS spectra of Co@C-500, -550 and -600 are very close to that of the Co0 foil with slightly weaker oscillation,
implying that the majority of cobalt species are metallic. The Co@C-400 and 450 feature stronger oscillation in the lower k range and a weak oscillation in the higher k range. As the EXAFS oscillation in the lower k range mainly comes from the electron scattering of relatively light atoms such as oxygen and carbon, whereas the oscillation in the higher k range is from the scattering of the heavy atoms such as cobalt here, most of the Co atoms in Co@C-400 and -450 should be surrounded by oxygen and carbon atoms. In order to quantify the local environment of the Co atoms, the best-fits of the EXAFS scattering amplitudes were conducted through the Fourier transform. The results of the first two shells are shown in Figure 4(d). The major peaks with the radial distance of 1.6 and 2.2 Å have been related to the -Co-O- and Co-Co interactions, respectively.

The spectrum of the Co@C-400 catalyst shows a strong peak for -Co-O- but a weak one for Co-Co, suggesting a small contribution from Co0. As the C2H2 treatment temperature increases, a large fraction of the cobalt becomes Co0 and the Co-Co peak becomes prominent. The EXAFS spectrum of the Co@C-600 appears virtually identical to that of the Co0 foil. All the Co@C catalysts feature a Co-Co shell with a Co-Co distance of 2.47 - 2.50 Å and a coordination number ranging from 3.0 to 10.0. The number of Co neighbouring atoms in the shell is related to the reduction degree and the Co0 particle size in catalysts. Apparently, increasing C2H2 treatment temperature will lead to an increase of Co-Co coordination number N_{Co-Co}. A value of 10.0 is achieved in the Co@C-600, slightly smaller than 12.0 for the closest packed structure of bulk Co0. The EXAFS results of the catalysts as-prepared and the spent are summarized in Table 2.

Table 2. EXAFS results at the Co K-Edge for the Co@C catalysts as-prepared and after FTS reaction

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>States</th>
<th>Co_0, %</th>
<th>N_{Co-O} in CoO</th>
<th>R_{Co-O} in CoO, Å</th>
<th>$σ^2$, Å²</th>
<th>N_{Co-Co} in Co0</th>
<th>R_{Co-Co} in Co0, Å</th>
<th>$σ^2$, Å²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co@C-400</td>
<td>As-prepared</td>
<td>6.5</td>
<td>6.1</td>
<td>2.12</td>
<td>0.012</td>
<td>3.1</td>
<td>2.50</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Spent</td>
<td>7.8</td>
<td>5.6</td>
<td>2.12</td>
<td>0.017</td>
<td>4.9</td>
<td>2.49</td>
<td>0.008</td>
</tr>
<tr>
<td>Co@C-450</td>
<td>As-prepared</td>
<td>54.7</td>
<td>4.8</td>
<td>2.11</td>
<td>0.010</td>
<td>3.0</td>
<td>2.48</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Spent</td>
<td>58.8</td>
<td>4.2</td>
<td>2.10</td>
<td>0.018</td>
<td>6.4</td>
<td>2.47</td>
<td>0.007</td>
</tr>
<tr>
<td>Co@C-500</td>
<td>As-prepared</td>
<td>69.2</td>
<td>4.4</td>
<td>2.11</td>
<td>0.015</td>
<td>6.1</td>
<td>2.48</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Spent</td>
<td>69.8</td>
<td>4.1</td>
<td>2.11</td>
<td>0.014</td>
<td>6.0</td>
<td>2.48</td>
<td>0.007</td>
</tr>
<tr>
<td>Co@C-550</td>
<td>As-prepared</td>
<td>87.8</td>
<td>1.2</td>
<td>2.11</td>
<td>0.007</td>
<td>7.8</td>
<td>2.48</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Spent</td>
<td>69.4</td>
<td>3.6</td>
<td>2.12</td>
<td>0.009</td>
<td>6.1</td>
<td>2.49</td>
<td>0.006</td>
</tr>
<tr>
<td>Co@C-600</td>
<td>As-prepared</td>
<td>94.1</td>
<td>0.5</td>
<td>2.11</td>
<td>0.008</td>
<td>10.0</td>
<td>2.48</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Spent</td>
<td>73.1</td>
<td>1.9</td>
<td>2.11</td>
<td>0.010</td>
<td>7.9</td>
<td>2.49</td>
<td>0.007</td>
</tr>
</tbody>
</table>

* Extent of Co reduction calculated by a linear combination of the XANES spectra of Co foil and Co0 references.

