Live Auralization of Cappella Romana at the Bing Concert Hall, Stanford University

Published in:
Aural Architecture in Byzantium: Music, Acoustics, and Ritual

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 The Author(s).
This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Aural Architecture in Byzantium

Emerging from the challenge to reconstruct sonic and spatial experiences of the deep past, this multidisciplinary collection of ten essays explores the intersection of liturgy, acoustics, and art in the churches of Constantinople, Jerusalem, Rome, and Armenia, and reflects on the role digital technology can play in re-creating aspects of the sensually rich performance of the divine word. Engaging the material fabric of the buildings in relationship to the liturgical ritual, the book studies the structure of the rite, revealing the important role chant plays in it, and confronts both the acoustics of the physical spaces and the hermeneutic system of reception of the religious services. By then drawing on audio software modelling tools in order to reproduce some of the visual and aural aspects of these multi-sensory public rituals, it inaugurates a synthetic approach to the study of the pre-modern sacred space, which bridges humanities with exact sciences. The result is a rich contribution to the growing discipline of sound studies and an innovative convergence of the medieval and the digital.

Contents

List of figures vii
List of contributors xi
Acknowledgments xiii

Introduction
Bissera V. Pentcheva 1

1 Aural architecture in Jerusalem, Rome, Constantinople, and Alexandria
Peter Jeffery 14

2 The great outdoors: liturgical encounters with the early medieval
Armenian church
Christina Maranci 32

3 Byzantine chant notation: written documents in an aural tradition
Christian Troelsgaard 52

4 Understanding liturgy: the Byzantine liturgical commentaries
Walter D. Ray 78

5 Christ’s all-seeing eye in the dome
Ravinder S. Binning 101

6 Transfigured: mosaic and liturgy at Nea Moni
Lora Webb 127

7 We who musically represent the cherubim
Laura Steenberge 143

8 Spatiality, embodiment, and agency in ekphraseis of church buildings
Ruth Webb 163

9 Acoustics of Hagia Sophia: a scientific approach to the humanities
and sacred space
Wieslaw Woszczyk 176
Contents

10 Live auralization of Cappella Romana at the Bing Concert Hall, Stanford University
Jonathan S. Abel and Kurt James Werner

Glossary

Bibliography

Index

198
224
228
248
Figures

1.1 Santa Maria Antica in the Roman Forum, transformed into a church in the late sixth or early seventh century, nave. The low brick wall extending into the foreground marks the remains of an enclosure for the choir and the lower clergy

1.2 Santa Maria Antica in the Roman Forum, late sixth or early seventh century. The base of the ambo with Greek and Latin inscription and the holes on the surface suggest the previous existence of a metal balustrade

1.3 Santa Maria Antica in the Roman Forum, late sixth or early seventh century. Wall of the choir enclosure with the legs of the ambo embedded

1.4 The church of San Clemente, Rome, ca. 1099–1120, the marble enclosure of the schola cantorum

1.5 The church of San Clemente, Rome, ca. 1099–1120, ambo and candlestick

1.6 The church of San Clemente, Rome, ca. 1099–1120, second ambo and lectern

1.7 The basilica of Hagia Sophia, Constantinople, early fifth century, carved frieze showing sheep processing to a palm tree, from the architrave of the Theodosian basilica

1.8 Apse mosaic of Santa Cecilia, Pope Paschal I (817–24), depicted at the extreme left, Rome

1.9 The basilica of Hagia Sophia, Constantinople garden. Portions of an ambo, early fifth century

1.10 Hagia Sophia, Constantinople, 532–37 and 562, proconnesian marble showing one of the green stripes or “rivers”

1.11 Hagia Sophia, Constantinople, 532–37 and 562, drawing of the pavement showing the four green-marble stripes, known as “rivers”

2.1 Church of Mastara, Republic of Armenia, ca. 630, view of the exterior from the west

2.2 Church of Mastara, plan

2.3 Church of Mastara, west façade inscription

2.4 Church of Mastara, schematic drawing of west facade inscription with sculpted cross

2.5 Church of Zuart‘noc‘, Republic of Armenia, ca. 641–c. 661, aerial view

2.6 Church of Zuart‘noc‘, plan
viii Figures

2.7 Church of Zuart‘noc‘, fragments of the first tier laid out on the ground 42
2.8 Church of Zuart‘noc‘, fragment of figural bas-reliefs 43
2.9 Church of Mren, Kars Province, Republic of Turkey, 638, view from the southwest 45
2.10 Church of Mren, north façade portal lintel 46
3.1 Oral–aural transmission: Model 1 53
3.2 Oral–aural transmission: Model 2 54
3.3 Oral–aural transmission: Model 3 55
3.4 Papyrus Vienna G. 19.934, fol. 2r 57
3.5 The kontakion Τὸν δι’ ἡμᾶς σταυρωθέντα for Good Friday in fourth plagal mode. From monastery of St. Catherine, Sinai, MS Sinai gr. 1214, early twelfth century, fol. 186v 66
3.6 The psaltikon (Florence, Ashburnhamensis 64 (written at Grottaferrata, Italy, AD 1289), fol., 124r) shows the Middle Byzantine counterpart for the Good Friday kontakion rendered in Middle Byzantine notation 66
3.7 Distribution of tonic and sustained accents in the Easter prokeimenon from the psaltikon 68
5.1 Christ with Deesis, hetoimasia, and angels in cupola, fresco, 1105–06, Panagia Theotokos Church, Trikomo, Cyprus 101
5.2 Christ Pantokrator, bust, sixth century, tempera on wood panel, The Holy Monastery of St Catherine, Mount Sinai, Egypt 106
5.3 Detail of Figure 5.2, Christ Pantokrator. Detail showing Christ’s eyes 107
5.5 Pantokrator after cleaning, from Hawkins and Megaw, Dumbarton Oaks Papers 16 (1962): Fig. 3 111
5.6 Hetoimasia, fresco, 1105–06, Panagia Theotokos Church, Trikomo, Cyprus 112
5.7 Last Judgment in Narthex, fresco, first third of the twelfth century, Hagios Nikolaos tis Stegis Church, Kakopetria, Cyprus 113
5.8 Pantokrator with prophets in cupola, mosaic, ca. 1100, Church of the Koimesis, Daphni Monastery, Daphni, Greece, from Ekkehard Ritter, Corpus for Wall Mosaics in the North Adriatic Area, ca. 1974–1990s 115
5.9 Theotokos in apse with epigram, fresco, 1105–06, Panagia Theotokos Church, Trikomo, Cyprus 120
6.1 Transfiguration, Nea Moni, Chios, eleventh century 127
6.2 The Washing of the Feet, Nea Moni, Chios, eleventh century 129
6.3 Rembrandt, Sampling Officials of the Draper’s Guild, 1662, Rijksmuseum, Amsterdam 130
6.4 Transfiguration, Saint Catherine’s Monastery, Mount Sinai, sixth century 132
6.5 Transfiguration, Theodore Psalter, c.1066, British Library, Add MS 19352, fol. 118r 136
6.6 Bread mold, terracotta, fifth–sixth century, Royal Ontario Museum, ROM 986.181.122
7.1 Quotations of the Trisagion in the John of Damascus Cheroubikon
7.2 A typical fourteenth-century Byzantine Trisagion with three melodies
7.3 Two settings of the Cheroubikon by Agathon Korones represent the Trisagion in two different ways
7.4 The singing formula in the Trisagion, Sanctus, and Cheroubikon
7.5 Manuel Agallianos carefully sets the singing formula set to specific syllables
7.6 The processional motif in the Trisagion, Sanctus, and Cheroubikon
7.7 The escorting-singing motif corresponds to real and symbolic moments of processions in the Trisagion, Sanctus, and Cheroubikon that are accompanied by angelic singing
7.8 Procession + Descent + Singing motifs appear at the Great Entrance on “os ton basilea” (the King of All), depicting the descent of King of All to earth escorted by the singing cherubim
7.9 Representing a low voice and descending spirit on mystikos
7.10 Representing a singing voice on prosadontes (singing)
7.11 Reverberation time (T30) averaged over eight positions measured with broadband sources in Hagia Sophia
7.12 Absorption coefficient of air at different relative humidity levels and frequencies
7.13 Reflections of rays from a concave ceiling in a large room
7.14 Reflections of rays from concave mirror (detail)
7.15 Drawing of measured positions (MP) and source locations (SP) used in measurements of the acoustics of Hagia Sophia in October 2013
7.16 A three-dimensional graph of the low-frequency acoustic energy from 20 Hz to 300 Hz decaying in time over the initial period of 300 milliseconds from the onset of the impulse response (IR)
7.17 A three-dimensional cumulative spectral decay view of the full spectrum of acoustic energy (20 Hz to 20 kHz) decaying in time over ten seconds from the onset
7.18 Three-dimensional cumulative spectral decay view calculated from the impulse response measured by three microphones: omnidirectional channel 1 (top), bidirectional in elevation channel 5 (center), bidirectional in azimuth channel 8 (bottom)
7.19 Log-squared impulse response graph from SP-2 (omnidirectional microphone signal channel 1 near Sultan’s Lodge) and MP-21 (near the rear corner of the nave)
7.20 Graph of time domain magnitude (logarithm squared scale) of impulse response from SP-4 (beyond the center of the nave) and MP-1 (in the center of nave, near the altar), from omnidirectional microphone signal channel 1
Figures

