
Adaptive Resource Allocation for Computation Offloading: A Control-
Theoretic Approach

Avgeris, M., Dechouniotis, D., Athanasopoulos, N., & Papavassiliou, S. (2019). Adaptive Resource Allocation for
Computation Offloading: A Control-Theoretic Approach. ACM Transactions on Internet Technology (TOIT),
19(2), [23]. https://doi.org/10.1145/3284553

Published in:
ACM Transactions on Internet Technology (TOIT)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 ACM. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of
the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:31. Oct. 2020

https://doi.org/10.1145/3284553
https://pure.qub.ac.uk/en/publications/adaptive-resource-allocation-for-computation-offloading-a-controltheoretic-approach(15ef9ad6-cb40-421e-86bc-fb1c2d9a776c).html

1

Adaptive Resource Allocation for Computation Offloading:
A Control-theoretic Approach

MARIOS AVGERIS, National Technical University of Athens, Greece

DIMITRIOS DECHOUNIOTIS, National Technical University of Athens, Greece

NIKOLAOS ATHANASOPOULOS, Queen’s University Belfast, Northern Ireland, UK

SYMEON PAPAVASSILIOU, National Technical University of Athens, Greece

Although mobile devices nowadays have powerful hardware and networking capabilities, they fall short

when it comes to executing compute-intensive applications. Computation Offloading, i.e. delegating resource

consuming tasks to servers located at the edge of the network, contributes towards moving to a Mobile Cloud

Computing paradigm. In this work, a two-level resource allocation and admission control mechanism for a

cluster of edge servers, offers an alternative choice to mobile users for executing their tasks. At the lower

level, the behavior of edge servers is modeled by a set of linear systems, and linear controllers are designed to

meet the system’s constraints and QoS metrics, while at the upper level, an optimizer tackles the problems of

load balancing and application placement towards the maximization of the number the offloaded requests.

The evaluation illustrates the effectiveness of the proposed offloading mechanism regarding the performance

indicators, e.g. application average response time, and the optimal utilization of the computational resources

of edge servers.

CCS Concepts: • Computer systems organization → Cloud computing; • Computing methodologies
→ Computational control theory; • Human-centered computing → Ubiquitous and mobile computing

design and evaluation methods;

Additional Key Words and Phrases: Edge Computing, Linear Modeling, Feedback Control

ACM Reference Format:
Marios Avgeris, Dimitrios Dechouniotis, Nikolaos Athanasopoulos, and Symeon Papavassiliou. 2018. Adaptive

Resource Allocation for Computation Offloading: A Control-theoretic Approach. ACM Trans. Internet Technol.
1, 1, Article 1 (January 2018), 20 pages. https://doi.org/10.1145/3284553

1 INTRODUCTION
Over the past decades, the processing and networking capabilities of mobile devices have grown

significantly. This allowed for the development of mobile applications for a wide range of human

daily activities, including healthcare and wellness, education, commerce and social media. However,

the constrained computing resources and battery capacity of mobile devices still remain an obstacle

for the realization of compute-intensive and high energy consuming applications. Mobile Cloud
Computing (MCC) is the emerging service delivery paradigm that integrates Cloud Computing

Authors’ addresses: Marios Avgeris, National Technical University of Athens, 9, Iroon Polytechniou Street, Zografou, 157 80,

Greece, mavgeris@netmode.ntua.gr; Dimitrios Dechouniotis, National Technical University of Athens, 9, Iroon Polytechniou

Street, Zografou, 157 80, Greece, ddechou@netmode.ntua.gr; Nikolaos Athanasopoulos, Queen’s University Belfast, Ashby

Building, Stranmillis Road, BT9 5AG, Belfast, Northern Ireland, UK, n.athanasopoulos@qub.ac.uk; Symeon Papavassiliou,

National Technical University of Athens, 9, Iroon Polytechniou Street, Zografou, 157 80, Greece, papavass@mail.ntua.gr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1533-5399/2018/1-ART1 $15.00

https://doi.org/10.1145/3284553

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3284553
https://doi.org/10.1145/3284553
Marios Avgeris

Marios Avgeris

Marios Avgeris

1:2 Avgeris, M. et al

(CC) into the mobile environment. MCC provides on-demand, low-latency and secure access to

a resourceful group of servers in the spatial vicinity of mobile users. This comes complementary

to the CC paradigm which suffers from latency issues due to the connection to remote servers

in the cloud through public Internet. MCC includes slightly different architectures, such as Edge

Computing, Mobile Edge Computing and Fog Computing [20]. The common characteristic that

these architectures share is the placement of a cluster of servers at the edge of the network. For the

rest of the paper, these servers are called Edge Servers independently of the architecture. Edge servers

receive and execute compute-intensive tasks of mobile applications. The problem of determining

what task, where and whether it should be offloaded in order to save energy and/or meet time

constraints is known as Computation Offloading, [16].

Currently and regardless of the adopted MCC architecture, the computation offloading decision

is coupled with the resource allocation in the edge servers. In contrast to the CC setting, a cluster

of edge servers does not have abundant resources. Consequently, together with the offloading

decision, a dynamic resource allocation and admission control mechanism, which we call Vertical
and Horizontal Scaling, is necessary. This mechanism is responsible for the (de)activation of the edge

servers, the placement of the application instances and the distribution of offloaded requests among

them, which we call Horizontal Scaling. Alongside, the admission control and resource allocation for

each application instance within the active servers, which we call Vertical Scaling. As it is referred

in Section 2, most of the proposed studies in the literature use queuing theory to model mobile

devices and edge servers, along with an optimization method for finding the optimal offloading

policy. The most commonly used criteria are the energy consumption of the mobile device and

the request throughput. There are two major shortcomings of these approaches that can lead to

the deterioration of the system’s performance: (i) the static modeling of the servers for fluctuating

workload can lead to over provisioning or under provisioning. (ii) there is no formal guarantee

of satisfying the physical constraints, i.e., CPU and memory sharing, or meeting the Quality of

Service (QoS) specifications, such as the average response time. Since all MCC architectures use

a small cluster of servers, a fallacious resource allocation mechanism can hamper the offloading

performance.

Contrary to the CC environments where dynamic modeling and control mechanisms have been

extensively adopted [17], [18], little attention has been given to the optimal use of the edge servers.

In this paper, we develop a two-level cooperative resource allocation mechanism for a single cluster

of edge servers hosting a group of applications, that allows mobile users, within the coverage

area, to offload application-specific tasks.It should be noted, however, that user mobility within

the cluster’s proximity has not been considered in this work and is left for future research. The

proposed mechanism can on-demand allocate the edge servers’ resources to different applications

using virtual machines (VMs). At the lower level, the dynamic operation of VMs is captured by

linear dynamics. The local controllers are responsible for regulating allocated CPU shares and

accepted offloading requests, according to a varying, however bounded in a given interval, incom-

ing workload. This comprises the Vertical Scaling part of our mechanism. At the upper level, a

horizontal scaling process is responsible for activating the essential number of edge servers and

placing the appropriate VMs into them. This comprises the Horizontal Scaling part. In particular,

the incoming requests are distributed to the activated servers in order to serve the total demand.