The TEM/HRTEM analyses in Figure 2 clearly show the round-shaped Co0 nanoparticles are encapsulated in carbon shells. The carbon shells in the Co@C-400 and 450 are amorphous, while in the Co@C-500, -550 and -600 show layered-graphene sheets of 2 - 10 layers. Interestingly, the layer spacing is approximately 0.34 nm, matching well with the graphite interplanar spacing (002) of 0.335 nm. Some graphene layers have dislocated, disordered or a combination of both lattice defects (Figure 2f and h). The Co0 nanoparticles appear in the size range of 2.0 - 10.0 nm (Figure 3). Statistically, the particle size distributions centre at 3.2, 4.5, 2.8,
4.7 and 6.2 nm for Co@C-400, -450, -500, -550, and -600, respectively.

Figure 2. TEM images of the as-prepared Co@C-400 (a, d), 450 (b, e), 500 (c, f), 550 (g, h), and 600 (i). Scale bar (a, b, c, g, i): 100 nm; (d): 5 nm; (e, f, h): 2 nm.
The size of Co0 nanoparticles is determined by the formation of the carbon shell. The formation of the Co0 nanoparticles includes the Co-species reduction, nucleation and crystal growth steps, which is significantly impacted by the reducing atmosphere, reaction temperature and time. Whereas, the carbon shell builds up a physical barrier on the Co0 nanoparticles to hinder cobalt particle further growing. The forming rates of Co0 nanoparticles and carbon shells control the size of the Co0 nanoparticles encapsulated and the size distribution. From our observation, the C\textsubscript{2}H\textsubscript{2} treatment at 500 °C would provide an optimal condition for facilitating the formation of the smallest Co@C nanoparticles of 2.8 nm in average with a narrowest size distribution. Of course, under the C\textsubscript{2}H\textsubscript{2} chemical vapour deposition condition the structure and size of the Co0 cores and the carbon shells composed of either amorphous carbon or graphene become more controllable.

3.2 FT catalysis of the core/shell cobalt nanoparticles

The activity and selectivity of FTS catalysis are closely related to the reaction conditions, in particular the temperature. The Co@C-500 was chosen to examine the catalysis performance of the Co@C in a wide temperature range from 150 to 320 °C. The catalysts were on stream tested at a given temperature for over 100 hours. The results are given in Table 3 and Figure 4. As well as the actual CO conversion (X\textsubscript{CO}) measured, the CTY and TOF (turnover frequency) are provided for examining the catalytic activity. The TOF is defined as the moles of CO converted per mole of surface cobalt per second, and CTY is defined as the moles of CO converted to hydrocarbons per gram of cobalt per second. The CO\textsubscript{2} selectivity (S\textsubscript{CO2}) % and hydrocarbon distribution are applied in order to show the catalytic selectivity.
At the temperature of as low as 150 °C, the Co@C-500 shows a significant TOF value at 0.9 x 10^{-3} s^{-1}, which steadily increases to 3.9 x 10^{-3} s^{-1} at 180 °C, 5.7 x 10^{-3} s^{-1} at 220 °C, 57.7 x 10^{-3} s^{-1} at 280 °C and 64.6 x 10^{-3} s^{-1} at 320 °C. These TOF values are compared with those in literature as shown in Figure 4a.18,24,47-52 It can be seen that the TOFs vary in a wide range in the popularly studied temperature range of 200 - 220 °C. The variation is due to the cobalt nanoparticle sizes, support materials and reaction conditions. In well-validated references at similar reaction conditions, the cobalt particles with a size of 2.5 nm on carbon nanofiber were found having a TOF levelled at 1.4 x 10^{-3} s^{-1} at 210 °C and 3.5 MPa.18 Over carbon nanotube or carbon sphere supported cobalt particles with a size of 3.0 nm, the TOF was found to be ca. 30 x 10^{-3} s^{-1} at 225 °C and 0.8 MPa.40 In our work, the TOF value from the Co@C nanoparticles at small as 3.0 nm is 21.6 x 10^{-3} s^{-1} at 220 °C and 3.0 MPa, which is at a similar level to that of the cobalt nanoparticles on carbon nanotube or carbon sphere40 and distinctively higher than those on carbon nanofiber.18