9.12a, b Graph of time domain magnitude (logarithm squared scale) of impulse response (visible duration 1500 milliseconds) compared to direct impulse response (linear scale amplitude and phase) (visible duration 500 milliseconds) measured at source location SP-2 (near Sultan’s Lodge) and receiver position MP-4 (near the center of the nave).

10.1 Memorial Church, Stanford University, interior

10.2 Memorial Church, Stanford University, balloon-pop response (above) and associated spectrogram (below)

10.3 Numerical simulation of acoustic wave propagation in a domed structure, featuring wave fronts of a pressure pulse (gray) radiated from the source (asterisk) and propagation paths (black) from the source to the listener (circle), rendered at various time indices (upper right)

10.4 Memorial Church, Stanford University, floor plan

10.5 Spectrograms of chant recorded in Memorial Church, Stanford University, headset microphone (above), nave microphone (center), and simulated nave microphone (below)

10.6 Hagia Sophia, Istanbul, balloon-pop response (above) and associated spectrogram (below), December 2010

10.7 Hagia Sophia impulse response (above) and associated spectrogram (below), recovered from the December 2010 balloon-pop response recording (Figure 10.6)

10.8 Cappella Romana at a recording session, Center for Computer Research in Music and Acoustics (CCRMA), stage, Stanford University, March 2011

10.9 Mark Powell, a singer with Cappella Romana, outfitted with a headset microphone (Countryman B2D) and earbud headphones at the Cappella Romana March 2011 recording session (Figure 10.8)

10.10 Alexander Lingas, the artistic director of Cappella Romana, being outfitted with a lavalier microphone by Scott Levine for the concert “From California to Constantinople,” February 2013, at the Bing Concert Hall, Stanford

10.11 Cappella Romana at a CCRMA stage recording session, February 2013

10.12 Live auralization over loudspeakers signal flow architecture, employing statistically independent loudspeaker impulse responses

10.13 Live auralization over loudspeakers signal flow architecture, using statistically independent panned singer reverberation clouds

10.14 Bing Concert Hall, Stanford University, live auralization loudspeaker layout for the performance “From Constantinople to California” February 2013

10.15 Cappella Romana at a dress rehearsal for the concert “From Constantinople to California” at Bing Concert Hall, showing selected loudspeakers (Figure 10.14)
Contributors

Jonathan S. Abel is consulting professor at the Center for Computer Research in Music and Acoustics in the Department of Music at Stanford University, where he explores audio and music applications of signal and array processing.

Ravinder S. Binning is a PhD candidate in medieval art history at Stanford University as well as a Mellon fellow in the Cathedral Program, Santiago de Compostela, Spain and the 2016–2019 Paul Mellon predoctoral fellow at the Center for Advanced Study in the Visual Arts at the National Gallery, Washington, DC. His current research focuses on the relationship between fear, art, and architecture.

Peter Jeffery is the Michael P. Grace II Chair of Medieval Studies at the University of Notre Dame, where he is also professor of music, concurrent professor of theology, and concurrent professor of anthropology. He is simultaneously the Scheide Professor of Music History at Princeton University. He has published many books and articles on the medieval eastern and western traditions of Christian chant and liturgy. He is currently working on a book tentatively entitled “Religious and Civic Ritual in Eighth-Century Rome: Ordo Romanus Primus.”

Christina Maranci is the Arthur H. Dadian and Ara T. Oztemel Chair of Armenian Art and Architectural History at Tufts University. Her books include Medieval Armenian Architecture: Constructions of Race and Nation (Peeters, 2001), and Vigilant Powers: Three Churches of Early Medieval Armenia (Brepols, 2015).

Walter D. Ray is associate professor in library affairs at Southern Illinois University Carbondale. His primary area of research is early and Eastern Christian liturgy. He has published studies on early Egyptian Eucharistic prayers and on the early Jerusalem liturgical calendar, and a recent book on Byzantine liturgy, Tasting Heaven on Earth: Worship in Sixth-Century Constantinople (Eerdmans, 2012).

Laura Steenberge is a performer–composer who recently completed a DMA in music composition at Stanford University. As a researcher she studies language, the voice, harmony, and acoustics. Her creative work engages with questions
about the origins and transformations of instruments, songs, myths, and science through the ages.

Lora Webb is a PhD candidate in medieval art history at Stanford University. In addition to architecture, her current research centers on treasury arts: understanding how they were made, used, traveled, and were altered over time.

Ruth Webb is professor of Greek language and literature at the Université Lille 3 (France). She has published widely on the use of appeals to the visual imagination in Ancient Greek and Byzantine literature and rhetoric as well as on theatre and dance in Late Antiquity and Byzantium.