This process is orchestrated while taking the local controllers into consideration, making this

mechanism cooperative. The benefit of this approach is manifold.

At the lower level:

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:3

- our modeling approach can accurately capture the dynamic behavior of the application-

specific VM under different operating conditions.

- a multitude of feasible operating points can be calculated, considering different performance

and utilization costs, which allows us to design different control strategies for different pairs

of workload and applications.

- formal guarantees regarding resource allocation and QoS specifications are provided.

At the upper level:

- the minimum number of edge servers is activated to satisfy the overall workload of all

applications, based on the set of the feasible operating points of the lower level.

The rest of the paper is organized as follows; Section 2 discusses related work. Section 3 presents

the proposed modeling, alongside the vertical and horizontal scaling methodologies on the compu-

tation offloading at the edge servers. Detailed performance evaluation and comparison with an

energy aware offloading technique [30] are illustrated in Section 4 while conclusions are drawn

and opportunities for future research are identified in section 5.

2 RELATED WORK
One of the initial and influential work on MCC [25] proposed a dynamic VM synthesis of a cloudlet

infrastructure. The position paper [26] presented the potentials of MCC ecosystems; wearable

devices, Internet of Things (IoT) applications, automotive and industrial environments alongside

tactile Internet can leverage from the mobile-cloud convergence. The extended survey [24] presented

a definition of MCC, the vision and the challenges, a taxonomy of heterogeneity in MCC and open

issues. The survey paper [20] analyzed the challenges of Fog Computing in terms of architecture,

service and security and classified the existing studies according to these criteria.

Surveys of existing computation offloading approaches are provided in [16], [2]. The authors

of [10] addressed computation offloading as an admission control problem in MCC hotspots with

a cloudlet, using semi-Markov decision process modeling and linear programming. The resource

constraints were considered when obtaining the optimal solution. A similar dynamic offloading

algorithm was proposed in [32]. Therein, the admission control problem on cloudlets was modeled

and solved as a Markov decision process, aiming to minimize the computation and offloading costs.

Also the mobility of the users was taken into account. Khojasteh et al. [13] presented two flexible

resource allocation algorithms for computation offloading. The resource allocation process and VM

provisioning were modeled by a Markovian multiserver queuing system with priority levels and a

multidimensional Markov system, based on a Birth-Death queuing system with finite population,

respectively. In [22] three resource allocation schemes were proposed for computation offloading.

Several stochastic sub-models captured the operation of a physical machine, under the policy of

each scheme. The Markov Reward Model was applied to obtain the output of the sub-models and

the decision criteria consist of the request rejection probability and mean response delay. The

authors in [5] proposed a hierarchical MCC architecture where users could offload their tasks,

modeled by queuing models, either to local cloudlets or the remote public cloud. Computation

offloading was modeled as a generalized Nash equilibrium problem and a distributed algorithm

computed an equilibrium strategy for each user.

Many studies focus on energy-aware offloading. In [30] a two-tier MCC environment was

adopted; mobile devices, cloudlets and the remote cloud were described by static models and

an algorithm that optimized the minimum residual energy ratio was developed. Jalali et al. [11]

proposed static, flow-based and time-based energy consumption models. They presented a detailed

energy consumption comparison between CC and fog computing architectures while taking the

network equipment into account. Their numerical results demonstrated how offloading leads to

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:4 Avgeris, M. et al

energy saving for IoT applications. In [14], a task scheduling scheme for code partitioning in a

hierarchical cloudlet environment was proposed for two different use cases. The one finds the

optimal task scheduling for already defined radio parameters while the other optimizes both the

task scheduling and the transmission power of the mobile devices.

Finally there are some interesting studies that examine other problems in the area of computation

offloading. In [1], the feasibility of computation offloading and data backups in real-life scenarios

was examined. Since communication is not free, the authors focused on bandwidth and power

consumption of WiFi, 2G and 3G technologies. A real testbed with smartphones and Amazon EC2

nodes was used for thorough analysis. The authors of [31] focused on cloudlet placement in order

to minimize the average cloudlet access delay between mobile devices and cloudlets. A heuristic

scalable algorithm was proposed for the special case of homogeneous cloudlets. Jia et al. [12] used

the placement of [31] and proposed a load balancing algorithm to utilize fairly a group of cloudlets.

Queuing models were adopted for cloudlets and a scalable algorithm computed the optimal request

redirection such that the maximum of the average response times at cloudlets was minimized.

Trying a different approach, Liu et al. [19] proposed a game based distributed MEC scheme where

the users competed for the cloudlet’s finite computation resources via a pricing approach, modeled

as a Stackelberg game. The algorithms examined there were implemented in a distributed manner.

In [28], the authors proposed two algorithms for maintaining the low end-to-end delay between

the mobile devices and the cloudlets when the users move around the network topology. The key

idea lies in optimally deploying the mobile device’s corresponding VMs in the available cloudlets,

while adapting to the user’s movement. Dealing with the opposite data flow, i.e., offloading from

the cloud to the edge, the authors of [4] presented a collaborative content caching system at the

network edge. They developed a model to instruct the edge node to trigger on demand caching

when popular content has been identified. SDN techniques were leveraged to manage and distribute

the content among the access nodes in a coordinated manner.

A shortcoming of studies [30], [11], [1], [31] and [12] is that the modeling of the edge servers

captures accurately a single operating point and not the whole operating range. On the other hand,

for the various Markov process approaches [10], [32], [13] and [22], the execution time of each

request derived from a fixed service rate. However, these assumptions on the static operating range

and service rate apply only when the operating conditions are close to that point. Furthermore, in

the above studies, a systematic analysis on satisfaction of the QoS specifications and the constraints

is missing. The present study aims to address the aforementioned shortcomings. Thus, state-space

modeling is used to capture the dynamic behavior of the edge server under different operating

conditions. The local controller computes the system’s feasible operating (equilibrium) points while

considering different competitive criteria and guarantees the stability and confinement in a specific

area around them. The Horizontal Scaler takes these operating points into account and determines

the appropriate placement that serves the incoming varying workload.

3 COMPUTATION OFFLOADING
Computation offloading mitigates the energy consumption of resource-constrained mobile devices

by relocating the execution of the compute-intensive tasks to a group of Edge Servers that are

placed in the Mobile Users’ spatial vicinity. This placement enables low-latency access to the servers,

contrary to the access to the remote cloud through the public Internet, which is unpredictable when

it comes to response times. Figure 1 depicts the MCC computation offloading architecture studied

in this paper. Specifically, the offloaded traffic, generated from the mobile devices, is directed to

the Horizontal Scaler through the local Wireless Access Point (with WiFi, 3G/4G or LTE support).

