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INJECTIVE DIMENSION OF SHEAVES OF RATIONAL
VECTOR SPACES

DANNY SUGRUE

Abstract. The Cantor-Bendixson rank of a topological space X
is a measure of the complexity of the topology of X. We will be
interested primarily in the case that the space is profinite: Haus-
dorff, compact and totally disconnected. In this paper, we prove
that the injective dimension of the abelian category of sheaves of
Q-modules over a profinite space X is determined by the Cantor-
Bendixson rank of X.

1. Introduction

The injective dimension of an object of an abelian category is the
minimal number of non-zero terms of any injective resolution of the
object. The injective dimension of an abelian category is the supremum
of this value ranging over all objects of the category. This value gives
us a bound n for which the groups of any injective resolution of the
category at level k are trivial for k bigger than n. We are interested in
the abelian category of sheaves of Q-modules over a profinite space X.
In this paper will show that the injective dimension of this category
can be computed simply by looking at the Cantor-Bendixson rank of
X.

If X is a topological space, we can transfinite inductively define the
Cantor-Bendixson process on X. We set X(0) to be X and given X(n)

we define X(n+1) to be the complement in X(n) of its isolated points.
For a limit ordinal λ, we can define this stage of the process in terms
of the successor ordinals β which converge to it. Namely by setting:

X(λ) =
⋂
β<λ

X(β).

Furthermore, as in [GS10a, Lemma 2.7], if X is Hausdorff then there
exists some ordinal for which this process stabilises. We call this ordinal
the Cantor-Bendixson rank of X. If X has a larger Cantor-Bendixson
rank then it has limit points which have a more complicated set of
points which accumulate at it. We will show in this paper, that this
measure of the complexity of the topology of X determines the injective
dimension of sheaves of Q-modules over X. The main result of the
paper is given in the following theorem, see Theorems 4.4 and 4.5.
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2 DANNY SUGRUE

Theorem. If X is a space which is scattered and of finite Cantor-
Bendixson rank n then the injective dimension of sheaves of Q-modules
over X is n−1. If X is any space with infinite Cantor-Bendixson rank
then the injective dimension is also infinite.

If X has finite Cantor-Bendixson rank and non-empty perfect hull
then we conjecture that the injective dimension of sheaves over X is
infinite, see Conjecture 4.6. The discussion after Theorems 4.4 and 4.5
will explain the difficulties which arise in this final case.

The results in this paper hold for any Hausdorff space X, however
in the case where X is profinite the applications of these results are
especially interesting. The details of these applications are in [Sug],
where we work with the space of closed subgroups of a profinite group
G, which is a profinite space. The main objective of the thesis [Sug]
is to construct an algebraic model for rational G-spectra when G is
profinite and calculate the injective dimension of this model. In [Sug],
we are interested in the G-equivariant sheaves over SG which satisfy
that the stalk at each K in SG is a NG(K)/K-module. We call these
Weyl-G-sheaves and we define the category of Weyl-G-sheaves over SG
to be the full subcategory of G-equivariant sheaves over SG determined
by these objects. In particular, the algebraic model is the category of
chain complexes of Weyl-G-sheaves over SG. The contents of this paper
is contained in [Sug] and developed upon to include a G-equivariant
analogue. This ultimately shows that the injective dimension of the
algebraic model is determined by the Cantor-Bendixson rank of SG.
A useful property of the space SG, is that in many cases the Cantor-
Bendixson rank is determined by the algebraic properties of the group
G. This is the focus of the papers by Gartside and Smith, [GS10a,
GS10b].

The main theorems of this paper hold for sheaves of rational vector
spaces. However these results apply to sheaves of R-modules for any
semisimple ring R. This is because every R-module is injective (this
is the key fact we use about Q-modules). The first section of the
paper will introduce the concept of the Cantor-Bendixson rank of a
Hausdorff space and look at some useful applications of this concept.
For the second section, we will set up the injective resolutions that we
will use in the final calculations. In the final section we prove the main
theorem and discuss the conjecture dealing with the remaining case.

2. Cantor-Bendixson Rank

Given a profinite space X, the aim of this paper is to calculate the
injective dimension of the category of sheaves of Q-modules over X in
terms of the Cantor-Bendixson rank ofX, denoted RankCB(X). We be-
gin by defining and stating known properties of the Cantor-Bendixson
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rank from [GS10b, GS10a]. Recall that an isolated point of a topo-
logical space X is a point x which satisfies that {x} is open in X.

Definition 2.1. For a topological space X we can define the Cantor-
Bendixson process on X. Denote by X ′ the set of all isolated points
of X. We define:

(1) Let X(0) = X and X(1) = X \ X ′ have the subspace topology
with respect to X.

(2) For successor ordinals suppose we have X(α) for an ordinal α,

we define X(α+1) = X(α) \X(α)′.
(3) If λ is a limit ordinal we define X(λ) = colim

α<λ
X(α).

Every Hausdorff topological space X has a minimal ordinal α such
that X(α) = X(λ) for all λ ≥ α, see [GS10a, Lemma 2.7].

Definition 2.2. Let X be a Hausdorff topological space. Then we
define the Cantor-Bendixson rank of X denoted RankCB(X) to be
the minimal ordinal α such that X(α) = X(λ) for all λ ≥ α.

A topological space X is called perfect if it has no isolated points.

Definition 2.3. If X is a Hausdorff space with Cantor-Bendixson rank
λ, then we define the perfect hull of X to be the subspace X(λ).