Christian Troelsgård is associate professor of medieval Greek and Latin at University of Copenhagen. He is executive secretary of the international editorial project Monumenta Musicae Byzantinae. His books include *Byzantine Neumes, A New Introduction to the Middle Byzantine Musical Notation* (Museum Tusculanum Press, 2011) and (ed.) *Chants of the Byzantine Rite: The Italo-Albanian Tradition in Sicily* (Museum Tusculanum Press, 2016).

Kurt James Werner is a lecturer in audio at the Sonic Arts Research Center (SARC), Queen’s University, Belfast. His work focuses on theoretical aspects of wave digital filters, computer modeling of circuit-bent instruments, virtual analog and physical modeling more broadly, and the history of music technology. He obtained a PhD in 2016 in computer-based music theory and acoustics at Stanford University’s Center for Computer Research in Music and Acoustics (CCRMA).

Wieslaw Woszczyk is James McGill Professor in the Department of Music Research at the Schulich School of Music of McGill University. He is the founding director of the Graduate Program in Sound Recording and of the Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), and directs the Virtual Acoustics Technology Laboratory at McGill. He served as president of the Audio Engineering Society and chair of its technical council.
Acknowledgments

I owe a debt of gratitude to Dr. Maria Sereti and the Onassis Foundation (USA), who generously sponsored this seminar; to all the authors and participants of this project; and to Lory Frankel and Fronia Simpson for their amazing copyediting work. I am also beholden to the graduate students who helped me in the last stage of turning this material into a book: Ravinder Binning, Daniel Smith, Laura Steenberge, Lora Webb, and Erik Yingling. A debt of gratitude is owed to the Stanford Global Studies Program, which offered the infrastructure for the Onassis seminar, and, in particular, the director, Prof. Norman Naimark, and staff members Jane Stahl and Mark Rapacz, who created the Website. I also thank Mike Seely, who filmed and edited the videos of the sessions.
10 Live auralization of Cappella Romana at the Bing Concert Hall, Stanford University

Jonathan S. Abel and Kurt James Werner

Introduction

The reverberant properties of a space have long been considered an acoustic signature of that space. In his 2015 article “Space within Space: Artificial Reverb and the Detachable Echo,” Jonathan Sterne traces out the legacy of this idea and its eventual relaxation. To describe this “separation of sounds from themselves” (their physical presence in space, that is, their reverberation), he coined the phrase “detachable echo.” Although the traditional association between sounds and their reverberation has been somewhat loosened in the thinking of, for example, modern architectural acoustics and artistic uses of artificial reverberation, the classical link between sound and space is an essential part of understanding the sonics of certain places, including Hagia Sophia.

Sound is intrinsically experiential; to fully understand the sound of a space, we must hear it. Even the most hardened signal-processing engineer would admit that studying an impulse response (the output of a dynamic system when presented with a brief input signal, or, in other words, the acoustic signature of the space) is only a supplement to, not a substitute for, listening to a piece of music in the interior characterized by that response. Space intimately relates musicians to their musical material; some music can be fully experienced only in its intended context. Consider what is lost when we try to reproduce the sound of a symphony orchestra through laptop speakers; consider how out of place a marching band might sound in a large concert hall.

This is a concern not only for listeners, but also for performers. Musicians alter aspects of their performances, including tempo, articulation, and timbre, according to the space in which they are performing. A recent study showed that reverberation time significantly affected tempo and timing precision. Although it also observed that effects on intonation were not very strong, the study was limited to a choir singing Western classical music (Anton Bruckner’s sacred motet “Locus Iste”). Anecdotally, we have evidence that in the context of modal music, which characterizes medieval chant, both intonation and the trajectory of pitch “glide” between notes are affected by the performance space.

Singers collaborate with space itself during a performance, and properties of the space can have pronounced effects on their chant; unsurprisingly, performers decidedly favor one space over another. These subjective preferences can sometimes be linked to measurable objective features. As an example, I. Nakayama studied subjective preference judgments of an alto recorder soloist in a simulated reverberation
environment, one with only a single reflection. Even in a simplified environment like
this, the alto recorder soloist strongly preferred certain time delays.6

Unfortunately, logistics, geography, and even politics can keep us from performing
and experiencing music in context in its most appropriate spaces. This is the case with
Hagia Sophia and Byzantine cathedral chant. The building was transformed into a
mosque in 1453 following the Ottoman conquest of the city. With the establishment
of the modern Republic of Turkey, the structure was secularized and made into a
museum. As a result, concerts and liturgical music are no longer permitted. At the
same time, there is a resurgence of interest in the elaborate Byzantine cathedral chant.7
To overcome these limitations and place together the music within the space for which
it was composed and within which it was performed, we can turn to artificial
reverberation to re-create the sonic experience of the Great Church using signal
processing.

The process of re-creating the aural experience of a particular space is called
auralization.8 Successful auralization is a complex task that involves cultural and
musical sensitivity to the target space and its aural context, technical skills in signal
processing, artificial reverberation research, and access to potentially complex sound-
reinforcement hardware (loudspeakers).9 Auralization has a long history, stretching
back to the 1930s, although the target spaces of auralization are often much more
ancient.10

Researchers have begun to uncover how ancient spaces are characterized by distinctive
sonic properties that carry ritual significance.11 The El Castillo pyramid in Chichén
Itzá, Mexico, built sometime between the ninth and the twelfth centuries as part of a
Mayan religious site, produces a chirplike sound (a “repetition pitch glide”) in response
to a hand clap, a result of the geometry of the pyramid’s stairs.12 This chirplike clap
response approximates remarkably the sound of the quetzal bird, which held an important
place in Mayan culture and religious life.13 Similarly, the ancient (dating to at least
1200 BC) underground galleries at Chavín de Huántar, Peru have distinct acoustics.
Dense and energetic early reflections, a short reverberation time, and wide soundfields
create an acoustic experience of envelopment and can heighten a sense of indeterminate
sound source location.14 Along with visual and other sensory manipulations, the acoustics
of the underground galleries at Chavín contributed to the ritual experience at the site.15
After completing rudimentary acoustic measurements inside six diverse ancient structures
in the British Isles, Robert Jahn, Paul Devereux, and Michael Ibison found that each
sustained a strong resonance at a frequency between 95 and 120 Hz (hertz). Jahn
speculates that since these prominent resonance frequencies are within the adult male
voice range, the interaction between chanting and cavity resonances were invoked for
ritual purposes.16

Researchers employ auralization to mimic the sonic properties of archaeological
sites,17 either on its own or alongside other aids, such as visual re-creations, as part
of “virtual time travel” or “experiential archaeology.”18 For example, digital waveguide
networks (networks of bidirectional delay lines that explicitly simulate traveling waves)
have been used to imitate the acoustics of galleries at Chavín.19 “Convolution-based
approaches (see the next section, wherein convolution and its application to artificial
reverberation and auralization are described) are common and have been used in
particular as part of a hybrid wave field synthesis (simulation of the soundfield using
multiple loudspeakers related to Hyugen’s principle) and Ambisonics (full sphere
surround sound based on spherical harmonics) system to create an auralization of
Stonehenge.20 Auralization technology is mature enough that it can effectively simulate even complex concert halls.21

However essential the sonic signatures of spaces such as archaeological sites, concert halls, and churches may be, they are not immutable. Since ancient times, an understanding of the importance of the acoustics of spaces has been accompanied by attempts to manipulate those sonic imprints. Early techniques for affecting the auditory properties of spaces involved passive modifications to the structure. In 30 BCE, the architect Vitruvius reported on a well-established tradition of using resonating vases, which can be understood as Helmholtz resonators, set up in theaters and intended to modify the acoustic properties of the space.22 In the twentieth century elaborate signal processing-based approaches have been worked out to control the acoustics of concert halls, a process called active acoustic enhancement.23 The goals of active acoustic enhancement may include repairing poor acoustics24 or tailoring a concert hall’s response to the divergent acoustic needs of a variety of aural situations, including spoken word, chamber music, and full-scale symphonic works.25 These systems can even help to control the acoustics of outdoor venues; the Læres system at Chicago’s Frank Gehry-designed Pritzker Pavilion is exemplary.26 Active acoustic enhancement systems tend to be permanent installations. By contrast, the system described in this chapter is mobile, non-site-specific, and employs off-the-shelf and even open-source technology.