There lies the upper level control process of our mechanism; this component selects an appropriate

VM placement to be implemented to each Edge Server directly connected to it and consequently

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:5

Fig. 1. MCC Computation Offloading Architecture

distributes the incoming workload accordingly. This decision defines the number of active servers

alongside the number and the operating state of the VMs to be placed in them. This upper level

process is performed in an on-line and proactive manner, through the use of an internal prediction

mechanism, the Workload Predictor, described in more details in subsection 3.3.2, able to estimate the

incoming offloading requests in the following time window. The essential input for this estimation

process is provided by the Monitoring Service component, which is responsible for collecting data

regarding both the network traffic (e.g. offloading requests issued, end-to-end response times) and

the servers’ resources utilization (e.g. CPU usage) at each given time. As mentioned earlier, this is

the horizontal scaling part of our mechanism and the theory behind it is described thoroughly in

3.3.

At the lower level, each edge server is equipped with a Local Controller, able to create, run, scale

and stop application-specific VMs, thus assisting the realization of the selected VM placement

for the given time window. Additionally, the lower level control process is implemented in this

component, as it moderately scales the VMs vertically based on data coming from the Monitoring

Service. In this way, it ensures that the VMs remain within the selected operating state, thus

guaranteeing minimum and stable application response times. The theoretical design behind this

control process is described in more detail in subsection 3.2.

Figure 2 illustrates the workflow of the proposed MCC computation offloading mechanism. In the

proposed approach, the operation of the VMs is modeled by a group of Linear Time Invariant (LTI)

systems that are subject to additive exogenous disturbances. The parameters a,b of the LTI systems

in (1) are identified by experimental data. At first, for each LTI system, a feasible equilibrium

of the nominal disturbance-free model of the VM, (xe ,ue), is computed. Each equilibrium point

corresponds to an operating state of the VM without assuming disturbances. For example, an

operating point might correspond to 3 requests per second, utilizing 20% of CPU allocation and

resulting in an average response time of 3sec. For each equilibrium point a linear state feedback

controller, meaning the control gain k , is designed by taking the disturbed system into account,

within the Local Controller component. Specifically, by regulating the assigned CPU allocation

and the number of admitted requests, we design a controller such that the closed loop system (i)
is stable, (ii) satisfies the constraints and the QoS specifications at all times and for any initial

condition, starting from within the constraint set, and (iii) behaves optimally in steady state. Since

the proposed resource management mechanism offers guaranteed response time to mobiles users,

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:6 Avgeris, M. et al

Fig. 2. MCC Computation Offloading Mechanism Worklflow

the offloading decision breaks down to a simple comparison between the estimated execution time on
the mobile device and the guaranteed response time provided by the edge servers.

At the upper level, for each application the Horizontal Scaler receives an estimation of the

forthcoming requests Λ̃, made by the Workload Predictor component, and the set of the feasible

operating points (xe ,ue), computed by the feedback controller, as input. Then, based on this

information, it decides the minimum number of active edge servers and the VM placement to

be implemented in them, towards the satisfaction of the total demand for each application. This

cooperation of the two control levels ensures that the selected operating point of each VM from

the Horizontal Scaler will be realized by the feedback controller of the VM. The following table

sums up the main symbols used in the next subsections, alongside their description:

Table 1. Table of Notations

t Time instant

λ Incoming Request Rate per second (RR)

x Average Response Time (sec.)

u Input u(t) = [u1(t) u2(t)]⊤
; u1 is the allocated VM CPU;

u2 is the RR admitted at the VM

(xe ,ue) Feasible Operating Point

re Statically allocated VM memory

w Communication disturbances

a,b LTI system parameters

k Control gain

X, U State and Input Constraints

S Invariant set

P The Set of Feasible VM placements

E Number of edge servers

Λ̃ Predicted Incoming RR

3.1 System Modeling
In our setting, a number of N ≥ 1 different applications are hosted in isolated VMs in an edge

server. For each application and for a range of incoming request rates, a scalar discrete LTI system

is identified. To this purpose, let

λ(t) ∈ [Λm , ΛM]
denote the incoming Request Rate (RR) per second at time instant t , which is varying in an interval

[Λm , ΛM]. The range of incoming RR is divided in L subintervals of the form [Λi,m , Λi,M] ⊂

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:7

[Λm , ΛM], i = 1, . . . , L. Consequently, for each application and each request rate subinterval a linear
system with additive disturbances is identified of the form

x(t + 1) = max{ax(t) + bu(t) + w(t), 0}. (1)

In the above equation, x(t) is the average response time, u(t) = [u1(t) u2(t)]⊤ ∈ R2
is the

input vector and w(t) ∈ [wm ,wM], wm < 0 < wM , is an unknown, however bounded, signal,

which accounts for the disturbances induced by the communication between the edge server and

the mobile users and the modeling error of the identified model. In our case, we focus on CPU

intensive applications, thus, VM memory is statically assigned and not included in the linear

systems. However, the Horizontal Scaler takes memory constraints in the VM placement problem

into account, as it described in subsection 3.3.1. To simplify notation, we do not indicate in our that

the exposition is done for system i, since this is arbitrary chosen.

The input u1 ∈ [u1m ,u1M] corresponds to the allocated CPU share of the VM whereas u2 ∈
[Λi,m , Λi,M] is RR the controller admits. The parameter a ≥ 0 is a known scalar while b ∈ R1×2

is a

row vector. Both a,b can be estimated using the Recursive Least Square (RLS) algorithm [29]. The

maximum operator in (1) ensures that there are no negative average response times in the model.

The state and input variables x and u are inherently constrained due to the finite resources and

the control specifications. In specific,

X :={x : 0 ≤ x(t) ≤ XM }, (2)

U :={u : um ≤ u(t) ≤ uM }, (3)

for all t ≥ 0, where um = [u1m Λi,m]⊤
, uM = [u1M Λi,M]⊤

.

By having a set of models (1) corresponding to different RR intervals, we provide better level of

accuracy than a single LTI model for the whole range of RR. Additionally, the number of models

scales linearly with respect to L, since we consider the co-hosted applications are decoupled and

depend only on the number of subintervals of the RR.

At the lower level, the local controllers focus on the joint resource allocation and admission

control of edge servers in order to perform guaranteed response time under the varying workload of

the consolidated applications. For the lower control leve (vertical scaling), our goals are summarized

as follows.

P1. Consider system (1) subject to the constraints (2), (3) that corresponds to a certain incoming

request rate. Given a desired response time, find a feasible operating region for the system (1) which

is optimal with respect to a well defined cost.

P2. For each operating condition calculated in P1, compute an admissible control strategy which

steers the closed loop system to it and respects the constraints at all times.

3.2 Vertical Scaling
In this section, we discuss how our approach tackles the problems P1, P2 simultaneously. In specific,

an optimization problem is formulated whose solution retrieves both the operating condition and

the control strategy. This approach is less conservative than the multi-step approaches in the

literature [7], [8].