There are two ways that the Cantor-Bendixson process can stabilise.
The first way is where the perfect hull is the empty set and the second
is where it is a non-trivial subspace.

Definition 2.4. A compact Hausdorff space X of Cantor-Bendixson
rank α is called scattered if the space X(α) obtained by the definition
above is equal to the empty set.

Example 2.5. If X is perfect or if X = ∅ then RankCB(X) = 0.

In the following example we will consider the space of closed sub-
groups of a profinite group G, which we denote by SG. We first give
a description of this space. For a more detailed discussion of this con-
struction, see [Dre71, Appendix pp. B4, B8].

Definition 2.6. Let G be a profinite space and SG be the set of
closed subgroups of G. We define a topology on SG by considering the
subbasis defined by the collection of subsets of the form:

O(N,NK) = {A ∈ SG | NA = NK} ,
where K ranges over the elements of SG and N over the open normal
subgroups of G.

In [Dre71, Appendix pp. B4, B8] we see that with this topology SG
is a profinite space. In particular it is the inverse limit over the finite
discrete spaces of the form S(G/N), where N is open and normal in
G. We will now see what this construction looks like for the profinite
group Zp.



4 DANNY SUGRUE

Proposition 2.7. The space S (Zp) is homeomorphic to:

P =

{
1

n
| n ∈ N

}⋃
{0} ,

which has the subspace topology with respect to R.

Proof. First notice that there is a bijection of sets given by pkZp 7→ 1
k+1

and e 7→ 0. We next observe that points of the form pkZp and 1
k+1

are
isolated in their respective spaces. This is clear for P but for S (Zp)
we can see the following:{

pkZp
}

= O
(
pk+1Z, pkZp

)
.

To see that this is true observe that pkZp clearly belongs to this set.
On the other hand, if A satisfies that Apk+1Zp = pkZp then A ≤ pkZp.
However A ≤ pk+1Zp has to be false since if it were true then we would
have the following contradiction:

pkZp = Apk+1Zp = pk+1Zp.

This shows that A must equal pkZp. A similar argument shows that
there is a one to one correspondence between the neighbourhood basis
of 0 and that of e. We can observe that:

O
(
pkZp, pkZp

)
= {e}

⋃
{pnZp | n ≥ k} ,

which corresponds to the typical open neighbourhood of 0 in P of the
form:

{0}
⋃{

1

n
| n ≥ k + 1

}
.

�

This characterisation is stated in [Bar11, pp. 2115] and[GS10b, Ex-
ample 3.2]

Example 2.8. Consider S (Zp) which by Proposition 2.7 is equivalent
to P =

{
1
n
| n ∈ N

}⋃
{0} with the subspace topology of R. Applying

the first stage of the Cantor-Bendixson process to P results in remov-
ing the points of the form 1

n
leaving only the limit point 0. A second

application of this process leaves us with the empty set since the sin-
gleton space consisting only of 0 is discrete. The process is stable from
this point onwards so we therefore know that RankCB(P ) = 2.

We will see more interesting examples after Proposition 2.12. The
following proposition and theorem will explain how the perfect hull of
a space X relates to X as a subspace. We shall allow XH to denote
the perfect hull of X and XS to denote its complement, which we call
the scattered part of X. Both XS and XH will be considered with the
subspace topology with respect to X.
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Proposition 2.9. If X is a Hausdorff space, then XH is always closed
and XS is always open.

Proof. We shall prove that XS is an open subset of X. If x is any point
of XS we will find an open subset of X containing x and contained
in XS. If x belongs to XS, then by definition it is in the complement
of XH and hence there exist some ordinal κ such that x is isolated in
X(κ). This in turn means that there exists some open subset U of X
such that U

⋂
X(κ) = {x}. This proves that each point belonging to U

is eliminated in the Cantor-Bendixson process atleast before the stage
of any ordinal strictly larger than κ. This is another way of saying that
U is contained in XS which proves the result. �

In general XH may not be open. The next theorem shows that we
can compute the cardinality of XS in certain cases.

Theorem 2.10 (Cantor-Bendixson Theorem). Given a countably based
Hausdorff topological space X, we can write X as a disjoint union of a
countable scattered subset XS with the perfect hull XH of X.

It is important to note that this theorem does not say that X can be
written as the coproduct of XH and XS in the category of spaces. That
is, this theorem does not claim that XS and XH provide a topological
disconnection of X.

Definition 2.11. If X is a space and x ∈ XS, we define the height
of x denoted ht(X, x), to be the ordinal κ such that x ∈ X(κ) but
x /∈ X(κ+1). We sometimes denote this by ht(x) when the background
space X is understood.

In the following proposition we will see how to calculate the Cantor-
Bendixson rank of a product of two spaces. It is important to notice
that this only works when both spaces have Cantor-Bendixson rank
bigger than zero.

Proposition 2.12. Let X be a space with RankCB(X) = n + 1 and
Y be a space with RankCB(Y ) = m + 1, where m,n ∈ N0. Then
RankCB(X

∏
Y ) = m+ n+ 1 = RankCB(X) + RankCB(Y )− 1.

Proof. We first prove this in the case where bothX and Y are scattered.
Let Xk denote the set of isolated points in X(k), and Yk denote the set
of isolated points in Y (k). First note that the isolated points of (X

∏
Y )

are given by X0

∏
Y0, and so:(

X
∏

Y
)(1)

=
(
X
∏

Y
)
\
(
X0

∏
Y0

)
.