Table 3. The catalytic performances of the Co@C catalysts in FTS reactionsa

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>T, °C</th>
<th>GHSV, h-1</th>
<th>XCO, %</th>
<th>CTYb</th>
<th>TOFc</th>
<th>CO\textsubscript{2}, %</th>
<th>Sc, %</th>
<th>O/P</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Co@C-500d</td>
<td>150</td>
<td>2000</td>
<td>7.3</td>
<td>4.5</td>
<td>0.9</td>
<td>0.0</td>
<td>2.4</td>
<td>1.9</td>
<td>95.7</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>2000</td>
<td>33.3</td>
<td>20.6</td>
<td>3.9</td>
<td>0.0</td>
<td>4.6</td>
<td>4.4</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>10000</td>
<td>21.6</td>
<td>66.3</td>
<td>12.6</td>
<td>0.8</td>
<td>6.4</td>
<td>6.1</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>20000</td>
<td>18.4</td>
<td>111.5</td>
<td>21.6</td>
<td>2.1</td>
<td>8.2</td>
<td>7.5</td>
<td>84.3</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>40000</td>
<td>15.7</td>
<td>187.9</td>
<td>36.8</td>
<td>3.5</td>
<td>9.9</td>
<td>8.7</td>
<td>81.4</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>60000</td>
<td>13.7</td>
<td>242.3</td>
<td>48.2</td>
<td>4.8</td>
<td>13.0</td>
<td>11.6</td>
<td>75.4</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>60000</td>
<td>15.6</td>
<td>286.1</td>
<td>57.7</td>
<td>6.1</td>
<td>18.7</td>
<td>18.4</td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>60000</td>
<td>17.2</td>
<td>290.2</td>
<td>60.3</td>
<td>8.9</td>
<td>27.4</td>
<td>33.2</td>
<td>39.4</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>60000</td>
<td>18.4</td>
<td>294.2</td>
<td>64.6</td>
<td>13.8</td>
<td>41.8</td>
<td>49.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Co@C-400e</td>
<td>260</td>
<td>8000</td>
<td>12.6</td>
<td>44.3</td>
<td>-</td>
<td>6.9</td>
<td>27.4</td>
<td>20.3</td>
<td>52.3</td>
</tr>
<tr>
<td>Co@C-450e</td>
<td>260</td>
<td>60000</td>
<td>18.6</td>
<td>312.1</td>
<td>76.8</td>
<td>6.5</td>
<td>21.9</td>
<td>19.7</td>
<td>58.4</td>
</tr>
<tr>
<td>Co@C-500e</td>
<td>260</td>
<td>60000</td>
<td>14.4</td>
<td>254.1</td>
<td>50.5</td>
<td>4.7</td>
<td>13.3</td>
<td>11.6</td>
<td>75.1</td>
</tr>
<tr>
<td>Co@C-550e</td>
<td>260</td>
<td>50000</td>
<td>16.8</td>
<td>186.0</td>
<td>38.4</td>
<td>4.7</td>
<td>11.7</td>
<td>10.7</td>
<td>77.6</td>
</tr>
<tr>
<td>Co@C-600e</td>
<td>260</td>
<td>20000</td>
<td>13.2</td>
<td>89.7</td>
<td>19.4</td>
<td>4.9</td>
<td>10.3</td>
<td>7.7</td>
<td>82.0</td>
</tr>
</tbody>
</table>

a Reaction condition: 150 - 320 °C, H\textsubscript{2}/CO = 2.0, 3.0 MPa, GHSV = 2000 - 60000 h-1.
b CTY = 1012 mol g\textsubscript{Co}-1 s-1 based on mole of CO converted to hydrocarbons per gram of cobalt per second.
c TOF = 10-3 s-1 based on mole of CO converted per mole of surface cobalt per second.
d Results of the conditional FTS runs at varied temperatures.
e The long-time steady-state test results of the Co@C-400-600 catalysts.
Figure 4. The FTS catalytic activity and selectivity of the Co@C-500 at different reaction temperatures: (a) TOF; (b) CTY and hydrocarbon distribution. (P = 3.0 MPa, GHSV = 2000 - 60000 h⁻¹)