Let us consider an admissible equilibrium pair (xe ,ue) for the disturbance-free system (1), i.e.,

when w(t) = 0, for all t ≥ 0. Clearly, xe and ue satisfy the equation

xe = axe + bue

and satisfy the constraints (2), (3). An affine state feedback control laws of the form is considered

u(t) = k(x(t) − xe) + ue , t ≥ 0, (4)

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:8 Avgeris, M. et al

where k ∈ R2
is the control gain and ue ∈ R2

is a constant vector. A state and input coordinate

transformation is applied by introducing z(t),v(t), defined by

z(t) = x(t) − xe ,

v(t) = u(t) − ue .

Consequently, the closed-loop form of the system (1) with the control strategy (4) becomes

z(t + 1) = max{(a + bk)z(t) + w(t), −xe }. (5)

Contrary to the nominal, disturbance-free case, for the actual system (5) each operating condition

refers inevitably to a set of average response times x rather than a singleton due to the presence of

additive disturbances. This set is known in the control literature as the minimal robust positively
invariant set or the 0-reachable set [23], [3]. It represents the set of states that can be reached from

the equilibrium point under a bounded disturbance.

Definition 1. Consider system (5). An interval S = [sm , sM] is called an invariant set1 for system
(5) if z(0) ∈ S implies z(t) ∈ S, for all t ≥ 0 and any w(t) ∈ [wm ,wM]. If, additionally, |a + bk | < 1,
an interval Smin is called the minimal invariant set with respect to (5) if it is invariant and it is
included in any other invariant interval. Last, consider the constraints z(t) ∈ Z = [zm , zM]. The
interval Smax ⊆ Z is called the maximal admissible invariant set with respect to (5) if it is invariant
and includes any other invariant interval.

Computing the minimal invariant set exactly is difficult, since in the general case it is the

limit of a set sequence which converges only asymptotically. Nevertheless, in our case since we

opted to utilize scalar systems, it has an analytical description. This fact allows the simultaneous

characterization of a stabilizing control gain and the minimal invariant set.

Theorem 1. Let xe ∈ R,ue ∈ R2 and k ∈ R2 satisfy (6)–(11)

(1 − a)xe = bue , (6)

0 ≤ xe ≤ xM , (7)

um ≤ ue ≤ uM , (8)

wM

1 − a − bk
≤ xM − xe , (9)

0 ≤ a + bk < 1, (10)

max{um − ue

xM − xe
,
uM − ue

−xe
} ≤ k ≤ min{uM − ue

xM − xe
,
um − ue

−xe
}. (11)

The following hold.
(i) The set

Smin =
�
max{xe +

wm
1−a−bk , 0},xe +

wM
1−a−bk

�
(12)

is the minimal robust positively invariant set with respect to the system (1) under state feedback (4).
(ii) The set Smax = X is the maximal robustly invariant set with respect to the system (1) under state
feedback (4).
(iii) For any initial condition x(0) ∈ Smax and any positive number ϵ , there is a time T > 0 such that

max

y ∈Smin

|x(T) − y | ≤ ϵ . (13)

1
By invariance we mean robust positive invariance, or D-invariance, see, e.g., [3],[15].

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:9

Proof. (i) From (6)–(8), xe is an admissible equilibrium point for the nominal system (1) with

control input ue . By (10) and [15, Theorem 4.1], the minimal invariant set with respect to (5) is

given by the limit of the forward reachable sets sequence. In our case, this sequence is defined by

the iteration
2

R0 = {0},

Ri+1 = ((a + bk)Ri ⊕ [wm ,wM]) ∩ [−xe , ∞).

Since we are dealing with intervals, it is straightforward to see that for any i ≥ 0

Ri =

"
max

(
i−1Õ
k=0

(a + bk)iwm , −xe

)
,

i−1Õ
k=0

(a + bk)iwM

#
,

and consequently, the minimal invariant set for the system (1) is directly given by (12).

(ii) Setting z = x − xe , we show that Smax = S1 ∩ S2, where S1 := {z : um − ue ≤ kz ≤ uM − ue }
and S2 := {z : −xe ≤ z ≤ xM − xe }. Specifically, we show that S2 is invariant and also S2 ⊆ S1.

Since S2 is the translation of the state constraints X in z, the claim will be proved.

To this purpose, for S2, we first assume thatw = wM ; then from (9) we getw ≤ (1−a−bk)(xM −xe).
Considering the maximum value of S2 z0 = xM − xe , then z1 = xM − xe , z1 ∈ S2. Accordingly,

considering the minimum value of S2 z0 = −xe , then z1 = (1 − a − bk)xM − xe and by applying

(10) we still get that z1 ∈ S2. Next, let us assume that w = wm ; as it stands, wm < wM so the

aforementioned paradigm let us conclude that z1 ∈ S2. Thus, by induction, we conclude that

−xe ≤ zt+1 ≤ xM − xe while zt ∈ Smax, for all t ≥ 0 and any w(t) ∈ [wm ,wM].
To show S1 ⊇ S2, it suffices to show that −xe ∈ S1 and xM − xe ∈ S1. Indeed, for z1 = xM − xe

it holds that

um − ue

xM − xe
≤ k ≤ uM − ue

xM − xe
,

while for z1 = −xe we have that

uM − ue

−xe
≤ k ≤ um − ue

−xe

Both sets of the inequalities are satisfied due to the hypothesis (11). Consequently, S1 ⊇ S2 and

since S2 invariant, Smax is invariant and admissible as well. Maximality of Smax follows directly by

observing that any x0 < Smax violates the state constraints (2).

(iii) We show that any trajectory beginning from Smax is driven asymptotically (in fact exponen-

tially) to Smin. To this purpose, for any z0 ∈ Smax then after i time intervals it holds that,

zi = (a + bk)iz0 +

i−1Õ
j=0

(a + bk)jw j , (14)

where w j ∈ [wm ,wM], j = 0, ..., i − 1. By (10), the first term in (14) converges to zero exponentially,

while the second term, as shown in (i), is bounded in Smin. Thus, given any ϵ > 0 and setting

a + bk = l < 1, from (14) we have that since z0 ∈ Smax, then necessarily zi ∈ l iSmax ⊕ Smin.

Consequently zi ∈ Smin.

Since Smax and Smin are intervals containing zero, we can always find a positive scalar d such

that Smax = dSmin, thus zi+1 = (l id + 1)Smin. Thus, (13) can be satisfied for any T such that

(lT d + 1)Smin ≤ (1 + ϵ) Smin, or, T ≥ logl
ϵ
d .

□

2
For two sets X, Y, we have X ⊕ Y = {x + y : x ∈ X, y ∈ Y }.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:10 Avgeris, M. et al

Remark 1. It is worth underlining that any choice of the control gain k that satisfies the relations
(2) and (3), will render the whole constraint set as invariant.