In the twentieth century, audio engineers in broadcast and popular music recording developed a complex set of tools for manipulating spatial impressions in audio recordings.27 Early approaches involved merely making recordings in locations with particular sonic effects or in specially designed echo chambers; later on, researchers devised electromechanical devices, including “plate reverb” (reverberation produced using a large steel plate) and “tape echo” (a type of delay or echo processor that uses analog recording tape to achieve the effect), to add to the palette of spatial manipulations. Beginning in the 1960s, researchers began working on digital signal-processing techniques that could accomplish these manipulations entirely in the digital realm. Today, a vast literature on digital artificial reverberation techniques continues to inform new research, including approaches to auralization.28

Concert halls are also characterized largely by their acoustics; the sound of a concert hall is a major element in experiencing live music. Alongside investigations into and re-creations of the sonic environment of ancient archaeological sites, researchers have employed auralization to preserve the acoustics of important concert halls for posterity.29 Among many other studies, Lamberto Tronchin and Angelo Farina explored the acoustics of the former La Fenice opera house in Venice, whose unusual elliptical shape gave it a unique sound. When the building burned down on January 29, 1996, its restoration relied in part on Tronchin and Farina’s acoustic measurements.30

Before specific architectures for concert halls were common, churches provided such spaces. Jaime Navarro, Juan J. Sendra, and Salvador Muñoz make a case for acoustic assessment of the Western Latin church.31 Rafael Suárez, Alicia Alonso, and Juan J. Sendra considered the Romanesque cathedral of Santiago de Compostela in Spain as a case study on the relations between architecture, music, and liturgy.32 Deborah Howard and Laura Moretti studied the relation between sacred music and architectural design in sixteenth-century Venice.33 Related work aimed to quantify the acoustic heritage of mosques and Byzantine churches.34

In this context, the acoustics of Hagia Sophia present an opportunity for fascinating case studies that range from humanistic to scientific. Building on her previous work
on the phenomenology of the icon in Byzantium, Bissera Pentcheva studied the multisensory aesthetics of Hagia Sophia, focusing in part on the link between the optical shimmer of marble and gold and the acoustic reflection properties of marble. Earlier studies considered the acoustics of Hagia Sophia from a computational perspective. Most recently, Wieslaw Woszczyk has conducted new acoustic measurements and offered an analysis of the acoustics of the space.

This essay turns to the algorithmic process, known as auralization, by means of which the acoustic signature of Hagia Sophia can be imprinted on a recorded or live performance of Byzantine chant. Using digital technology allows us to re-create in present-day performance spaces aspects of the acoustic experience of Constantinople’s Great Church. After introducing some basic reverberation concepts and terminology in the next section, we focus on the idea of the room response as it relates to auralization and architectural acoustics, and then describe a study conducted to validate our method of measuring and reproducing the acoustics of a space. Preliminary experiments on auralizing Hagia Sophia are then presented and build up to a discussion of three live performances involving acoustic re-creations of Hagia Sophia.

Architectural acoustics, auralization, and the room impulse response

Particularly in reverberant spaces, listening is as much about the space as it is about the sound source. In such interiors, the vast majority of the acoustic energy arriving at a listener from a sound source has interacted with objects and surfaces on its way to the listener. In doing so, the space imprints itself on sound, modifying sound according to the geometry and materials composing the space. As a result, different interiors, having different architectures, materials, and furnishings, will “feel” different sonically: imagine the contrast between hearing singing in a large church with marble floors and walls and the same singing in a small club with hardwood floors and upholstered furniture.

In this section, we describe the mechanism by which a room manipulates sound, infusing it with the room’s acoustic character. We start by considering a very simple sound, that of a popping balloon. We then introduce the “impulse response” as embodying the acoustic signature of the room, and “convolution” as the computational process of applying an impulse response to a sound. Next, we argue that an acoustic space may be simulated for any sound by the application of a room impulse response via convolution. The remainder of this section is devoted to exploring concepts of impulse response, convolution, and auralization using the example of recordings made in Stanford University’s Memorial Church (Figure 10.1).

To understand how a space processes sound, let’s consider a particularly simple sound source, a balloon pop. The pressure waveform generated by a balloon pop is a short-duration pulse, lasting about a millisecond (ms) for a one-foot-diameter balloon, and is roughly shaped like the letter N. Over time, this so-called N-wave will propagate away from the position where the balloon was popped and eventually interact with surfaces and objects in the room to create reflections, which in turn will interact with the room and other surfaces and objects, and so on, creating more and more reflections.

This process is seen in a balloon-pop recording made in Memorial Church (Figure 10.2): a listener will hear the balloon pop and its interaction with the space in three parts, first on a “direct path” from the balloon (Figure 10.2, “direct path”), then via a
number of “early reflections” (Figure 10.2, “floor, chancel, dome, nave reflections”), which become increasingly dense and indistinguishable from noise, forming the “late-field reverberation” (Figure 10.2, “late-field reverberation”).

The room response to the balloon pop is also illustrated by numerical simulation. Figure 10.3 presents a sequence of frames demonstrating how the balloon-pop sound (represented by a gray line) radiates from a point on the left side of a room (marked by an asterisk) and eventually fills the space with sound energy. A time stamp appears in the upper-right corner of each frame. The balloon pop is first a circle, then it becomes a folded circle after reflecting from the floor. The third frame (Frame 85) shows the wavefront passing through the listener position (marked by a circle) and has a black line between the source and listener; this is the direct path, which presents the route traversed by sound to first reach the listener from the source. The next frames (Frames 105 and 256) detail the arrival of the reflection from the floor and a reflection from the back wall and floor. Subsequent frames display the propagating wavefront being broken up into smaller and smaller segments, and tracing more and more complicated propagation paths between source and listener. In addition to the path’s complexity increasing over time, the density of arrivals at the listener increases over time.

In the case of the balloon pop, as the N-wave and its reflections propagate, sound energy is absorbed through interactions with the materials and objects that compose the space (Figure 10.2). Each interaction will absorb a small fraction of the sound energy, and over time the sound energy will decay. In large spaces, absorbing surfaces
Figure 10.2 Memorial Church, Stanford University, balloon-pop response (above) and associated spectrogram (below).