References:
- J. Catal., 1992, 137, 212
- J. Catal., 2011, 279, 25
- RSC Adv., 2017, 7, 3244
nanofibers were found having a TOF levelled at 1.4 x 10^{-3} s^{-1} at 210 °C and 3.5 MPa. Over carbon nanotube- or carbon sphere supported cobalt particles with a size of 3.0 nm, the TOF was found to be ca. 30 x 10^{-3} s^{-1} at 225 °C and 0.8 MPa. In our work, the TOF value from the Co nanoparticles of 3.0 nm is 21.6 x 10^{-3} s^{-1} at 220 °C and 3.0 MPa, which is at a similar level to that of the cobalt nanoparticles on carbon nanotube or carbon sphere and distinctly higher than those on carbon nanofiber.

At 150 °C, the CTY was low at 4.5 x 10^{-6} mol gCo^{-1} s^{-1}. When the temperature raised from 180 to 280 °C, the CTY increased exponentially as expected from 20.6 x 10^{-6} to 286.1 x 10^{-6} mol gCo^{-1} s^{-1}. The CTY value reads 88.9 x 10^{-6} at 210 °C and 215 x 10^{-6} mol gCo^{-1} s^{-1} at 250 °C, which are indeed higher than the 43.5 μmol CO gCo^{-1} s^{-1} at 210 °C, 3.5 MPa) and 192.0 μmol CO gCo^{-1} s^{-1} at 250 °C, 3.5 MPa) optimised for the 6 - 8 nm Co nanoparticles on carbon nanofibers. Moreover, the selectivity to C5 at 150 °C is greater than 95 % with a growth probability a value of 0.95 and a negligible CO2 yield. When the temperature was raised from 180 to 280 °C, the C5 fraction decreased gradually to 62.9 % and CO2 gas yield increased to 6.1 %. Above 280 °C, the CTY increase was dramatically reduced and the product dominated by the light hydrocarbons (C1-4), which is not desirable for liquid hydrocarbon production. The corresponding a values gradually decreased to 0.85 at 260 °C and 0.40 at 320 °C. An example of Anderson-Schultz-Flory distribution of hydrocarbon products can be found in SI (Figure S15).

The Co@C-500 demonstrates high catalytic activity at a medium temperature of 260 °C, which is accompanied by a good selectivity to C5 of 75 %, low conversion to CO2 at 4.8 %. These are outstanding results in the literature and obviously better than that from the MOF-derived catalyst produced by simple pyrolysis in inert gas. The latter contained Co nanoparticles of 10 - 12 nm in carbon matrix and gave a selectivity to C5 at 65 % and CO2 selectivity at 8.0 % at 230 °C. Taking both the CTY and C5 selectivity into consideration, the temperature of 260 °C was selected to test this series of catalysts, which is in the medium temperature range for FTS and not normally recommended for cobalt-based catalysts. Development of cobalt catalyst feasible to operate at 260 °C will be beneficial for generating a higher quality of steams from the exothermic reactions (∆H = 165 kJ mol⁻¹) and improving the process energy efficiency.

The series of Co@C-400 to 600 catalysts were then prepared on stream and tested at 260 °C for over 100 hours. The results are given in Table 3. In general, this series of catalysts exhibit excellent activity and stability. Very impressive specific activity CTY at 254.1 - 312.1 μmol CO gCo^{-1} h^{-1} was achieved using the Co@C-450 and -500 at GHSV 60000 h^{-1}. The Co@C-500 showed a higher selectivity to C5 (75 %) than Co@C-450 (58.4 %). For the Co@C-550 and 600, the GHSVs were reduced to 50000 and 20000 h^{-1}, respectively, in order to maintain the CO conversion at a comparable level (10 - 20 %). Their CTY values decreased to 186.0 and 89.7 μmol CO gCo^{-1} h^{-1}, respectively. This displays their relatively lower activities under the FTS conditions used. Even so, their C5 selectivities are at 77.6 % and 82.0 %, which is better than that of the Co@C-500. The Co@C-400 required a much longer residence time (GHSV = 8000 h^{-1}) than the other catalysts for a CO conversion of 10 - 20 %, possessed the lowest activity (CTY = 44.5 μmol CO gCo^{-1} h^{-1}) and C5 selectivity (52.3 %). The good activity demonstrated by the catalyst Co@C-450 and 500 give rise to high hydrocarbon
C₅ space-time yields of 4.0 - 5.2 g C₅/g-cat-h and 3.03 g C₅/g-cat-h, respectively. The higher C₅ selectivity and α values on the Co@C-500 to 600 catalysts reveal the direct relationship of their unique Co@C structures to long-chain hydrocarbon formation. This will be further discussed in the following sections.