Theorem 1 characterizes simultaneously the minimal invariant set and the gain of the associated

control law. More importantly, it provides a tractable method of retrieving Smin and k. Specifically,

for each model of (1) and given the equilibrium xe , a feasible equilibrium pair (xe ,ue), close to the

pair of the desired values (xe ,u⋆
e), and a state feedback control law of (4), which steers the closed

loop system inside the minimal invariant set, can be calculated by solving the following linear

programming problem,

min

ue ,k
∥ue − u⋆

e ∥∞ (15a)

subject to

(1 − a)xe = bue (15b)

um ≤ ue ≤ uM (15c)

bk ≤ 1 − a − wM

xM − xe
(15d)

− ue − (xM − xe)k ≤ um (15e)

ue + xek ≤ uM (15f)

um ≤ ue + (xM − xe)k ≤ uM (15g)

um ≤ ue − xek ≤ uM (15h)

0 ≤ a + bk < 1 (15i)

where constraint (15b) ensures that (xe ,ue) is an equilibrium pair, (15c) means that the input

constraints are satisfied. The constraint (15d), identically to (9), indicates that (xe ,ue) belongs to

Smin, while the constraints (15e)-(15h) are an analytical description of (11) ensuring that (xe ,ue)
belongs to Smax. Finally, the constraint (15i) is identical to (10).

Apart from the guarantee of the QoS metrics, the computed feasible operating points are used

by the upper control level to determine the operating state of the activated VMs. The Horizontal

Scaler, as it is described in section 3.3.1, selects the operating area of each activated VM from the

set of feasible operating point. Complementary to this, the local controller ensures that the chosen

VM operating state will be realized by the described vertical scaling approach.

3.3 Horizontal Scaling
As discussed earlier, the upper control level consists of two essential components; the Horizontal

Scaler and the Workload Predictor. The former aims to implement the appropriate VM placement

on the minimum number of active edge servers, in order to satisfy the total workload of the co-

hosted applications. The latter estimates the workload for the following time window, based on the

previous actual value measured. This control level considers a cluster of edge servers located in a

single place. Load balancing between geographically dispersed edge server clusters is not goal of

this paper, but is part of our future work.

3.3.1 Horizontal Scaler. The Horizontal Scaler aims to compromise the mutually exclusive

goals of performance and resource utilization. In particular, since the edge servers’ resources are

not abundant, unregulated performance demands for a single application would require the high

allocation of computational resources on all servers, leaving the co-hosted applications in resource

starvation. This is not desirable if the QoS requirements are met with less resources. The Horizontal

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:11

Scaler component is responsible for optimizing the VMs’ instantiation and for distributing the

total requests of the implemented applications among them. The optimization objective of our

approach is to minimize the number of the active edge servers, with the constraint of meeting the

total workload demands. This indirectly results in reducing the consumed energy and optimally

allocating the resources in the server side. The proposed Horizontal Scaler component leverages the

fact that the size of a cluster of edge servers is small compared to a cloud datacenter, thus a heuristic

solution can be reached with small computation effort. In our approach, we make the assumption

that each edge server hosts at most one VM per application. Taking this into consideration, the

Horizontal Scaler’s functionality breaks down in two steps; at the first off-line step, it computes all

the feasible VM placements within a single server, based on the set of the VMs’ feasible operating

points. These feasible placements are the ones where the total CPUs and memory required from the

co-hosted VMs’ operating points do not exceed a predefined threshold. Since we do not consider

memory as a control variable, a static portion of memory re is assigned to every feasible operating

point. For example, assume two applications Appx
and Appy

; a VM running Appx
and instantiated

at an operating point which requires 25% allocated CPU and 4GB of RAM, alongside a VM running

Appy
and instantiated at an operating point, which requires 55% allocated CPU and 8GB of RAM,

is a feasible VM placement for a single edge server, as the total allocated CPU and memory do not

exceed the threshold CE , set at the 90% of the server’s total CPU capacity and RE set 32 GB of RAM

respectively. More formally, the set of all feasible VM placements is defined as,

P := {pi =
�
(u1

1e , r 1

e), . . . , (uN
1e , r N

e),
�

, i = 1, . . . , N :

NÕ
i=1

ui
1e ≤ CE ,

NÕ
i=1

r i
e ≤ RE }

Then, assuming this set P, this set’s cardinality |P | and the total number of the edge servers E, it

determines the number of servers to be activated EA, by solving the following mixed integer linear

program in an on-line fashion,

min

fi ,EA
{EA} (16a)

subject to

fi ≥ 0, i = 1, . . . , |P | (16b)

EA =

|P |Õ
i=1

fi (16c)

0 ≤ EA ≤ E (16d)

|P |Õ
i=1

fiu
j
2e ≥ Λ̃j , j = 1, . . . , N (16e)

where the positive integer variables fi denotes how many servers with the pi VM placement of set

P need to be activated. As the constraint (16c) denotes, the sum of these variables is equal to EA.

The constraint (16d) simply restricts these activated servers to the total number of the edge servers.

Finally, the last N constraints of (16e) denote that the estimated total workload for each application

Λ̃j
, as it is computed in the following subsection, is satisfied by the selected VM placements. It

is important to point out that the Horizontal Scaler component is triggered only if a significant

variation in any of the application’s workload occurs. This intends to avoid the frequent server

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:12 Avgeris, M. et al

activation/deactivation, which leads to oscillation of resource allocation and degradation of VM’s

performance.

3.3.2 Workload Predictor. For each application, the total incoming RR is estimated by the Holt

linear exponential smoothing filter [21] that captures the linear trend of time series. For any time

interval i, the one-step prediction Λ̃(i) of the incoming request rate Λ(i) is:

Λ̃(i) = Λ̂(i) + c(i),
Λ̂(i) = αΛ(i) + (1 − α)(Λ̂(i − 1) + c(i − 1)),
c(i) = β(Λ̂(i) − Λ̂(i − 1)) + (1 − β)c(i − 1).

(17)

where α , β are smoothing constants, Λ̂(i) is the smoothed value and c(i) denotes the linear trend in

the measurement series. For the initialization, a random value of Λ̂(0) is used within the range of

the incoming RR and c(0) = 0.5.

4 EVALUATION
In this section, we present an experimentation on the proposed computation offloading mechanism

and the respective results. These results illustrate the success of our approach in guaranteeing the

stability of application response times within an acceptable margin. We highlight the optimization

of the resource allocation in terms of edge servers activated to serve the incoming workload.

Moreover, an experimental comparison between the vertical scaling part of our mechanism and

[30] is demonstrated. The benchmarking is performed using CloudSim Plus [27], a simulation

environment suitable for cloud computing and MCC experimentation, on a dual-core, macOS

powered system with 8GB of available memory.