To see this, first observe that X0

∏
Y0 consists of isolated points. On

the other hand, take any point outside this set, say (x, y), where either
x or y has height bigger than or equal to 1. Assume without loss of
generality that x is the point with non-trivial height. Then points of
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the form (x′, y), where x′ represents points which converge to x, belong
to X

∏
Y and converge to (x, y). Therefore (x, y) cannot be isolated

in X
∏
Y .

The set of isolated points of (X
∏
Y )(1) are equal to the set(

X0

∏
Y1

)∐(
X1

∏
Y0

)
.

To see that this is true, first observe that points in this set are isolated.
On the other hand take a point (x, y) such that x has height greater
than or equal to 2 and y is isolated. Then points of the form (x′, y)
would converge to (x, y), where x′ has height between 1 and the height

of x. The points of the form (x′, y) therefore belong to (X
∏
Y )(1).

Similarly if we take (x, y) in X1

∏
Y1 we will have points in X0

∏
Y1 and

X1

∏
Y0 accumulating at (x, y), and these points belong to (X

∏
Y )(1).

It follows that (x, y) cannot be isolated in (X
∏
Y )(1). We therefore

have:(
X
∏

Y
)(2)

=
(
X
∏

Y
)
\
[
(X0

∏
Y0)
∐(

X0

∏
Y1

)∐(
X1

∏
Y0

)]
.

Claim: The isolated points in (X
∏
Y )(i) are of the form∐

p+q=i

(
Xp

∏
Yq

)
where 0 ≤ p ≤ n and 0 ≤ q ≤ m.

We have shown this holds for i = 0 and i = 1 so let the above claim
be our inductive hypothesis, and suppose it holds for i and that γ is

an isolated point of (X
∏
Y )(i+1).

Then if i is even and hence i + 1 is odd, since all of the points
accumulating at γ were eliminated in the previous stage of the Cantor-
Bendixson process, and by our hypothesis each of these accumulation

points which were isolated in (X
∏
Y )(i) belong to some Xp

∏
Yq where

p+ q = i, so γ must belong to Xp+1

∏
Yq or Xp

∏
Yq+1.

In the case where i is odd and i+1 is even we have the same possibili-
ties plus the additional possibility where γ is in X i+1

2

∏
Y i+1

2
. Therefore

we have shown by induction that the isolated points are of the form∐
p+q=i+1

(Xp

∏
Yq).

From this we can see that:

(
X
∏

Y
)(i)

=
(
X
∏

Y
)
\

[ ∐
0≤k≤i−1

( ∐
p+q=k

Xp

∏
Yq

)]
.
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We then have:(
X
∏

Y
)(n+m−1)

=
(
Xn

∏
Ym−1

)∐(
Xn−1

∏
Ym

)∐(
Xn

∏
Ym

)
(
X
∏

Y
)(n+m)

=
(
Xn

∏
Ym

)
(
X
∏

Y
)(n+m+1)

= ∅.

This proves that

RankCB(X
∏

Y ) = m+ n+ 1 = RankCB(X) + RankCB(Y )− 1.

The case where atleast one of X and Y are non-scattered is similar
except we observe that we end up with(

X
∏

Y
)(n+m+1)

=
(
X
∏

Y
)
H

which may not be empty. �

The following example shows that the condition that both X and Y
need to have non-zero Cantor-Bendixson rank in order for Proposition
2.12 to hold.

Example 2.13. If X = ∅ and Y is any space with Cantor-Bendixson
rank bigger than 1 then Proposition 2.12 fails. We know that X

∏
Y =

∅ and therefore has Cantor-Bendixson rank 0. On the other hand:

RankCB(X) + RankCB(Y )− 1 = RankCB(Y )− 1 6= 0.

Furthermore if X is perfect this fails. To see this take any point (x, y)
in X

∏
Y where y is isolated. Since X is perfect we can find a net

xγ converging to x which is not constant. Therefore (xγ, y) provides a
non-constant net converging to (x, y) in X

∏
Y . Therefore in this case

the Cantor-Bendixson rank of X
∏
Y is 0. We can see that Proposition

2.12 fails in this case similar to how it failed when X = ∅.

We now have the following two examples of Cantor-Bendixson rank
calculations.

Example 2.14. From [GS10b, Proposition 2.5] we know that if q1, q2, . . . , qn
are a finite collection of distinct primes then there is an isomorphism:

S

( ∏
1≤i≤n

Zqi

)
∼=
∏

1≤i≤n

S (Zqi)

By Example 2.8 there is a homeomorphism of spaces:

S

( ∏
1≤i≤n

Zqi

)
∼= P n
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An application of Proposition 2.12 shows that:

RankCB

(
S

( ∏
1≤i≤n

Zqi

))
= n+ 1.

Example 2.15. The space
∐
n∈N

P n gives an example of a space which

has infinite Cantor-Bendixson rank. This is because we can set xn to
be the point in P n with height equal to n + 1 and we therefore have
a sequence of points with unbounded height. Notice that this space is
not profinite since it is not compact.

3. Injective Resolutions of Sheaves

In this section we construct an injective resolution of sheaves of Q-
modules over a space X. We do this by defining the Godement resolu-
tion of a sheaf and outlining why this is injective. In order to achieve
this we record the following definition from [Ten75, Definition 2.5.4].