3.3 Effect of catalyst structure on the FT catalysis

The spent catalysts were examined by TEM and HRTEM for their changes in structure and morphology. Similar to the as-prepared samples, all the spent catalysts contain Co⁰ nanoparticles, as exampled in Figure 5 and Figure S3-4 (SI). For verifying the effect of the carbon structure, the spent Co@C catalysts were treated with a 0.5 M aqueous solution of hydrochloric acid, followed by washing using deionized water and toluene to remove all the cobalt species and wax. After the Co⁰ crystallites eroded away, the solid residual shows amorphous carbon with little regular graphene structures from the spent Co@C-400 and 450 catalysts (Figure 5c; Figure S5-6, SI), but curly and wrinkled graphene sheets with obvious bubble cavities from the spent Co@C-500, 550 and 600 (Figure 5f; Figure S7-9, SI). The latter have cavities in the size range of approximately 3.0 – 10.0 nm, well matching the Co⁰ nanoparticle sizes in these samples (Figure 23c-e). This infers that the carbon shells play the role well in protecting the nanoparticles from aggregations during the FTS reaction. The successful removal of Co⁰ cores suggests that the graphene shells are porous, providing pathways to control the diffusion of reactants through the carbon shell to the active surface of Co⁰ core for the reaction and the release of products.

More interestingly, the Co⁰ nanoparticles can be removed from the spent Co@C-400 to -550 samples by an overnight acid-leaching, while the spent Co@C-600 needs a much longer time (e.g. one week) to reach a complete removal. This result agrees well with the BET area changes as shown in Table 1, suggesting that the Co⁰ nanoparticles in Co@C-600 are encapsulated by low porosity of carbon, are less accessible due to a higher degree of graphitization of the carbon shell. More than 10 graphite layers are observed from the TEM images (Figure S9, SI). The well-graphitized carbon shells could impede the access of syngas to the Co⁰ cores, resulting in the Co@C less or inactive to the FTS catalysis. Controlling formation of porous carbon shells is critical for opening the active sites to the reactants. At a temperature lower than 600 °C, the ethyne deposition facilitates the formation of porous carbon shells varying from amorphous to graphene with different degrees of graphitization. The resulted structure distinctly differs from the metal@carbon-onions where the graphitized carbon materials are in focus. The defects formed in graphitization create transport channels to the active metal nanoparticles encapsulated. The higher the C:H treatment temperature, the higher the resistance of the carbon shell to the acid leaching. At the temperature of 500 °C, the curly and wrinkled graphene sheets formed provide transport channels with less resistance than that at 600 °C, allowing a more effective diffusion for both the reactant and the product. This trend agrees well with the pyrolysis results of ZIF-67, where the nitrogen-carbon composite shells of Co⁰ nanoparticles formed at 600 - 900 °C was reported much difficult to penetrate.
Figure 5. The TEM images of spent catalysts (a, b: Co@C-450; d, e: Co@C-500) and their carbon residues after acid pickling (c: Co@C-450; f: Co@C-500). Scale bar a, d: 100 nm; b, c, e, f: 5 nm.