4.1 Horizontal Scaler’s Complexity
Before proceeding with the detailed presentation of the epxerimental setup used throughout

our detailed evaluation study and the presentation of the corresponding performance of the

proposed computation offloading mechanism, we present some initial numerical results regarding

the complexity of the Horizontal Scaler. As expected, the problem we are solving is a combinatorial

one expressed as a mixed integer linear program in (16). For treating the mixed integer problem of

the Horizontal Scaler the GLPK solver [9] is used. The problem under consideration is generally

NP-Hard and the lower bound of the computational complexity of the Branch-and-Cut algorithm

used to find a solution is exponential [6]. Specifically, in the following, we analyze the performance

of the Horizontal Scaler considering the dominant parameters of the optimization problem: the

number of mobile applications, the total number of the feasible operating points of all applications

and the number of available edge servers.

Figure 3 illustrates the effect of the above parameters. The left graph demonstrates the effect

of the number of the feasible operating points. Three applications are co-hosted in a cluster of

servers and the number of available operating points per application varies from 3 to 6, which

produces a set P with a cardinality of 27 to 116 respectively. Subsequently, the computational time

of (16a) increases accordingly. The middle graph of Figure 3 shows that the computational time

also increases as the consolidated applications grow in numbers. More applications lead to more

operating points, and consequently to the exponential increase of the computational time. Finally,

at the right side of Figure 3, the effect of the number of the available edge servers is illustrated. As

observed by the corresponding results, this parameter substantially affects the computational time

only when the number of active edge servers is high. However, it should be noted that mobile edge

computing, contrary to the traditional cloud environment, is usually based on small/medium data

centers that typically are expected to host few applications.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:13

Fig. 3. Analysis of Horizontal Scaler’s Computational Complexity.

Table 2. VM Operating Points (xe ,u1e ,u2e , re).

VMs of App1
VMs of App2

(0, 0, 0, 0) (0, 0, 0, 0)
(3, 25, 2.95, 4) (3.75, 25, 3.23, 4)
(3, 35, 4.63, 6) (3.75, 35, 5.29, 6)
(3, 45, 6.18, 6) (3.75, 45, 7.38, 6)
(3, 55, 8.02, 8) (3.75, 55, 9.58, 8)

4.2 Experiment Setup
In our simulation, which spans around 4h and 10min, or 15000sec , we assume three physical

machines with 32GB of RAM which are utilized as edge servers; as mentioned earlier, each of them

is manually restricted to hosting at most two isolated VMs, each of which realizes one of the two

supposed applications, (N = 2), named App1
and App2

; the edge servers are also restricted to hosting

no more than one VM per application. More specifically, we follow this notation: V Mi j corresponds

to the VM running on the ith server and implementing the jth application. The mobile traffic is

simulated with a Poisson distribution of requests arriving at the Horizontal Scaler component, while

the length of each request follows an Exponential distribution. For both applications, the incoming

offload RR varies between 1 and 25req/sec . However, for each of the application-specific VMs, the

distributed RR range is divided in the following four subintervals: [0, 3.5], [3.5, 5.5], [5.5, 7.5] and

[7.5, 10]. A model of (1) is identified and an equilibrium point and a control law are computed

by solving (15a) - (15i) for every subinterval. Thus, in total we identify off-line eight systems

and their respective controllers. The worst acceptable response time for the offloaded requests is

set to 6sec and 7.5sec for App1
and App2

respectively. The desired average response time of the

equilibrium points of the applications are set to the half of these values, x1

e = 3 and x2

e = 3.75.

Indicatively, Table 2 depicts the operating points computed for both applications (x i
e ,ui

1e ,ui
2e , r i

e).
The first operating point, with zero input and average response time, corresponds to an inactive

VM. Table 2, also, justifies our assumption of hosting only one VM per application per server. For

example, co-locating two VMs of App1
, namely running on the second operating point of Table 2

would result in cumulatively serving less offloaded requests on average than deploying a single

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:14 Avgeris, M. et al

Fig. 4. Incoming Offloading Request Rates for both App1 and App2.

VM running on the fourth operating point, though the latter choice would result in allocating less

CPU. This is a consequence of the related operating overhead of each separate VM deployment.

As described earlier, at the end of the time window, i.e., every 30sec , the Workload Predictor

estimates the incoming RR for the next window. When the previously predicted RR and the currently

predicted RR, have an absolute difference greater than a predefined threshold, specific to the nature

of this application, the Horizontal Scaler is triggered and selects the appropriate VM placement to

be instantiated at the edge servers. For the particular applications, this threshold is set at 3req/sec .

The duration of this time window is selected after considering the maximum time it would take for

an in-range user to take the decision to offload, connect, offload and receive the results. During

this window the request rate remains relatively stable. Much larger time window would fail to

adapt to the changes in the request rates, while much shorter time window would probably result

in unnecessary invocations. Furthermore, the control interval of 30sec appears to be adequate for

the computation of the VM placement by the Horizontal Scaler, as it is later shown in Section 4.3.

However, for other types of applications, this control time interval may be selected differently, in

order on one hand to be larger than the computational time of mixed integer problem that needs to

be solved, and on the other hand efficient enough to properly follow the variation of the incoming

requests.

4.3 Numerical Results
The results depicted in Figures 4 to 8 are used to evaluate the efficiency of our proposed mechanism

in the above-mentioned scenario. Figure 4 depicts the fluctuations in the actual (red line) and the

predicted (blue line) RR per application during the experiment. For both applications, the actual

incoming RR is altered every 50min, or 3000sec . Figures 5 - 7 illustrate the measured average

response time and the inputs per VM in each server respectively; the left graph of each figure

depicts the actual application response time (red line) together with the boundaries of the positive

invariant sets, Smin (blue line) and Smax (black line). The middle shows the actual RR served by

the respective VM on the edge server (red line), together with the RR rejected by the particular VM

and sent back to the mobile device for execution (black line). The nominal RR value of the selected

VM’s operating point is also shown (blue line). In the right graph, the actual CPU share allocated

to the VM is shown (red line), alongside the operating point’s nominal value (blue line), for each

given moment.

We can observe, in the left graph of subfigures 5a, 6a and 7a, that the average application response

time for App1
remains between the given constraints, despite the workload fluctuation. The similar

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:15

(a) V M11 Performance.

(b) V M12 Performance.

Fig. 5. Average Response Time, Request Rate and CPU Share Allocation of VMs in first server.

results are observed in the left graph of subfigures 5b, 6b and 7b for App2
. This means that the

theoretical guarantees of Theorem 1 (i) are translated in the response times not exceeding the

boundaries of the minimal invariant set, Smin and Smax. The middle graphs of Figures 5 - 7 depicts

how the Horizontal Scaler adapts to these fluctuations and selects the appropriate placement,

in terms of number of active edge servers, VMs and their operating points, in order to meet the

demanded RR. As shown in Figure 8, it activates one edge server between 0−3000sec , 6000−9000sec
and 12000 − 15000sec ; two edge servers between 9000 − 12000sec and three between 3000 − 6000sec .