Definition 3.1. A sheaf space of Q-modules over a space X is a pair
(E, p) such that:

• E is a topological space and p : E → X is a continuous local
homeomorphism.
• For every x ∈ X, p−1(x) is a Q-module which is continuous

with respect to E. More precisely, if U is any open subset of X
then the following is a Q-module:

E(U) = {s : U → E | p ◦ s = Id, s cts} .

Every sheaf space determines a sheaf by considering the assignment
U 7→ E(U). On the other hand a sheaf F determines a sheaf space
(LF, π). This space has underlying set

∐
x∈X

Fx and is topologised as in

[Ten75, Construction 2.3.8]. The map of spaces π assigns a germ sx to
x.

Definition 3.2. Let F be a sheaf of Q-modules over a topological
space X. Then we define the sheaf C0(F ) on the open sets U by taking
C0(F )(U) to be the collection of serrations, i.e., the set of not neces-
sarily continuous functions {f : U → LF | π ◦ f = Id} which equate to∏
x∈U

Fx.

Note that every section is a serration so we have a natural inclusion
δ0 : F → C0(F ) which is a monomorphism.

Remark 3.3. The map from a sheaf F into C0(F ) is given as follows:

F (U)→
∏
y∈U

Fy → colim
V

∏
y∈V

Fy

s 7→ (sy)y∈U 7→ ((sy)y∈U)x
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where the colimit ranges over all open neighbourhoods of x, U is an
open neighbourhood of a point x ∈ X and (−)x is the germ at x. This
induces a map δ0x on stalks as follows:

Fx → colim
V

∏
y∈V

Fy

sx 7→ ((sy)y∈U)x

We call δ0x the serration map and denote it by S throughout to simplify
notation.

Notice that if a map f belongs to the set of serrations in Definition
3.2 then f does not have to be continuous. We can now define the
Godemont resolution using Definition 3.2 and [Bre97, pp. 36 - 37].

Definition 3.4. Let F be a sheaf of Q-modules over a topological space
X. Then as in Definition 3.2 we have C0(F ) and a monomorphism
δ0 : F → C0(F ).

Consider coker δ0, if we replace F in the construction above with
coker δ0 and set C1(F ) = C0(coker δ0) from Definition 3.2 we will get
the following diagram:

0 // F
δ0 // C0(F )

��

δ1 // C1(F )

coker δ0

δ1
′

99

where δ1
′ is the monomorphism from coker δ0 into C1(F ). We can then

continue to build the resolution inductively using this idea. This reso-
lution which we have constructed is called the Godement resolution.

We consider the following example of a sheaf which will give us a
more complete understanding of the Godement resolution.

Example 3.5. If x is any point of X and M any Q-module, then
we can define a sheaf ιx(M) over X. This takes value M at an open
subset U of X if x belongs to U and 0 otherwise. We call this the
skyscraper sheaf and the assignment M 7→ ιx(M) defines a functor from
the category of Q-modules to the category of sheaves of Q-modules.
This functor is right adjoint to the functor from the category of sheaves
to the category of Q-modules which assigns F to the stalk Fx. We see
this by considering the closed subset {x} of X and applying [Ten75,
Theorem 3.7.13].

Remark 3.6. Each C0(F ) can be written as
∏
y∈X

ιy(Fy). To see this if

U ⊆ X is open then C0(F )(U) =
∏
y∈U

Fy. On the other hand:(∏
y∈X

ιy(Fy)

)
(U) =

∏
y∈X

(ιy(Fy)(U)) =
∏
y∈U

Fy
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The following lemma relates the Cantor-Bendixson process to the
Godement resolution. It shows that the kth term of the Godement
resolution is concentrated over X(k). This will ultimately provide an
upper bound for the injective dimension of sheaves.

Lemma 3.7. Let X be a topological space and F be a sheaf of Q-
modules over X. Then for every k ∈ N we have that Ck(F )x = 0 for
every x ∈ X \X(k).

Proof. We prove this using mathematical induction. For k = 0 we will
start by calculating C0(F )x when x is isolated. By definition we have:

C0(F )x = colim
U�x

∏
y∈U

Fy

where U ranges across all neighbourhoods of x. Since x is isolated it
is clear that {x} is the minimal neighbourhood of x, so we have that
C0(F )x = Fx as well as the fact that the monomorphism δ0x is an
isomorphism. In particular this says that coker δ0x = 0. It therefore
follows that C1(F )x = 0 since

C1(F )x = C0(coker δ0)x = coker δ0x = 0

Suppose coker δk−1x = 0 and hence Ck(F )x = 0 on X \X(k), and take
any x ∈ X \X(k+1) for some k ∈ N. First observe that:

X \X(k+1) ⊇ X \X(k).

If it happens that x ∈ X \X(k) and hence has height less than k, then
by hypothesis coker δk−1x = 0 and hence Ck(F )x = 0. Therefore since
coker δkx is a quotient of Ck(F )x which is zero it follows that coker δkx =
0. Since any point y which accumulates at x has scattered height less
than that of x, and hence less than k, it follows that coker δky = 0. We
can then see immediately that Ck+1(F )x = colim

V �x

∏
y∈V

coker δky = 0.