Statistical size analysis (Figure 24) shows that the amorphous carbon encapsulated samples of the Co@C-400 and -450 has much larger Co nanoparticles over 10 - 100 nm (Figure 24a and b), while the graphene sheet encapsulated samples largely maintained their respective particle size distributions as the as-prepared samples (Figure 24c, d and e). The size increases in the spent Co@C-400 and -450 could result from the crystal aggregation, but more likely from the crystal growth with the Co-MOF being further reduced. The reduction results in the metallic Co fraction increase, as quantitatively calculated from the XANES given in Figure S10 (SI) and Table 2. Comparing the spent sample with the as-prepared, the Coν fraction increases from 6.5 to 7.8 % in Co@C-400 and 54.7 to 58.8 % in Co@C-450. Furthermore, the XRD analysis reveals the fcc and hcp Coν constituents changed as well. 63.8 % fcc and 36.2 % hcp are in the spent Co@C-400; 71.3 % fcc and 28.7 % hcp in the spent Co@C-450. Compared with the as prepared the hcp phase underwent a dramatic increase after the FTS reactions e.g. from non-detectable to 36.2 % in Co@C-400 and from 10.3 to 28.7% in Co@C-450, while the fcc phase remained relatively stable. These two catalysts containing more hcp Coν phase showed significantly higher site activities (TOF values of 76.8 and 50.5 ×10⁻³ s⁻¹) than the catalysts with less or no hcp-Coν phase, namely 8.4 % hcp in the spent Co@C-500 and no hcp in the spent Co@C-550 and -600. These results agree well with those in the literature, showing that hcp-Coν is probably more active than fcc-Coν.16,52-56 The hcp-Coν phase was also found more selective to C₅⁺ in literature.57 In this research, however, the fcc-Coν phase dominated catalysts Co@C-500 – 600 are more selective to C₅⁺. The graphene layers on the Co nanoparticles may contribute to this, like that the carbon nanotubes (CNT) do to iron catalysts as reported by Chen et al.15,59 but in this case the encapsulation of porous graphene shell could make more contribution to the high hydrocarbon selectivity.
The XANES spectra give the metallic Co fraction of 69.8, 69.4, and 73.1% in the spent Co@C-500, -550, and -600 (Table 2), respectively. Compared with the 69.2, 87.8, and 94.1% in the as-prepared catalysts, the Co fraction change in the spent Co@C-500 was 0.6% is ignorable. The Co fraction in the spent Co@C-550 and 600 dramatically declined by 18.4 and 21.0%, respectively. Interestingly, their corresponding CTY values at the end of the reaction drastically increased (Table 3). This infers that the Co fraction concentration is not the only factor influencing the catalyst activity. Although the cobalt metallic phases supply active sites for the FTS reactions, as shown in this research and in the literature, the complex nature of these active sites has not been fully understood yet. Conventional cobalt catalysts are usually formulated with supports such as TiO₂, SiO₂ or Al₂O₃ and promoters, leading to complex chemical environments for the Co species, exactly defining the active sites becomes very difficult. Compared with the other catalysts, the Co@C catalysts are much simpler in composition, for example, the catalyst Co@C-500 contains 69.8% Co₀ and 30.2% CoO in clearly-defined graphene shells only.

The EXAFS oscillation analysis results of the spent catalysts in Table 2 show very interesting variation in the coordination numbers of the Co-Co (N_{Co-Co}) and Co-O (N_{Co-O}) shells. The well-performed catalysts have N_{Co-Co} = ~6.0 and N_{Co-O} = ~4.0 in their spent forms. Thus, three types of changes have been found in the N_{Co-Co} and N_{Co-O} during the FTS process. On the average, in Co@C-400 and -450, the N_{Co-Co} increases from 3.0 to 5.7 and the N_{Co-O} decreases from 5.5 to 4.9; while in Co@C-550 and -600, the N_{Co-Co} decreases from 9.0 to 7.0 and the N_{Co-O} increases from 0.9 to 2.8. Finally, in Co@C-500, both the N_{Co-Co} and the N_{Co-O} are basically maintained without considerable changes. These trends associate well with their individual catalysis profiles (Figure 6). That is, the activities continuously decrease in Co@C-400 and 450, increases in Co@C-550 and -600, and remains stable in Co@C-500. This may suggest that the Co-Co and Co-O complexes exist on the surface of Co₀ nanoparticles and reach an equilibrium state under the experimental conditions, where the N_{Co-Co} and N_{Co-O} are kept at ~6.0 and ~4.0, respectively. This observation is supported by the findings in the references 17 and 18.