Of these incoming workload fluctuations, the rapid ones, e.g. around the 3000sec area, allow us to

also demonstrate the Local Controllers’ functionality; in such situations, the Workload Predictor

component requires a time window to adapt, due to the fact that the estimated RR value is based

on the previous actual incoming RR value. This results in the Horizontal Scaler failing to select

the appropriate VM placement for the specific time window. However, each VM’s Local Controller

proves to be en garde by rejecting the excessive offloading requests and redirecting them back

to the mobile device for execution, in order to guarantee the stability of the response time. This

guarantee is also provided by the Local Controller in the form of vertically scaling the VM; the

Workload Predictor’s minor inaccuracies are handled by moderately regulating the CPU resources

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:16 Avgeris, M. et al

(a) V M21 Performance.

(b) V M22 Performance.

Fig. 6. Average Response Time, Request Rate and CPU Share Allocation of VMs in second server.

and the accepted RR within limits of the operating point’s area. This procedure is illustrated in the

middle graph of each subfigure of Figures 5 - 7; when the RR accepted in the VM has reached the

value calculated from the Local Controller for the selected operating point, the excessive, rejected

RR, which as a consequence is relocated to the mobile devices for execution, is increased. Also at

the third graph of each subfigure, where some minor fluctuations are observed in the actual CPU

share from the respective nominal values of the operating point. It is important to remark that for

every VM and for the most part of the experiment, the actual and the nominal values of the CPU

share overlap, making only the blue line observable. Furthermore, some short sudden changes in

the selected operating points of the VMs, depicted in the second and third graphs of the subfigures,

occur due to certain spikes in the incoming RR; these spikes are so acute that the Horizontal Scaler’s

trigger condition is satisfied. Consequently the appropriate VM placement is recalculated with the

updated operating points. We can see that it is this combination of horizontal and vertical scaling

that results in the overwhelming majority of offloading requests being successfully served; 95.18%

of the total requests for App1
and 98.74% for App2

respectively.

Another interesting remark is that the Horizontal Scaler selects a VM placement, which mini-

mizes the number of active servers but not necessarily the total allocated CPU share. This happens

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:17

(a) V M31 Performance.

(b) V M32 Performance.

Fig. 7. Average Response Time, Request Rate and CPU Share Allocation of VMs in third server.

due to the structure of the optimization problem’s objective function in (16a). One approach to addi-

tionally include this optimization objective in our framework would be to revert to multi-objective

optimization, either by using preemptive optimization or a multi-objective cost. However, this

would significantly increase the time complexity of the decision-making part without envisioning

substantial benefits.

4.4 Comparative Results
A second experiment better demonstrates the performance of the proposed vertical scaling mecha-

nism alone and compares it with [30]. This is an energy-aware offloading approach, which uses

Fig. 8. Active VMs in Edge Servers

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:18 Avgeris, M. et al

Fig. 9. Evaluation and comparison of proposed approach with [30]

edge server VMs with fixed CPU shares allocated. The offload decision depends on an SLA threshold

for the response time of the offloaded requests, named Td . At the end of each time window, i.e.,

every 30sec, an estimation of the incoming RR for each application is computed by (17) and the

input vector is updated according to (4), regarding the following window. The upper left graph of

Figure 9 depicts the actual response time and the boundaries of Smin and Smax for App1. After the

initial interval, the response time steers from Smax, which we remind is equal to X, to Smin and

remains within. This proves the validity of Theorem 1 (iii). In particular, by computing the control

law solving the linear program (15a) - (15i), we see the convergence to the minimal invariant set.

The upper right graph shows the average response time for allocated CPU = 25%, 45%, and Td = 6

of the approach [30]. In the first quarter of this graph, the SLA is violated for the under provisioned

VM with CPU = 25%. The second row of Figure 9 again illustrates the request rates served by the

edge server and the mobile devices. On the left side, our approach seems to adapt well against

the various incoming RR. Once again, the observed rapid fluctuation of the served requests exist

due to false predictions of the incoming RR. As expected, this does not affect the response time.

On the right side, it seems that the use of Td restricts the amount of requests directed to the edge

server. This explains the better response times of the upper right graph. For our proposed offloading

mechanism, the requests served at the edge server approach 95.54% of the whole workload, while

for [30] this percentage is limited to approximately 76%, for both CPU shares. It is clear that our

proposed approach performs better against the varying workload because of the vertical scaling of

the VMs.

5 CONCLUSIONS AND FUTURE WORK
In this study, a cooperative, two-level computation offloading mechanism for mobile applications is

presented. The VM operation is modeled by a group of LTI models and for each model an equilibrium

operating point, a proper controller and the minimal and maximal positive invariant sets are

computed. At the upper level a horizontal scaling procedure takes place; an optimizer determines

the number of active edge servers and the operating points of the VMs to be implemented in them,

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

Adaptive Computation Offloading 1:19

in order to serve the total workload for each application. This decision takes into consideration

the calculated equilibrium points for each underlying VM, thus guaranteeing the scalability of

our mechanism towards major workload fluctuations. At the local level, a controller handles the

minor workload fluctuations by scaling the VMs vertically, ensuring that the average response time

is stabilized and restricted in a specific range of values. The experimental evaluation shows that

the proposed mechanism achieves high percentage of requests admitted in the edge servers while

the performance constraints are met, outperforming a well established energy aware offloading

method.

Future work will focus on further investigating improvements on the modeling and control

of the application-specific VMs and leveraging different combinatorial optimization criteria to

improve the Horizontal Scaler’s decision making mechanisms. Specifically, it should be noted that,

as mentioned before, in this work we mainly aim at minimizing the number of active servers with

the constraint of meeting the total workload demands. By offloading as many tasks as possible

while keeping the number of active servers low, implicitly energy efficiency on the mobile nodes

and the edge servers is targeted as well. However, dealing with explicitly optimizing energy cost in

the mobile nodes (e.g. maximize the offloaded requests) or the edge servers (e.g. minimize number

of allocated CPUs) is also an interesting and challenging problem and part of our current and

future work. Additionally, minimizing functional costs like data transmission costs (e.g. how the

requests are distributed among the servers), or maximizing revenue/income for the infrastructure

providers (e.g. how many different VM-applications can run per server) can be used as additional

or alternative objectives for the Horizontal Scaler component of our framework.

Furthermore, as mentioned in the beginning, user mobility has not been considered in this

work. Nevertheless this is a very challenging and important point, and we currently investigate

the consideration and impact of user movement within an area covered by several wireless ac-

cess points connected to an edge server cluster. In the same direction, the potential use of the

proposed architecture and placement in the context of multiple proximate edge clouds, in order to

accommodate workload balancing between edge servers located in remote areas, or between edge

servers and the cloud, is an issue of high practical and research importance. Finally, we intend to

test the proposed approach under real-life use cases, such as IoT or 5G enabled applications, in

heterogeneous Future Internet testbeds/infrastructures.

REFERENCES
[1] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. 2013. To offload or not to offload? the bandwidth

and energy costs of mobile cloud computing. In INFOCOM, 2013 Proceedings IEEE. IEEE, 1285–1293.