The final case is the one where x is isolated in X(k) and hence the
scattered height of x is equal to k. This case yields the following
diagram:

Ck(F )

%%

Ck+1(F )

coker δ′k−1

δ′k
99

coker δ′k

δ′k+1

99

Observe that all of the points y accumulating at x satisfy that the
scattered height of y is less than that of x and hence less than k. It
follows that coker δ′k−1y = 0 by the inductive hypothesis for every such

y. Similar to the k = 0 step above we have:

Ck(F )x = colim
U�x

∏
y∈U

coker δk−1y = coker δk−1x
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and that δ′kx is an isomorphism so coker δ′kx = 0. All of the points which
accumulate at x must belong to X \X(k) and we have already shown
that these points y satisfy coker δ′ky = 0. This information combined

proves that Ck+1(F )x = colim
U�x

∏
y∈U

coker δky = 0. �

Recall the following well-known proposition from category theory
which will prove useful and is found in [Wei94, Proposition 2.3.10].

Proposition 3.8. If (F,G) is an adjoint pair where

F : C→ D and G : D→ C

are functors of Abelian categories, satisfying that F preserves monomor-
phisms then G preserves injective objects.

Proposition 3.9. If F is a sheaf of Q-modules over X then Ck(F ) is
injective in the category of sheaves of Q-modules.

Proof. From the inductive way that Ck(F ) is defined it is sufficient to
prove that C0(F ) is injective. Remark 3.6 suggests that it is sufficient
to prove that each ιx(Fx) is injective.

This follows from Proposition 3.8 applied to the adjoint pair of func-
tors in Example 3.5, (Evx(−), ιx(−)), where Evx(F ) = Fx for a sheaf
F .

Note that the left adjoint preserves monomorphisms since a monomor-
phism of sheaves is a morphism of sheaves such that the map at each
stalk is a monomorphism of Q-modules. Using that each Fx is a Q-
module, we apply the fact that every object in the category of Q-
modules is injective to deduce that ιx(Fx) is an injective sheaf. �

We next look at a lemma which helps us with our injective dimension
calculations since it will ultimately enable us to calculate Ext groups.

Recall from Definition 3.4 that if x ∈ X and k < ht(X, x) then:

coker δkx =

[
colim
U�x

∏
y∈U

coker δk−1y

]
/S

where S is the serration map from Remark 3.3. Explicitly if a ∈
coker δk−1x we define (a, 0)x to be the element in coker δkx which is
the germ at x of the family which is a in place x and zero elsewhere.

Lemma 3.10. Suppose X is a space with RankCB(X) = n for n ∈ N
such that X(n) = ∅. Then for j ≤ n − 1, x ∈ X(j) and F a sheaf
over X, we have an isomorphism hom(ιx(Q), Ck(F )) ∼= coker δk−1x for
k < j, and the map:

δk+1∗ : hom(ιx(Q), Ck(F ))→ hom(ιx(Q), Ck+1(F ))
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is given by the map:

αk+1 : coker δk−1x → coker δkx

a 7→ (a, 0)x .

Proof. Firstly notice that Ck(F ) is defined to be C0(coker δk−1), so we
begin by proving that hom(ιx(Q), C0(F )) ∼= Fx. Observe that C0(F ) =∏
y∈X

ιy(Fy) so we can write:

hom(ιx(Q), C0(F )) = hom(ιx(Q),
∏
y∈X

ιy(Fy)) =
∏
y∈X

hom(ιx(Q), ιy(Fy))

=
∏
y∈X

hom(ιx(Q)y, Fy) = Fx.

In particular if f ∈ hom(ιx(Q), Ck(F )), then this is determined by a
map in hom(ιx(Q), ιx(coker δk−1x)). This corresponds to a point fx ∈
coker δk−1x, so f is given by the element:

[fx, 0]x ∈ colim
V �x

(∏
y∈V

coker δk−1y

)
= C0(coker δk−1)x,

with this germ at x of the family taking value fx in position x and 0
elsewhere. It follows that δk+1∗(f) corresponds to δk+1([fx, 0]x).

But we therefore have:

δk+1([fx, 0]) =

(
[(fx, 0)x]

S ,

([
(fx, 0)y

]S)
y∈U

)
x

in colim
V �x

(∏
y∈V

coker δky

)
= C0(coker δk)x, where [−]S represents the

class in the cokernel of the map S. This follows from the definition of
the maps δ in Definition 3.4.

However if x 6= y then since X is Hausdorff there is a neighbourhood

of y not containing x so
[
(fx, 0)y

]S
=
[
(0)y

]S
. Therefore δk+1 ((fx, 0)x)

can be written as

(
[(fx, 0)x]

S ,
[
(0)y

]S)
y∈U

.

We therefore have that δk+1∗ is defined as follows:

δk+1∗ : hom(ιx(Q), Ck(F ))→ hom(ιx(Q), Ck+1(F ))

[fx, 0]x 7→
(

[(fx, 0)x]
S ,
[
(0)y

]S)
y∈U

Since we are interested in what the maps correspond to as maps be-
tween the x components of the products of C0(coker δk−1) and C0(coker δk),

we observe that it sends fx to [(fx, 0)x]
S. �
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Now we consider the preceeding lemma for points in X which either
have infinite height or belong to the hull of X.

Lemma 3.11. Suppose X is a space with infinite Cantor-Bendixson
rank. Then for x ∈ X(n) for any n ∈ N, and F a sheaf over X, we
have an isomorphism hom(ιx(Q), Ck(F )) ∼= coker δk−1x for k < n, and
the map:

δk+1∗ : hom(ιx(Q), Ck(F ))→ hom(ιx(Q), Ck+1(F ))

is given by the map:

αk+1 : coker δk−1x → coker δkx

a 7→ (a, 0)x .

This also holds for points of infinite height and points in the hull.