Two types of surface reactions might have occurred. For the catalyst Co@C-550 and -600, the oxidation from the CO dissociation over the Co₀ nanoparticles results in N_{Co-O} increasing and N_{Co-Co} decreasing. These two coordination numbers tend to achieve ~4.0 and ~6.0 through adjusting the Co-Co and Co-O configuration in the catalyst. This may explain the induction periods for the Co@C-550 and -600 as observed in Figure 6. For the Co@C-400 and -450, the hydrogen in the syngas plays a role in gradually reducing Co-O nanoclusters in MOFs or the Co-O structures on the catalyst surface, thereby the N_{Co-Co} is decreased and the N_{Co-O} is increased. This interpretation seems rational when considering the Co coordination number 5.0 – 6.0 in the Co-MOF. The latter mechanism has been approved by the in-situ XRD analysis of the Co-MOF stability test in 5.0% H₂ in Helium at 220 °C (Figure S11,SI), in which the reduction of Co-MOFs to form Co₀ nanoparticles has been initially observed. In the CO gas, the Co-MOFs behave quite stable without decomposition. This justification is in line with very recent findings in the literature from in-situ XANES and XPS characterisation that the existing cobalt oxide may help facilitating the FTS reaction more than the fully reduced cobalt when supported on TiO₂. 😇

The EXAFS oscillation analysis results of the spent catalysts in Table 2 show very interesting variation in the coordination numbers of the Co-Co (N_{Co-Co}) and Co-O (N_{Co-O}) shells. The well-performed catalysts have N_{Co-Co} = ~6.0 and N_{Co-O} = ~4.0 in their spent forms. Thus, three types of changes have been found in the N_{Co-Co} and N_{Co-O} during the FTS process. On the average, in Co@C-400 and -450, the N_{Co-Co} increases from 3.0 to 5.7 and the N_{Co-O} decreases from 5.5 to 4.9; while in Co@C-550 and -600, the N_{Co-Co} decreases from 9.0 to 7.0 and the N_{Co-O} increases from 0.9 to 2.8. Finally, in Co@C-500, both the N_{Co-Co} and the N_{Co-O} are basically maintained without considerable changes. These trends associate well with their individual catalysis profiles (Figure 6). That is, the activities continuously decrease in Co@C-400 and 450, increases in Co@C-550 and -600, and remains stable in Co@C-500. This may suggest that the Co-Co and Co-O complexes exist on the surface of Co₀ nanoparticles and reach an equilibrium state under the experimental conditions, where the N_{Co-Co} and N_{Co-O} are kept at ~6.0 and ~4.0, respectively. This observation is supported by the findings in the references 17 and 18.

Two types of surface reactions might have occurred. For the catalyst Co@C-550 and -600, the oxidation from the CO dissociation over the Co₀ nanoparticles results in N_{Co-O} increasing and N_{Co-Co} decreasing. These two coordination numbers tend to achieve ~4.0 and ~6.0 through adjusting the Co-Co and Co-O configuration in the catalyst. This may explain the induction periods for the Co@C-550 and -600 as observed in Figure 6. For the Co@C-400 and -450, the hydrogen in the syngas plays a role in gradually reducing Co-O nanoclusters in MOFs or the Co-O structures on the catalyst surface, thereby the N_{Co-Co} is decreased and the N_{Co-O} is increased. This interpretation seems rational when considering the Co coordination number 5.0 – 6.0 in the Co-MOF. The latter mechanism has been approved by the in-situ XRD analysis of the Co-MOF stability test in 5.0% H₂ in Helium at 220 °C (Figure S11,SI), in which the reduction of Co-MOFs to form Co₀ nanoparticles has been initially observed. In the CO gas, the Co-MOFs behave quite stable without decomposition. This justification is in line with very recent findings in the literature from in-situ XANES and XPS characterisation that the existing cobalt oxide may help facilitating the FTS reaction more than the fully reduced cobalt when supported on TiO₂. 😇
Figure 6. Variation of (a) CO conversion and (b) hydrocarbon selectivity of the Co@C-400 – -600 catalysts with FTS reaction time. Reaction conditions: 260 °C, 3.0 MPa, H₂/CO = 2 (v/v) and GHSV of 8000 – 60000 h⁻¹.