[2] Arani Bhattacharya and Pradipta De. 2017. A survey of adaptation techniques in computation offloading. Journal of
Network and Computer Applications 78 (2017), 97–115.

[3] Franco Blanchini and Stefano Miani. 2008. Set-theoretic methods in control. Springer.

[4] Zhen Cao and Panagiotis Papadimitriou. 2016. Collaborative content caching in wireless edge with SDN. In Proceedings
of the 1st Workshop on Content Caching and Delivery in Wireless Networks. ACM, 6.

[5] Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco Facchinei, Vincenzo Grassi, Francesco Lo

Presti, and Veronica Piccialli. 2016. A game-theoretic approach to computation offloading in mobile cloud computing.

Mathematical Programming 157, 2 (2016), 421–449.

[6] Sanjeeb Dash. 2005. Exponential lower bounds on the lengths of some classes of branch-and-cut proofs. Mathematics
of Operations Research 30, 3 (2005), 678–700.

[7] Dimitrios Dechouniotis, Nikolaos Leontiou, Nikolaos Athanasopoulos, George Bitsoris, and Spyros Denazis. 2012.

ACRA: a unified admission control and resource allocation framework for virtualized environments. In Proceedings of
the 8th International Conference on Network and Service Management. IFIP/IEEE, 145–149.

[8] Dimitrios Dechouniotis, Nikolaos Leontiou, Nikolaos Athanasopoulos, Athanasios Christakidis, and Spyros Denazis.

2015. A control-theoretic approach towards joint admission control and resource allocation of cloud computing

services. International Journal of Network Management 25, 3 (2015), 159–180.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Marios Avgeris

1:20 Avgeris, M. et al

[9] GLPK-YALMIP. 2016. Mixed-integer linear programming solver. (September 2016). Retrieved June 24, 2018 from

https://yalmip.github.io/solver/glpk/

[10] Dinh Thai Hoang, Dusit Niyato, and Ping Wang. 2012. Optimal admission control policy for mobile cloud computing

hotspot with cloudlet. In Wireless Communications and Networking Conference (WCNC), 2012 IEEE. IEEE, 3145–3149.

[11] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S Tucker. 2016. Fog computing may help to

save energy in cloud computing. IEEE Journal on Selected Areas in Communications 34, 5 (2016), 1728–1739.

[12] Mike Jia, Weifa Liang, Zichuan Xu, and Meitian Huang. 2016. Cloudlet load balancing in wireless metropolitan area

networks. In Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE,

1–9.

[13] Haleh Khojasteh, Jelena Misic, and Vojislav Misic. 2016. Prioritization of overflow tasks to improve performance of

mobile cloud. IEEE Transactions on Cloud Computing (2016).

[14] Abbas Kiani and Nirwan Ansari. 2017. Optimal Code Partitioning Over Time and Hierarchical Cloudlets. IEEE
Communications Letters (2017).

[15] Ilya Kolmanovsky and Elmer G Gilbert. 1998. Theory and computation of disturbance invariant sets for discrete-time

linear systems. Mathematical problems in engineering 4, 4 (1998), 317–367.

[16] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. 2013. A survey of computation offloading for

mobile systems. Mobile Networks and Applications 18, 1 (2013), 129–140.

[17] Nikolaos Leontiou, Dimitrios Dechouniotis, Nikolaos Athanasopoulos, and Spyros Denazis. 2014. On load balancing

and resource allocation in cloud services. In Control and Automation (MED), 2014 22nd Mediterranean Conference of.
IEEE, 773–778.

[18] Nikolaos Leontiou, Dimitrios Dechouniotis, Spyros Denazis, and Symeon Papavassiliou. 2018. A hierarchical control

framework of load balancing and resource allocation of cloud computing services. Computers & Electrical Engineering
67 (2018), 235–251.

[19] Mengyu Liu and Yuan Liu. 2017. Price-Based Distributed Offloading for Mobile-Edge Computing with Computation

Capacity Constraints. arXiv preprint arXiv:1712.00599 (2017).

[20] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018. Fog computing: A taxonomy, survey and

future directions. In Internet of Everything. Springer, 103–130.

[21] Spyros Makridakis, Steven C Wheelwright, and Rob J Hyndman. 2008. Forecasting methods and applications. John

wiley & sons.

[22] Hassan Raei and Nasser Yazdani. 2017. Analytical performance models for resource allocation schemes of cloudlet in

mobile cloud computing. The Journal of Supercomputing 73, 3 (2017), 1274–1305.

[23] Sasa V Rakovic, Eric C Kerrigan, Konstantinos I Kouramas, and David Q Mayne. 2005. Invariant approximations of the

minimal robust positively invariant set. IEEE Trans. Automat. Control 50, 3 (2005), 406–410.

[24] Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya. 2014. Heterogeneity in mobile cloud computing:

taxonomy and open challenges. IEEE Communications Surveys & Tutorials 16, 1 (2014), 369–392.

[25] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. 2009. The case for vm-based cloudlets in

mobile computing. IEEE pervasive Computing 8, 4 (2009).

[26] Mahadev Satyanarayanan, Rolf Schuster, Maria Ebling, Gerhard Fettweis, Hannu Flinck, Kaustubh Joshi, and Krishan

Sabnani. 2015. An open ecosystem for mobile-cloud convergence. IEEE Communications Magazine 53, 3 (2015), 63–70.

[27] Manoel C Silva Filho, Raysa L Oliveira, Claudio C Monteiro, Pedro RM Inácio, and Mário M Freire. 2017. CloudSim

Plus: A cloud computing simulation framework pursuing software engineering principles for improved modularity,

extensibility and correctness. In Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium on. IEEE,

400–406.

[28] Xiang Sun and Nirwan Ansari. 2017. Avaptive Avatar Handoff in the Cloudlet Network. IEEE Transactions on Cloud
Computing (2017).

[29] PEE Wellstead and Martin B Zarrop. 1991. Self-tuning systems: control and signal processing. John Wiley & Sons, Inc.

[30] Qiufen Xia, Weifa Liang, Zichuan Xu, and Bingbing Zhou. 2014. Online algorithms for location-aware task offloading

in two-tiered mobile cloud environments. In Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
Conference on. IEEE, 109–116.

[31] Zichuan Xu, Weifa Liang, Wenzheng Xu, Mike Jia, and Song Guo. 2015. Capacitated cloudlet placements in wireless

metropolitan area networks. In Local Computer Networks (LCN), 2015 IEEE 40th Conference on. IEEE, 570–578.

[32] Yang Zhang, Dusit Niyato, and Ping Wang. 2015. Offloading in mobile cloudlet systems with intermittent connectivity.

IEEE Transactions on Mobile Computing 14, 12 (2015), 2516–2529.

Received December 2017

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://yalmip.github.io/solver/glpk/
Marios Avgeris

	Abstract
	1 Introduction
	2 Related Work
	3 Computation Offloading
	4 Evaluation
	4.1 Horizontal Scaler's Complexity

	5 Conclusions and Future Work
	References