Proof. The proof of this result is almost the same as the proof of Lemma
3.10. The only differences arise from the fact that in Lemma 3.10 X has
finite Cantor-Bendixson rank, say n, and so coker δk is zero if k is bigger
than n. Therefore the argument in Lemma 3.10 is only interesting
provided we are applying it to coker δk for k small enough. If X has
infinite Cantor-Bendixson rank then we know that for each n ∈ N there
exists a point xn with height n, as well as points of infinite height.
Therefore the argument on coker δk doesn’t become trivial eventually.
The same observation is true if X has any point in the perfect hull of
X. �

The previous two lemmas indicate how the calculations in this paper
differ from sheaf cohomology. In this setting we apply the functor
hom(ιx(Q),−) to an injective resolution and this is different from sheaf
cohomology where we apply a functor hom(A,−) for some constant
sheaf A.

4. Injective dimension calculation

We now formally give the definition of the injective dimension of
sheaves of Q-modules over a space X as seen in [Wei94, Definition
4.1.1, Definition 10.5.10].

Definition 4.1. The injective dimension of a sheaf F over X de-
noted by ID(F ) is the minimum positive integer n (if it exists) such
that there is an injective resolution of the form

0 // X
ε // I0

f0 // I1
f1 // . . .

fn−1 // In // 0 .

where Ij 6= 0 for j ≤ n. It is infinite if such a value doesn’t exist.

From [Wei94, Theorem 4.1.2] we define the injective dimension of
the category of sheaves of Q-modules to be:

sup {ID(F ) | F ∈ SheafQ(X)} ,
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where SheafQ(X) denotes the category of sheaves of Q-modules over X.
We can now verify that the injective dimension of sheaves of Q-modules
is bounded above for a particular class of space.

Proposition 4.2. If X is a scattered space with RankCB(X) = n for
n ∈ N then the injective dimension of sheaves of Q-modules over X is
bounded above by n− 1.

Proof. By Proposition 3.9 the Godement resolution is an injective res-
olution. An application of Lemma 3.7 shows that the terms of the
Godement resolution are zero after term n− 1. Therefore the injective
dimension of each sheaf is less than or equal to n− 1. �

In order to get equality it is sufficient to find a particular sheaf F
for which ID(F ) ≥ RankCB(X)− 1. To achieve this we look at [Wei94,
Lemma 4.1.8, Exercise 10.7.2] which says ID(F ) ≤ RankCB(X) − 2 if

and only if ExtRankCB(X)−1(A,F ) = 0 for every sheaf A. In particular

if we can find sheaves A and F such that ExtRankCB(X)−1(A,F ) 6= 0
then we must have that ID(F ) > RankCB(X) − 2. This then forces
ID(F ) = RankCB(X)− 1.

We now work towards verifying the lower bound. We will look at the
following lemma which will illustrate that the Godement resolution is
non-zero at term k provided k is less than RankCB(X).

Lemma 4.3. Let X be a non-empty scattered space and k ∈ N be less
than or equal to RankCB(X). For each x ∈ X(k), coker δk−1x 6= 0 in
the Godement resolution of cQ the constant sheaf at Q.

Furthermore if X is any space with a non-empty perfect hull and
k ∈ N, then for each x ∈ X(k) we have coker δk−1x 6= 0 in the Godement
resolution of cQ.

Proof. We begin with the scattered case and we will prove this using
an induction argument. Since

colim
U�x

cQ(U) = cQx = colim
U�x

PcQ(U) = Q

where PcQ represents the presheaf, any qx ∈ Qx is represented by some
q ∈ Q. We therefore have the following diagram by [Bre97, pp. 36-37]:

Q→
∏
y∈U

Q→ colim
V �x

∏
y∈V

Q

q 7→ (qy)y∈U 7→ ((qy)y∈U)x

which induces a map:

Q→ colim
V �x

∏
y∈V

Q

qx 7→ ((qy)y∈U)x

We call this map the serration map and denote it by S. This is not
surjective since we have a point (0x, 1)x not in the image of S. This
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point is non-zero since if S(a) = [(0x, 1)x]
S then ax = 0 and so there is

an open neighbourhood U of x such that ay = 0 for y ∈ U . However
the definition of the serration map shows that ay = 1 also for y 6= x
which is a contradiction. Therefore coker δ0x 6= 0 for x ∈ X(1).

Suppose this holds up to some n ∈ N and for any x ∈ X(n+1). By
assumption we have that

0 6= coker δnx = colim
U�x

(∏
y∈U

coker δn−1y

)
/S

Using the fact that sheafification preserves stalks of presheaves we have
a map using [Bre97, pp. 36-37] as follows:(∏
y∈U

coker δn−1y

)
/S →

∏
z∈U

coker δnz → colim
V �x

∏
z∈V

coker δnz

[(ay)y∈U ]S 7→
([

((ay)y∈U ]S
)
z

)
z∈U
7→
(((

[(ay)y∈U ]S
)
z

)
z∈U

)
x

which induces a map:

coker δnx → colim
V �x

∏
y∈V

coker δny

(
[(ay)y∈U ]S

)
x
7→
(((

[(ay)y∈U ]S
)
z

)
z∈U

)
x

Let U be any open neighbourhood of x. Then for each y ∈ U such
that y ∈ X(n), X(n+1) or X(n+2) we can choose 0 6= ay ∈ coker δn−1y by

the inductive hypothesis. Set sy = (0y, az)z∈U\{y}, then
[
(sy)y

]S
6= 0 in

coker δny for y ∈ X(n+1), X(n+2) and we denote this by by. This is shown
to be non-zero by following a similar argument to that seen earlier in
this proof. We can therefore consider for any x ∈ X(n+2):([

(0x, by)y∈U\{x}

]S)
x

which is not in the image of the serration map so coker δn+1x 6= 0. This
is also seen by referring to the previous argument seen earlier in this
proof.

