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Abstract. Machining technology is developed with increasing flexibility to 

adapt to the rapid changes of the market. Parallel kinematic machines (PKMs) 

have demonstrated great flexibility to suit the demands, but it is still not 

possible to achieve as high accuracy as the traditional NC machines (TNCMs). 

This paper presents a general review on the structure-based errors of PKMs in 

comparison with TNCMs to reveal physical causes and the relevance to the 

final uncertainty. The geometric/kinematic, gravitational, and thermal aspects in 

both TNCMs and PKMs are identified as structure-based error sources. Errors 

in each aspect are comparatively analyzed between PKMs and TNCMs, and 

inherent differences are found to bring new challenges to the final uncertainty 

of PKMs. Finally, perspectives in each aspect are highlighted for accuracy 

improvement of PKMs. 

Keywords: Parallel kinematic machine, traditional NC machine, 
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1   Introduction 

Machining technology is developed with increasing flexibility in order to adapt to 

the changes (e.g., short lead-time, more variants, low and fluctuating volumes, low 

price) taking place in the market [1–3]. The effective use of robot machine tools has 

proved critical towards that direction [2–6]. A parallel kinematic machine (PKM), 

also known as parallel robot exhibits its superior dynamic performance to achieve 

quality, reliability, and productivity demands while possessing great flexibility, which 

will be the key technology in future ‘plug and play’ machining systems [7]. After first 

PKM publicly presented on the IMTS fair in 1994, commercialized PKMs have been 

adopted in industrial application [3, 7]. Up to now, PKMs (e.g., Exechon [8], Tricept 

[9], Z3 [10] and A3 [11] Sprint Head) have demonstrated great flexibility and 

relatively improved precision capability for the machining of large parts, such as 

milling and drilling aero-structures [6, 12, 13].  



 

 

However, the development and implementation of parallel theoretical capabilities 

into the PKMs are rather in infancy compared to the long experience of traditional NC 

machines (TNCMs), which have an open-loop serial kinematic chain. That highlights 

the double-edged sword effects of applying parallel structure. Although PKMs 

theoretically should gain high accuracy due to its closed-loop kinematic chain 

resulting in few error accumulating effects, it also introduces new problems, such as 

the coupled errors (e.g., a single axis error will cause sources in all DOF of the end-

effector) [14] which still cannot be well controlled. Specific accuracy comparisons 

between PKMs and TNCMs could be found in reference [7, 14–17] under certain 

levels, which have proved that there are still great barriers to achieve as high accuracy 

as TNCMs with PKMs, and deviations of PKMs could be induced by vast of reasons. 

As we know, machining, specifically in subtractive one, is the removal of material 

from a clamped workpiece, by using specific cutting tool and parameters on a certain 

machine tool, whether a PKM or a TNCM, to obtain the component with desired 

profiles. Machine tool, cutting tool, processing method and clamping system as 

shown in Fig. 1 are the basic elements to perform the machining on a raw material to 

obtain a machined component. However, the machined component is not always in 

accordance with the requirements on dimensional and geometrical accuracy. It is 

because that each of the basic elements will induce deviations in the actual cutting 

positions from the theoretical values, defined as errors. The high accuracy component 

could only be achieved beyond the error effects of each element in Fig. 1 and that is 

what high precision machining pursues. Therefore, significant differences of 

structure, movability, control, etc. between PKMs or TNCMs definitely contribute to 

distinguishing errors within the four elements.  

 

 

Fig. 1 Subtractive machining process to obtain high accuracy component 

To improve the accuracy of PKMs, the first step and key factor are to identify the 

error sources within the four elements and to reveal the physical causes and the 

relevance to the final uncertainty. PKMs are unique for their structures, and 

structured-based error source should be one of the most influential factors on their 

final accuracy. Restricted by the article length, the focus of this review is only to 

address structured-based errors, and to emphasize their inherent difference in 

comparison with TNCMs, to provide a perspective view of challenges. 