The most effective catalysts Co@C-450 and -500 in the current work have the Co₀ nanoparticles averaged at approximately 2.5 nm, which is obviously smaller than the critical sizes as reported in the literature.²⁸,²²-²⁵ This shift does not cause a decrease in the catalytic activity. In contrast, the small Co₀ nanoparticles with a Co-O phase existing on the surface demonstrated high catalytic activity. The high CTY values obtained are virtually constant throughout the FTS test. From the catalysis results and the catalyst structures, we derive that the composition of Co-Co and Co-O on the Co₀ nanoparticle surface and the pore structure of the carbon shell can promote the activity and selectivity, even at the medium temperature. Although the lower activity of the Co@C-550 and -600 catalysts results from the less permeable highly-graphitised carbon shells, these carbon shells afford the catalysts the higher selectivity of C₅⁺. This case is like that the iron active sites encapsulated in carbon nanotube (CNT) has a higher C₅⁺ selectivity than that sit on the outside of CNTs or activated carbons.⁵⁸,⁵⁹ Both the literature and our findings reported herein suggest that the core/shell Co@C nanoparticles fabricated from Co-MOF through ethyne reduction are highly active and selective in FTS catalysis at a medium temperature. The presence of porous carbon shell and - Co-O- phase on the surface of Co₀ nanoparticles might improve CO dissociation and chain propagation. It is clear that the carbon shell structure effectively contributes to the selectivity and activity of the Co@C catalysts. It will be interesting to understand more about the function of porous carbon shell and the effect of surface Co-O structures.

4 Conclusion
In this research, a new reducing MOF template approach has been established to control the fabrication of core/shell Co@C nanoparticles by chemical vapour deposition of ethyne. The derived Co@C particles have been tested as FTS catalysts. The C₂H₂ deposition over the Co-MOF effectively controlled the reduction of Co-O nanoclusters in the MOF frameworks into Co⁰ nanoparticles. The hydrogen liberated from the C₂H₂ decomposition acts as the reductant agent, and the rejected carbon encapsulates Co⁰ nanoparticles and effectively restricted the freshly formed nanoparticles from aggregation. The treatment temperature controls the cobalt nanoparticle formation rate, crystal phase ratio, particle size, as well as carbon deposition rate and structures. At a deposition temperature below 450 °C, the carbon shell is amorphous. Above 500 °C, the porous graphene sheets are formed. The phase transition from the hcp to the fcc phase completes. The porous graphene carbon shell not only plays the role in keeping the Co particles small at ~ 3.0 nm but also promotes the catalysis effectively at a medium temperature to produce long-chain hydrocarbons, which differs from other Co@Cs with non-porous graphitic carbon shells. The Co nanoparticles containing both the fcc and hcp phases showed high CTY values at ~ 254.1 - 312.1 μmolCO·g⁻¹·s⁻¹, high hydrocarbon space-time yield of 4.0 - 5.2 kgHC·kg⁻¹·h⁻¹ and selectivity of ~ 70 - 80 % to the C₅⁺ fraction. The XANES and EXAFS spectra analyses identify the composition of the Co nanoparticles, the coordination numbers of Co-Co in the metallic core and -Co-O- on the Co⁰ nanoparticle surface. The comprehensive evaluation of Co@C catalysts with respect to their performance in the FTS reaction implies that the Co-Co and Co-O coordination numbers of the Cobalt nanoparticles have considerable impact on the activity of the cobalt catalysts, while the porosity of the carbon shell mainly on the selectivity toward C₅⁺ production.

ASSOCIATED CONTENT
Supporting Information
XRD, TGA, TEM, XPS and Fischer-Tropsch products.

AUTHOR INFORMATION
Author Contributions
X. Guo and C. Zhang performed the most experiments and data analysis. They contributed equally.
Corresponding Author
*zhangchh@sxicc.ac.cn; q.yuan@aston.ac.uk; b.xiao@qub.ac.uk; ywl@sxicc.ac.cn

Note
The authors declare no competing financial interests.

ACKNOWLEDGMENT
The work is supported by the Shanxi Province International Cooperation Program (2014081004), the National Basic Research Program of China (No. 2011AA05A205), and the National Natural Science Foundation of China (91545109). QY appreciates the support from the research funding of Aston University. BX acknowledges the EPSRC for the support (EP/M027295/1).

REFERENCES

24