Note if RankCB(X) is infinite then for each k ∈ N we have that
each X(k) has isolated points to remove, so this is true for every k. If
RankCB(X) = n and X(n) = ∅ then X(n−1) is discrete and therefore
satisfies that Cn(F ) = 0 by Lemma 3.7. It follows that the argument
therefore only results in non-zero stalks for k ≤ n − 1. If x belongs
to the perfect hull of X then this argument also holds for each k ∈ N
since the hull is contained in each X(k). �

We now use the above calculations to verify the injective dimension
of sheaves using the Cantor-Bendixson dimension.
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Theorem 4.4. Suppose X is a space with RankCB(X) = n such that
X(n) = ∅. Then the category of sheaves over X has injective dimension
equal to n− 1.

Proof. To see this we need to find an object in the category of sheaves
over X so that ID(X) = n− 1, we will show that cQ satisfies Id(cQ) =
n − 1. Firstly by Lemma 3.7 we know that ID(cQ) ≤ n − 1 since the
Godement resolution gives an injective resolution of the form:

0 // cQ δ0 // I0
δ1 // . . .

δn−2 // In−2
δn−1 // In−1 // 0

From Lemma 4.3 we know that each Ij 6= 0. We will show that the
Extn−1 (ιx(Q), cQ) group calculated by the above injective resolution is
non-zero. Let x be an element of X with ht(X, x) = n− 1 (any point
of X with maximal height).

We apply the functor Hom(ιx(Q),−) and forget the cQ term to get:

Hom(ιx(Q), I0)
δ1∗ // Hom(ιx(Q), I1)

δ2∗ // . . .
δn−2∗ // Hom(ιx(Q), In−2)

δn−2∗
��

0 Hom(ιx(Q), In−1)oo

which we can no longer assume to be exact. This is equal to the
following sequence:

Q α1 // coker δ0x
α2 // . . .

αn−3 // coker δn−4x

αn−2

��
0 coker δn−2xαn

oo coker δn−3xαn−1

oo

We want to show that Ext(n−1) (ιx(Q), cQ) = kerαn/ Imαn−1 6= 0 and
Extn (ιx(Q), cQ) = kerαn+1/ Imαn = 0. It is clear that Extn (ιx(Q), cQ)
is 0. For the other we need to prove that the map:

αn−1 : coker δn−3x → coker δn−2x

a 7→ (a, 0)x

is not surjective. This is done in a similar fashion to Proposition 4.3.
For any open neighbourhood U of x there are infinitely many points

z of U such that z ∈ X(n−2) and coker δn−3z 6= 0 so we can choose such
a point az for each z. Consider:

a =
[(

(0x, az)z∈U\{x}
)
x

]S ∈ coker δn−2x.

If tx ∈ coker δn−3x is in the preimage of a with respect to αn−1 we would
have:

[(tx, 0)x]
S = αn−1(tx) =

[(
(0x, az)z∈U\{x}

)
x

]S
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so tx = 0 which implies that
[(

(0x, az)z∈U\{x}
)
x

]S
= 0. But this cannot

be the case since there are infinitely many z satisfying that az 6= 0 by
construction, so we have a contradiction and αn−1 cannot be surjective.

�

We now deal with the case where the Cantor-Bendixson dimension
is infinite.

Theorem 4.5. If X is a space with infinite Cantor-Bendixson rank,
then the injective dimension of sheaves of Q-modules over X is infinite.

Proof. Since the Cantor-Bendixson rank of X is infinite there exists
a sequence of points xn each having height n. As a consequence of
Theorem 4.4 for each xn we know that Extn (ιxn(Q), cQ) 6= 0 and this
happens for each n since we do not have a maximal height. This proves
the result. �

We are left to deal with the case where X is not scattered but has
finite Cantor-Bendixson rank. In the above cases when we resolve with
respect to ιx (Q) the resolved sequence becomes zero after ht(x)− 1 so
the kernel of the map αht(x)+1 is coker δht(x)−1x which is advantageous
since we can choose any point of coker δht(x)−1 not in the image of αht(x).
This changes when we are working in the case where X has a perfect
hull.

We know that the following Godement resolution is infinite:

0 // cQ δ0 // I0
δ1 // . . .

δn−1 // In−1
δn // In

δn // . . .

Therefore after resolving like above for a point x in the perfect hull we
obtain the following infinite sequence:

0 // Q α1 // coker δ0x
α2 // . . .

αn−2 // coker δn−3x

αn−1

��
. . . coker δn−1xαn+1

oo coker δn−2xαn

oo

The important thing to notice is that since this is non-zero at infinitely
many places, when calculating the group Extn we can’t just chose any
representative of coker δn−1x since the kernel is not everything.

In order to choose something in the kernel we need to adjust our argu-
ment above, namely instead of choosing a representative (0x, s

y)y∈U\{x}
with 0 6= sy ∈ coker δn−2y arbitrary, we need (sy)y∈U\{x} to be deter-
mined by a section s over coker δn−2. That is we want each sy to be of
the form sy for that section s, and such that each open neighbourhood
U of x contains infinitely many y such that sy 6= 0.