 

 

2   Structure-based Error Sources 

Structure-based errors here refer to the static and quasi-static errors from the 

structures itself as well as moving components such as slide, joint, etc. Tracing the 

sources of these errors, they generally include geometric/kinematic, gravitational, and 

thermal aspects. The physical causes of these three aspects have been deeply 

investigated in TNCMs [7, 18–24].  

i. Geometric errors are basically derived from design, manufacturing and 

assembly of the machine tool and its components, such as the misalignments of 

axes, slideways degradation or other guide imperfection issues induced by the 

mechanical imperfections. These errors are stable or changing slowly over 

time e.g. due to foundation drifts, wear or material aging. Kinematic errors are 

concerned with the motion errors induced by the components. The boundary to 

define an error as geometric or kinematic is diffuse.  

ii. Since no object is perfectly rigid, the gravity of the structural components in 

any machine tool will cause some deflections. The combined deflections of all 

the components consequently form the finial gravity-induced errors, and they 

are generally dependent on the real-time pose (i.e., position and orientation) 

during the actual machining process.  

iii. Causes of thermal errors are more complicated. That includes the thermal 

expansion of guideways heated by the ball screw drives, the expansion of the 

frame heated or cooled by the machine tool itself or external heat sources (e.g., 

environment), etc. In addition, most heat sources are time-dependent and at 

universal/local workspace levels, which make non-uniform temperature 

distributions and rather difficult to control.  

3   Structure-based Errors Comparisons 

TNCMs generally consist of the bed, column, spindle and various linear and/or 

rotary axes, and that is no exception for PKMs. These two kinds of machine tools 

almost share the same error sources as well as their causes. However, the more 

complex the structure and constraints, the more errors and difficulties to calibrate. 

PKMs are quite complex in the structure such as the non-orthogonal driven legs and 

contain far more constraints than TNCMs. Error sources of PKMs exhibit some new 

features. 

3.1   Geometric/kinematic Errors  

When designing machine tools, the geometric error of each component is always a 

significant factor to be considered [25]. Actually, each component of machine tools 

has independent geometric errors, and what is critical between PKMs and TNCMs 

lies on how the errors are accumulated to affect the final position of the tool endpoint 

and how to calibrate its accuracy. Errors from components or from the assembly (e.g., 

axis misalignment) will fundamentally affect the accuracy through the kinematic 



 

 

chain transmissions. For TNCMs, abundant studies have revealed that errors could be 

added step-by-step through the open-loop kinematic chains as illustrated in Fig. 2(a), 

and consequently, the corresponding calibration and compensation could be 

implemented to minimize geometric errors [19, 20, 26]. Comparatively, PKMs have a 

closed-loop kinematic chain always with non-orthogonal legs, see Fig. 1(b), and their 

kinematic relationships are considerably complex. The final errors induced by 

geometric errors of components can’t be simply added up, and the evaluation of the 

geometric errors effects mainly facing two aspects of difficulties.  

i. Typically, the kinematic model of a PKM is established neglecting the 

geometric errors. However, geometric errors (e.g., parallelism errors of two 

theoretically parallel legs) sometimes are under high constraints and will even 

lead to great uncertainty to the normal PKM kinematic model [27], which 

makes the normal model unsuitable for calibration and control of the PKM 

precisely in actual motion.  

ii. Much more geometric parameters are needed to calibrate PKMs than TNCMs 

[28] which definitely leads to heavy computational burden if following each 

step of the closed-loop kinematic chain. More importantly, the accurate 

identification of calibration required geometrical parameters is the key to 

accurate positioning capability for PKMs [24], but not all the calibration 

required data could be obtained exactly.  

Up to now, popular methods of reducing PKM geometric/kinematic errors are 

applying the generally simplified reverse kinematic model and limited numbers of 

calibration poses to averagely complete the whole workspace calibration [29]. To 

further minimize these errors, constraint errors should be first checked and measured 

independently, before determining the reverse simplified kinematic model, to 

establish a better calibration base. Certainly, the more measuring poses are applied, 

more accuracy the PKMs will be achieved in the whole workspace.  