Figure 10.3 Numerical simulation of acoustic wave propagation in a domed structure, featuring wave fronts of a pressure pulse (gray) radiated from the source (asterisk) and propagation paths (black) from the source to the listener (circle), rendered at various time indices (upper right).
are far apart and sound interacts with them relatively less frequently, leading to long
decay times. By contrast, absorbing interactions occur more frequently in small spaces,
and the decay times are shorter. In addition, sound energy is lost by propagating
through the air, which absorbs a small fraction of the sound energy over every unit
of distance traveled. Air absorption is stronger at high frequencies than low frequen-
cies. This explains why thunder sounds more muffled the more distant the lightning
strike. It also accounts for the relatively “dark” quality of large reverberant spaces, for
which air takes up a greater portion of sound energy absorption, relative to reflecting
surfaces.38

In the Memorial Church balloon-pop recording plotted in Figure 10.2, the time axis
is presented on a logarithmic scale to magnify details of the perceptually important
balloon-pop response onset. The direct path arrival and reflection from the floor exist
as clear N-waves at the beginning of the balloon-pop response. A number of early
reflections, possibly from the apse and dome, appear near the 0.04 and 0.07 second
marks, and another set, likely from the rear of the nave, arrive near 0.15 seconds. After
these reflections, the response gives way to a noiselike late field, with frequencies in
the 500 Hz range lasting nearly 4 seconds. High frequencies decay more quickly due
to air absorption and a small amount of carpet, both of which preferentially absorb
high rather than low frequencies. The church has a considerable number of stained-
glass windows, which absorb low-frequency energy and reduce the reverberation time
for frequencies below about 200 Hz. Comparing the portion of the energy arriving
directly from the source (the first N-wave) with that which has been reflected (the rest
of the balloon-pop response) shows that the reflected energy accounts for a sizable
part of the sonic signature. This corresponds to reflected energy playing a significant
role in the perception of sound in this space.

To understand how the space impacts a more complicated sound, a singer, Konstantine
Buhler, was recorded in Memorial Church by two microphones simultaneously: a small
headset microphone positioned next to his mouth and a room microphone on a stand
in the nave (Figure 10.4, C), roughly 25 feet from the singer in the chancel (Figure
10.4, B). Because the headset microphone was so close to the singer’s mouth compared
to the dimensions of the church, the sound it recorded contained the singing mixed
with a nearly imperceptible amount of reverberation. Such “close-miked” recordings,
which capture the source essentially without room acoustics, are referred to as “dry”
or anechoic; the recorded sound will feel close and clear. By contrast, most of the
sound energy recorded at the room microphone was reflected many times from surfaces
and objects in the church. These recordings, described as “wet,” will sound distant
and reverberant.

To visualize their sonic features, the dry and wet recordings were processed into spec-
trograms (Figure 10.5, above, dry; Figure 10.5, center, wet), which show how sound
energy across the frequency range of human hearing evolves over time. Different sound
frequencies will stimulate different locations along the cochlea (part of the inner ear);
alogously, different sound frequencies will stimulate different “spectrogram ‘bins’”
along the spectrogram’s frequency axis. Because of this similarity, spectrograms are
widely used to analyze sound and its human perception. In fact, when the spectrogram
is applied to music, aspects of the musical score are apparent. In the dry recording spec-
trogram (Figure 10.5, above), sung pitches generate horizontal lines at multiples of the
fundamental frequency. The change in singing pitch over time is clear, as are many
note onset and release times. Sibilant and other unvoiced sounds, by contrast, occupy
broad ranges of frequency and appear in the spectrogram as noiselike patches (Figure 10.5, above, just after the 1.0-second mark).

The dry (Figure 10.5, above) and wet (Figure 10.5, center) spectrograms display a number of changes that reveal the acoustic signature of the building on the singing. First, all of the wet spectrogram features have been smeared (that is, the sound is imprinted with the reverberant acoustics of the space) over time compared with those of the dry performance. This is particularly noticeable during silences and when the singer is gliding into a note, such as at 1.5 and 6.0 seconds; it is also consistent with one’s experience of reverberation in the church. Second, what were solid horizontal lines tracing out a steady pitch energy in the dry recording have become scalloped and variable in intensity in the wet recording. The spectrogram illustrates that reflections in the church are combining sung notes at slightly different times in a type of chorus effect to create a complex pattern of constructive and destructive interference. This scalloping can also be observed in the dry recordings of a chorus of singers.

We now turn our attention to the process by which sound is transformed by an acoustic space. Note that irrespective of the nature of the sound—whether, for example, a balloon pop or a singing voice—the mechanism by which a space generates a set of reflections and reverberation will be the same. In other words, a space processes
sound in a fixed way, without regard to the particulars of the sound. Consider that any sound can be thought of as being composed of a sequence of overlapping pulses, or sound “atoms,” each scaled in amplitude according to the sound pressure at that point in time. Assume that the response of the space to a single, isolated atom—say, the response to a balloon pop—is measured or otherwise known. Now, the response of the space to a given sound is simply the sum of the known responses of each of the pulses or atoms forming the sound. Put differently, each atom of sound will drag behind it an entire atom response’s worth (think balloon-pop recording’s worth) of reflections and reverberation.

This mechanism can be seen in a comparison of the dry and wet recording spectrograms in view of the balloon-pop response. What are distinct time-frequency regions in the dry spectrogram (Figure 10.5, above) have been smeared over time in the wet spectrogram (Figure 10.5, center) in exactly the same manner that the initial N-wave of the balloon-pop spectrogram (Figure 10.2, below) is smeared over time. The dry singing pitch trajectories become smeared and noiselike in the wet spectrogram. Additionally, high-frequency sibilant sounds (Figure 10.5, just after 1.0 and 5.0 seconds) reverberate for relatively shorter times, as anticipated by the balloon-pop response (Figure 10.2, below).

Figure 10.5 Spectrograms of chant recorded in Memorial Church, Stanford University, headset microphone (above), nave microphone (center), and simulated nave microphone (below). Diagram by Jonathan S. Abel, 2015.
The sequence of pulses imprinted with the acoustic signature of the space can be expressed computationally: if the atoms are one-sample-wide unit pulses or “impulses,” then the response of the space to such an atom is referred to as an impulse response. The computational process of summing such impulse responses scaled according to the signal samples is called convolution, and the sound signal is said to be “convolved with the impulse response.”

The impulse response encapsulates everything relevant about the acoustics of the space for the source and listener positions used to record it. As a result, the qualities of an acoustic space are typically studied by analyzing features of impulse responses measured in the space. Moreover, convolution with the impulse response can be applied to generate the room response to any given sound. This fact means that to simulate a space, only the impulse response needs to be known. This is remarkably convenient, as the alternative of measuring the response of the space to even a small number of anticipated sounds would be prohibitively costly. For this reason, convolution with room impulse responses lies at the heart of most room acoustics simulation systems, including our live auralization system, described below.