Recalling a fact from sheaf theory that a section s over an open
neighbourhood U of x has germ sx = 0 if and only if s restricts to some
smaller neighbourhood to give the zero section. Also recall that we can
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build a section in coker δn−2(U) by considering
∏
y∈U

coker δn−3/S, where

S represents the map defined in Remark 3.3. This means that if we can
construct the family

[
(ay)y∈U\{x}

]
S

to be an alternating family where
infinitely many ay 6= 0 in coker δn−3y and infinitely many do equal zero,
then we may have a suitable section s to proceed with the proof. This
approach needs the following condition to proceed:

If ay = 0, then any neighbourhood U of y contains infinitely many
points z such that az 6= 0.

If we can construct given any net converging to x, two term-wise
disjoint subnets then we can do the above construction to show that
the injective dimension of sheaves in this case is infinite, provided the
sequence is set up to satisfy the condition. With this in mind we have
the following conjecture.

Conjecture 4.6. If X has finite Cantor-Bendixson rank and non-
empty perfect hull then the injective dimension of sheaves of Q-modules
over X is infinite.

We now look at examples of spaces and the application of the result
relating injective dimension of sheaves of Q-modules over X to the
Cantor-Bendixson rank of X. Our primary interest is in the space of
closed subgroups of a profinite group G, as defined in Definition 2.6.

Example 4.7. If G is a discrete group then SG is a finite discrete space
and hence has Cantor-Bendixson dimension 1. Therefore Theorem 4.4
implies that the injective dimension of sheaves of Q-modules over SG
is 0.

The above example works equally for any discrete space. Another
way of seeing that the injective dimension of sheaves of Q-modules over
a discrete space is zero is by observing that such a sheaf is equivalent
to a product of Q-modules. We can see this by noticing that since
each point x in X is isolated, the stalk of a sheaf F at x is determined
by evaluating the sheaf at the open subset {x}. This becomes even
clearer by considering a sheaf F from the point of view of Definition
3.1. Let (LF, π) be the sheaf space for F over a discrete space X.
Then since every map of sets from X to LF is continuous, it follows
that F (U) =

∏
x∈U

Fx for any open subset U . This is an alternative way

of saying that F is equivalent to C0(F ) from Definition 3.2, which we
know to be injective by Proposition 3.9.

Example 4.8. If G = Zp for any prime number p, then S (Zp) is
homeomorphic to the space P from Proposition 2.7. This space has
Cantor-Bendixson rank 2 as seen in Example 2.8. Therefore the cate-
gory of sheaves of Q-modules over S (Zp) has injective dimension 1 by
Theorem 4.4.
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Example 4.9. Consider distinct primes p1, p2, . . . , pn. We have a profi-

nite group
∏

1≤i≤n
Zpi with corresponding profinite space S

( ∏
1≤i≤n

Zpi
)

.

This space is homeomorphic to P n by [GS10a, Proposition 2.5]. Then

by Proposition 2.12 we have that RankCB(P n) = n+1 and (P n)(n+1) =
∅. We can now apply Theorem 4.4 to deduce that the injective dimen-

sion of sheaves over S

( ∏
1≤i≤n

Zpi
)

is exactly n.

The following example demonstrates a particular case where the cat-
egory of sheaves has infinite injective dimension.

Example 4.10. In Example 2.15 we observed that the space
∐
n∈N

P n has

infinite Cantor-Bendixson rank. Therefore an application of Theorem
4.5 shows that the injective dimension of sheaves of Q-modules over
this space is also infinite.

Furthermore if we consider Conjecture 4.6 we can see the possible
implications.

Example 4.11. The profinite completion of Z is defined to be:

Ẑ =
∏
p

Zp

where the product runs over the collection of prime numbers p. This
is a profinite group under the product topology and we can see that

S
(
Ẑ
)

is perfect. If proven to be correct, Conjecture 4.6 would imply

that the injective dimension of sheaves over this space is infinite.

Another important example of a space is defined in [GS10a, Defini-
tion 2.8], and this construction is similar to the Cantor space.

Definition 4.12. Let F0 = P0 = [0, 1], the closed unit interval. We
set F1 = F0 \ (1

3
, 2
3
) and B1 = F1

⋃{
1
2

}
. That is, to form F1 we remove

the middle third of the interval of F0 and to form B1 we reinsert the
midpoint of the deleted interval to F1.

Given Fi−1 we define Fi by deleting the middle third intervals of the
remaining segments of Fi−1 and we define Bi by reinserting midpoints
of the deleted intervals to Fi. We set F =

⋂
n∈N

Fn and B =
⋂
n∈N

Bn.

The main focus of [GS10a] is on proving that the algebraic structure
of a profinite group G can tell us about SG. Specifically, throughout
[GS10a] there are many assumptions on the algebraic structure of G
which lead to the conclusion that SG is homeomorphic to B from
Definition 4.12.

Example 4.13. Consider the spaces B and F defined in Definition
4.12. From [GS10a, Definition 2.8] we know that the space B has per-
fect hull given by the Cantor space F and that RankCB(B) = 1. If
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Conjecture 4.6 were true then it would follow that the injective dimen-
sion of sheaves over B is infinite.

I would like to thank my PhD supervisor Dr David Barnes for his ex-
cellent guidance and support throughout many interesting discussions
about this work. I would also like to thank Dr Martin Mathieu for his
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