 

    

          (a)                                  (b) 

Fig. 1 Schematic diagram of machine tools (a) 4-axis TNCM [18], (b) Exechon PKM [30] 

3.2   Gravity-induced Errors  

The gravity-induced errors exhibit more interesting and distinct features between 

TNCMs and PKMs. TNCMs always have the relatively fixed structure resulting in the 



 

 

approximately constant gravity-induced errors in the whole workspace, which could 

be easily compensated by current calibration methods [31]. In contrast, the gravity of 

a PKM will significantly change due to that the slides protrude significantly different 

lengths for the end-effector reaching within a large range especially like at a singular 

point, near an edge of the workspace or under a large tilt angle. This leads to the 

remarkable non-consistent stiffness of a PKM as well as gravitational effects at 

different poses, and consequently, the gravity-induced errors are highly pose-

dependent. Therefore, the stiffness mapping considering gravitational effects [32] and 

specific gravity-effect modeling [33] have been investigated and effective reductions 

of gravity-induced errors are achieved.  

In addition, in the development of future flexibility machining system, 

reconfigurable position and orientation concepts are proposed and put into practice in 

both TNCMs [34, 35] and PKMs [36–38], and the gravity-induced errors are 

particularly highlighted in PKMs. Due to the great advantages (e.g., high payload-to-

weight ratio) of reconfigurable tooling, the PKM has been recognized as a standard 

module to extend workspace to a more universal space as shown in Figures 3(a) and 

3(b). The gravity effects on PKMs face flexible change especially in machining large 

components like the fuselage in Fig. 3(b). Meanwhile, some up-to-date walking 

PKMs [39, 40] are developed to contribute more flexibility to the machining process, 

and their operating positions also affect the gravity-induced errors. Therefore, the 

reconfigurability brings the PKMs great challenge of the complex gravitational effects 

on the machining accuracy, but the relevant studies are still in infancy. Gravity-

induced errors due to reconfigurability, as well as the corresponding compensation 

strategies, need to be further investigated. 

 

        

         (a)                                (b) 

Fig. 3 Reconfigurable PKMs (a) TriVariant [41], (b) Exechon [42] 

3.3   Thermal Errors  

Although the thermal error sources in TNCMs and PKMs are similar, the error 

effects feature differently. Thermal errors in TNCMs are independent on each 

component, and their combined effects could also be added up for the open-loop 
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structure, but the non-uniform temperature distributions make it difficult to predict 

and compensate in Fig. 4(a). For PKMs, the thermal effects of the legs induced by 

screw drives are the major thermal error source [24], and the parallel structure makes 

the legs always perform asymmetry movement simultaneously resulting unequal 

temperature elevations [5]. Meanwhile, the thermal effects such as actual thermal 

defection of legs and frame are not independent and will be affected by each other 

within the closed-loop structure in Fig. 4(b). Thus, both of these make the PKM more 

susceptible to thermal loads, even besides the non-uniform temperature distributions. 

Although some studies in thermal error modeling [43], compensation [40] and cooling 

structure components [19, 35] have been conducted to decrease thermal errors of 

PKMs, it is far beyond the high accuracy expectation even compared with TNCMs. 

And co-thermal effects within the closed-loop structure could be attractive aspects in 

increasing the accuracy.  

 

 

  
              (a)                                (b) 

Fig. 2 Thermal expansion machine tools (a) TNCMs [44], (b) PKMs [45] 

4   Conclusion 

In this paper, structure-based error sources of both TNCMs and PKMs are 

identified in geometric/kinematic, gravitational, and thermal aspects. These structure-

based errors in each aspect are comparatively analyzed between TNCMs and PKMs, 

and inherent differences show that the structure complexity, the close-loop chains as 

well as the reconfigurability of PKMs bring new challenges to the final uncertainty of 

PKMs. Modified kinematic model with constraint errors, gravity-induced errors due 

to reconfigurability, and co-thermal effects within the closed-loop structure are 

highlighted for further investigations on improving the accuracy of PKMs. Also, the 

machining errors in PKMs induced by the other three basic elements i.e., cutting tool, 

processing method and clamping system will be reviewed in the future.  
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