Auralization using balloon-pop recordings

What is needed to simulate the acoustics of Hagia Sophia is a set of impulse response measurements. There are many methods available to measure room impulse responses, most commonly involving playing test signals such as swept sinusoids or Golay codes into the space from a loudspeaker and recording the room’s response at a set of microphones. The drawback of this approach is that it requires a significant amount of time to set up and tear down the equipment and to make the measurements. Since access to Hagia Sophia is very limited, these approaches were not available to us. In our work, which is part of the “Icons of Sound” project, we circumvented the logistical difficulties associated with loudspeaker-based measurement by relying on balloon-pop responses, recorded by Bissera Pentcheva in May and December of 2010 in Hagia Sophia. This approach calls for only a handheld recorder, a balloon, and a few minutes of time. Yet this illusory “ease” conceals the unavoidable long overseas flight and extended negotiations with the local museum authorities.

Balloon-pop responses are not impulse responses, however, and we developed a method to convert our balloon-pop recordings into impulse responses. This method was unproven, and to test its effectiveness we conducted an experiment using the dry and wet recordings of a student, Konstantine Buhler, singing in Memorial Church, as described above. Leaving a microphone at position C shown in Figure 10.4, we popped several balloons from where Buhler had been singing (Figure 10.4, position B) and recorded the responses. We converted the balloon-pop recordings into room impulse responses using our method and then convolved the estimated impulse responses with the dry recording to obtain a simulated Memorial Church response at position C to Buhler’s singing.

The spectrogram of the simulated position C signal is plotted (Figure 10.5, below) on the same time axis as the spectrogram of the signal actually recorded at position C (Figure 10.5, center). The spectrograms and sound of the recorded and simulated signals are very similar in the mid-frequencies and above, verifying the effectiveness of the room simulation via impulse response measurement. Where they differ is in the
low frequencies, where the church heating system (which could not be turned off) added noise to the recording. It was an unexpected benefit of the simulation that, compared to the actual recording, stray environmental noises were eliminated.

Postproduction auralizations in a virtual Hagia Sophia

The convolution of the acoustic signature of Stanford University’s Memorial Church, using an impulse response derived from a balloon pop, serves as a proof of concept. Convolution done as a postproduction process, that is, using prerecorded sound to convolve with a room signature, does not allow musicians to interact with the space in real time. To overcome this limitation, we developed a real-time method for imprinting Hagia Sophia’s sonic signature onto a live performance. This system makes it possible for musicians to hear the effect of the space on their singing in real time and make adjustments accordingly. They thereby have substantially the same aural experience as performing in the real space.

As before, we started with a balloon-pop response. A balloon pop recorded by Pentcheva in Hagia Sophia, December 2010 (Figure 10.6), was converted into an impulse response suitable for live auralization (Figure 10.7). This recovered impulse response has a few interesting features, not least of all its length—it takes roughly 11 seconds for the impulse response to decay from a comfortable listening level to the

![Figure 10.6](image)

Figure 10.6 Hagia Sophia, Istanbul, balloon-pop response (above) and associated spectrogram (below), December 2010.

threshold of human audibility (approximately 60 dB (decibels) below conversation level). In addition, the listening position for this impulse response, about 10 meters from the balloon, is dominated by reflected energy, the “wet” portion of the impulse response. We can associate certain features of the impulse response with the geometric features of Hagia Sophia. For instance, the large spike around 100 ms (milliseconds) and the “wash” that builds to a wide peak around 300 ms issue from complex reflections produced by the dome and colonnades.

In advance of the public concert, an experimental recording session was conducted in 2011 in a small recital hall (“the Stage”) at Stanford University’s Center for Computer Research in Music and Acoustics (CCRMA) (Figure 10.8). It featured thirteen members of Cappella Romana, a renowned group specializing in performances of Byzantine chant. To enable these professional singers to adjust aspects of their performance, such as vocal balance and articulations, in response to the reconstructed Hagia Sophia acoustics, the auralization system needed to operate in real time and to allow the chanter to hear each other and themselves in the simulated space.

In this recording, we used Countryman B2D headset microphones (Figure 10.9), in order to capture each singer’s voice on a separate track. A digital audio workstation (MOTU Digital Performer) was used to record the singers’ voices, and we processed them to form a dry stereo mix. The mix was convolved in real time with stereo left
Figure 10.8 Cappella Romana at a recording session, Center for Computer Research in Music and Acoustics (CCRMA), Stage, Stanford University, March 2011.
Photograph © Dave Kerr, 2011.

Figure 10.9 Mark Powell, a singer with Cappella Romana, outfitted with a headset microphone (Countryman B2D) and earbud headphones at the Cappella Romana March 2011 recording session (Figure 10.8).
Photograph © Dave Kerr, 2011.
and right statistically independent impulse responses derived from the December 2010 Hagia Sophia balloon-pop recordings, forming a wet stereo mix.44

The chanters were positioned in a circle so that they could see each other and the conductor (Figure 10.8). Earbud headphones made available to them the dry and wet mixes, and each performer could control the balance between wet and dry mixes and the overall level in the individual’s earbud signal. In this way, the performers could hear their own singing and each other in the simulated Hagia Sophia and interact accordingly. Providing feedback over headphones made it possible to keep the microphone signals dry, absent of any of Hagia Sophia acoustics.

The group began warming up without simulated acoustics; during this time microphone levels and equalizations were set. The simulated acoustics were then enabled, placing the performers in a virtual Hagia Sophia. Next, the performers were given a chance to acclimate to the environment. Their initial reaction, expressed simultaneously by several of the chanters, was, “Oh, let’s play!” The chanters reported interacting reasonably naturally with the space, slowing their tempo to accommodate Hagia Sophia’s long reverberation time. The ison (the drones) particularly enjoyed singing in the virtual acoustics, because they found it easy to “ride” the resonances.

The group performed a number of chants, including: 1) a prokeimenon (psalmic verses prefacing the readings from the Epistle in the Divine Liturgy (Eucharistic rite), or introducing the Old Testament readings at hesperinos (vespers) or the New Testament at orthros (laudes) or morning service finishing at dawn); 2) a kontakion (sung sermon); and 3) a congregational setting for Psalm 140 [141] sung at vespers, all of which we processed in postproduction into stereo and surround recordings. Recording the individual tracks anechoically made a number of editing options available that would be precluded when recording such a group in the actual space using room mics, as is conventional. This is because, with room mics, the dry singing and acoustics of the space are intermixed. With the convolution applied artificially after the fact, the acoustics of the space in which the dry tracks were recorded will still appear in the final auralization. By contrast, close-miking allows us to eliminate the acoustics of the recording room as well as stray noises such as traffic sounds from outside the building. Below, we give specific examples of different musical production techniques that are afforded by this approach. These include the possibilities to reposition singers in postproduction, to sculpt and to place reverberation, and to easily overlay multiple rounds of recording.

To produce the stereo mixes, as with the live recording, melodists’ and drones’ (ison) dry tracks were separately panned, that is, positioned horizontally, across the stereo field. A wet stereo mix was formed by convolving the dry stereo mix with a pair of statistically independent Hagia Sophia impulse responses. The final mix was generated by balancing the wet and dry components.

Surround mixes were generated in a similar manner: each of the eight male chanters’ dry signals were panned separately to a location, and clouds of reverberation formed by convolution with a number of statistically independent Hagia Sophia impulse responses were placed about those locations. In our mix of the prokeimenon, the eight chanters’ dry signals were panned to eight equally spaced locations around the listener. The reverberation clouds were panned tightly about each melodist, in a neighborhood 30 degrees to the left and right and 15 degrees above and below. The isons’ reverberation clouds were panned over a wider region, in a neighborhood of 60 degrees to their left
and right. This production mix creates the effect of a ring of performers surrounding the listener.

In our mix of the *kontakion*, the dry signals of the thirteen chanters—eight men and five women—were placed on a soundstage in front of the listener, and their associated reverberation clouds were panned about them, so that they shared a wide reverberant stage. This production mix gives the impression of an ensemble playing onstage in front of the listener. The production technique for Psalm 140 was similar to that for the *kontakion*. However, many overdubs were recorded to get the effect of fifty-two singers in a much larger chorus.

Live performance in a virtual Hagia Sophia

We now turn our attention to live auralization of Byzantine chant for performance and recording in which we employ loudspeakers rather than headphones to synthesize the acoustics of Hagia Sophia. The use of loudspeakers both enables presentation to an audience and provides for a more natural interaction among the performers, allowing for freedom of movement and a truly shared performance environment. The use of loudspeakers also presents some technical issues, and in the following we discuss these challenges and outline our solutions. We begin by describing our approach to live loudspeaker-based auralization and finish by discussing live auralization over loudspeakers in three performance halls: the Bing Concert Hall, the CCRMA Stage, and the San Francisco Ritz-Carlton Ballroom.

Our technical approach was driven by the need to perform, rehearse, and record in different spaces that were not preconfigured to present virtual acoustics, and to which we have limited access. This required a virtual acoustics system that was transportable and could be quickly loaded in, installed, configured, and tuned, and also quickly torn down and loaded out. The system hardware is much like that of the headphone-based system described above, again including a set of close microphones to capture the dry voices of individual singers, as well as for recording and postproduction. A set of room microphones records the mix as heard in the space. The system also includes a set of powered full-range loudspeakers and subwoofers to present the simulated acoustics. A digital audio workstation (DAW) connects to the microphones and loudspeakers through a mixing board and audio interface. The DAW processes the close microphone signals to generate live virtual acoustics signals, rendered in the space by the loudspeakers.

The use of loudspeakers raises the issue of feedback: it is possible, particularly when simulating very reverberant spaces such as Hagia Sophia, that loudspeaker signals will find their way back into the performer microphones, forming a feedback loop. This feedback can take a mild form, in which the simulated acoustics is modified, or it can take a severe form, in which particular resonant frequencies grow in amplitude and become unpleasant “whistles.”

The approach we take to minimize the possibility of feedback has two components. The first is to use many loudspeakers so that each loudspeaker signal can play a relatively quiet signal, thus minimizing feedback between any given loudspeaker and microphone. The difficulty is that there are a number of microphone–loudspeaker loops running in parallel, and their combination might create feedback if they operate coherently. This possibility is eliminated in our system by using statistically independent
impulse responses—in effect, impulse responses that sound the same but do not track each other in any predictable way—to generate the simulated acoustics. Employing this approach, a significant amount of reverberation can be generated without producing perceivable feedback.

The second component that helps to eliminate feedback employs directional close microphones. Using microphones with a hypercardioid polar pattern (which is sensitive to sound coming from one particular direction) taped to the foreheads of the singers and pointed down toward their mouths (Figure 10.10) places the singers’ voices well within the “main lobes” of the microphones, and therefore they will be accentuated. At the same time, the loudspeaker signals, appearing from the sides and above the singers, will arrive from outside the main lobes of the microphones, and therefore will be suppressed. We have found that this approach is sufficient to eliminate problematic feedback, even when simulating very reverberant environments such as Hagia Sophia and operating in smaller rooms such as the CCRMA Stage, where the loudspeakers are close to the singers.

Two settings were configured for virtual acoustics performance and one for rehearsal and recording. Bing Concert Hall was configured to simulate the acoustics of Hagia Sophia for the “Constantinople” portion of Cappella Romana’s February 1, 2013, “From

Figure 10.10 Alexander Lingas, the artistic director of Cappella Romana, being outfitted with a lavalier microphone by Scott Levine for the concert “From California to Constantinople,” February 2013, at the Bing Concert Hall, Stanford. The Countryman B2D lavalier microphone has a hypercardioid polar pattern sensitive to sound coming from one particular direction, which helps in minimizing problematic feedback.

Photograph © Dave Kerr, 2013.
Constantinople to California” concert. The San Francisco Ritz-Carlton Ballroom was configured to synthesize the acoustics of Hagia Sophia and of the Church of the Holy Cross in Belmont, California (a medium-sized, reverberant church) for the September 27, 2014, Cappella Romana performance at a Patriarch Athenagoras Orthodox Institute event. In addition, the CCRMA Stage was configured to simulate the acoustics of Stanford’s Memorial Church for rehearsal of Cappella Romana’s February 2, 2013, “Holy Week in Jerusalem” performance in that space. Finally, the CCRMA Stage was configured to present the acoustics of Hagia Sophia for recording sessions held February 6 and 7, 2013.

We begin with our rendering of the acoustics of Hagia Sophia for live recording on the CCRMA Stage and the preparation of Memorial Church for Cappella Romana’s rehearsal for its “Holy Week in Jerusalem” concert. The CCRMA Stage has sixteen full-range loudspeakers and eight subwoofers, all manufactured by ADAM Audio. Eight loudspeakers at ear level and paired subwoofers at floor level, mounted on movable stands, were placed in a ring about the Stage; the remaining eight loudspeakers are affixed to the rafters, in a ring above the singers (Figure 10.11).

The Stage’s acoustics are somewhat configurable; velour and felt damping materials were deployed to reduce the Stage’s inherent reverberation time to less than a third of a second, a relatively “dead” environment. In this way, the reverberant virtual acoustics generated by the loudspeakers is essentially unmodified by the room. For both the rehearsals and the recording sessions, the Cappella Romana singers arranged themselves in a circle, as before. Countryman B2D 2mm-diameter lavalier microphones with a hypercardioid were affixed to their foreheads with medical tape (Figure 10.10). The fifteen microphone signals were recorded and processed using the digital audio workstation Ableton Live, using the plug-in LAConvolver for real-time convolution, running on a laptop computer.

Figure 10.11 Cappella Romana at a CCRMA Stage recording session, February 2013. Photograph © Dave Kerr, 2013.
Each of the singer microphone channels was panned among sixteen real-time convolution channels running statistically independent Hagia Sophia impulse responses. In turn, each convolution output drove a different loudspeaker (Figure 10.12). The rafter-mounted loudspeaker signals were modestly delayed, as were the ear-level loudspeaker signals closest to the singers. The purpose was to roughly match the first reflection arrival times from the various directions about the singers. In this way, the chanters heard singing from each of the other chanters directly, as well as through the virtual acoustics of Hagia Sophia played out over the sixteen loudspeakers. The panning of the dry signals and the resulting reverberation was done in such a way as to envelop the performers in a reverberant soundfield. As with the 2011 recording session, the performers warmed up and then individually sang so that microphone levels and equalization could be adjusted. Then, with Cappella Romana chanting, the reverberation level was set, immersing them in the reverberant acoustics of Hagia Sophia.

A similar configuration was used for Cappella Romana’s September 27, 2014, performance in the San Francisco Ritz-Carlton Ballroom. Our virtual acoustics system created both a virtual Hagia Sophia and a virtual Church of the Holy Cross in Belmont. The performance took place in a large ballroom venue roughly measuring 120 feet wide by 80 feet deep, with a relatively low 14-foot-high ceiling, carpeted floor, and two mirrored walls. While the mirrored walls set off a bit of flutter echo, the thick carpet produced a short reverberation time. For this concert, we arranged twelve loudspeakers on stands about the room, four across the front and back of the venue, and two on each of the sides. The performers were again outfitted with the Countryman B2D 2mm-diameter lavalier microphones, this time with radio transmitters to send the signals to the mixing board.

To generate the virtual acoustics, the singer microphone signals were first panned among the twelve loudspeakers to provide a dry signal for the venue. Another panning of the microphone signals among the twelve channels was imprinted with the needed acoustics via convolution and rendered through the loudspeakers to provide the wet

\[\text{Figure 10.12 Live auralization over loudspeakers signal flow architecture, employing statistically independent loudspeaker impulse responses.} \]

Diagram by Kurt James Werner and Jonathan S. Abel, 2016.
signal (Figure 10.13). A challenge in configuring the system is choosing the loudspeaker wet–dry mixes to compromise among performer and audience preferences. As with the Stage and Bing performances, the choir director and some melody singers preferred a drier mix, while the ison chanters favored a wetter mix. Their differing preferences could be accommodated to a degree by reducing the wet signal level for the loudspeakers near the stage. The room was rather shallow, and we delayed the rear loudspeaker signals to give the illusion of a deeper room. In addition, we aimed a number of the loudspeakers toward the chandeliers in the ceiling in an attempt to equalize the sound level across the room, as well as to produce a modest sense of height, hoping that the dense, inverted dome-shaped chandeliers would effectively scatter sound. So as to prevent feedback, the dry signal was suppressed in the loudspeakers immediately adjacent to the stage. It turns out that this processing was rather effective, creating a sense of a much taller, enveloping space.

For Cappella Romana’s “From Constantinople to California” concert, held in Bing Concert Hall just two weeks after the hall opened in January 2013, we devised a virtual Hagia Sophia using twenty-four full-range loudspeakers and six subwoofers. Twelve of the loudspeakers were arranged around the perimeter of the hall and twelve were hung from the ceiling, forming a “dome” of loudspeakers (Figures 10.14, 10.15). The fifteen performers, twelve melody chanters and three ison chanters, were outfitted with B2D microphones and radio transmitters to provide dry chanter signals; for recording, there were eight room mics manufactured by DPA Microphones, two on stage and six flown in the hall.

![Diagram](image_url)

Figure 10.13 Live auralization over loudspeakers signal flow architecture, using statistically independent panned singer reverberation clouds.

Diagram by Kurt James Werner and Jonathan S. Abel, 2016.
Figure 10.14 Bing Concert Hall, Stanford University, live auralization loudspeaker layout for the performance "From Constantinople to California," February 2013.

Diagram by Fernando Lopez-Lezcano, 2016.
A slightly different virtual acoustics processing approach was employed for the Bing performance. To begin with, Bing Concert Hall is a rather reverberant space, having a 2.5-second-long reverberation time with its dampening curtains deployed. Accordingly, the auralizing impulse responses were adjusted so that the resulting acoustics—the actual acoustics of Bing Concert Hall combined with the virtual acoustics presented over the loudspeakers in the concert hall—produced a faithful rendering of Hagia Sophia.

Second, rather than panning the dry microphone signals among a set of loudspeaker Hagia Sophia convolutions as above, a set of Hagia Sophia impulse responses was imprinted on each dry signal, forming a “cluster” of reverberated signals for each performer. These clusters were then placed about the venue to create a set of overlapping regions in space for the performers’ reverberated singing. Specifically, the virtual acoustics were generated by separately processing each of the twelve melody chanters’ dry microphone signals. Four statistically independent Bing-corrected Hagia Sophia impulse responses were employed to form a wet (that is, reverberation) signal cluster for each melody chanter. These clusters were then sized and positioned about the hall according to the singers’ onstage arrangement using Ambisonics. Each of the three ison chanters was associated with a group of four melody chanters. Their singing was auralized by simply mixing their dry microphone signals with that of the four associated melody chanters prior to convolution and Ambisonics processing. In this way, their bass contribution would occupy a large region in space, as tends to happen with low-frequency sounds. The result was a reverberant soundfield placed about and
above the audience, with the men and women of the group layered about the dome of loudspeakers.

We now give an account of the experience of performing and listening in the virtual environments we created, as reported by Cappella Romana and concert reviewers. In the CCRMA Stage rehearsal and recording sessions, the performers found the live auralization over loudspeakers to be significantly better and more natural than the auralization over headphones. The ison chanters particularly enjoyed singing in the virtual Hagia Sophia, saying that it was very easy to find the building’s resonances and grow a “wave” of reverberated ison. We should note that the ison singers preferred a wet-dry mix that was wetter than that preferred by the director, and likely somewhat wetter than that in the actual building. They also were enthusiastic about the rich, clear set of high-frequency harmonics they could generate and “play” with, reporting that the virtual building responded in a “very natural” manner. Perhaps in part owing to the significance of the simulated venue, the ison chanters described singing in the virtual Hagia Sophia as a deep, emotional, and transporting experience. A number of Cappella Romana members volunteered that the virtual Hagia Sophia sounded and responded like a real space, in contrast with their prior experiences with artificial reverberation. Many group members also commented that the virtual Hagia Sophia “held its pitch.”

For the performance in the Ritz-Carlton Ballroom, Cappella Romana had about an hour to acclimate to the two virtual environments, Hagia Sophia and Belmont’s Church of the Holy Cross. Despite the lack of rehearsal time, their performance was spectacular, particularly in the virtual Holy Cross. The performance and virtual acoustics were very well received; a number of audience members had the sense of being completely immersed and swept up in the performance. It is interesting that though we did not disclose the identity of the “medium-sized church” (Holy Cross) to the audience, Fr. Peter Salmas, Holy Cross’s priest, recognized its acoustic signature.

For the “Constantinople” portion of the Bing concert, Cappella Romana performed selections from the Divine Liturgy at Hagia Sophia and chanted in the acoustic simulation of Hagia Sophia described above. Cappella Romana performers and several of their board members, as well as composers attending the concert, reported that the space sounded and reacted in a very natural way; they found it easy to forget that the acoustics were simulated. The ison chanters again thoroughly enjoyed the responsiveness of the virtual Hagia Sophia to high-frequency harmonics and the ease with which the drone could be built and sustained.

During the performance of the liturgy selections, the audience was asked to hold its applause so as to create and sustain an immersive experience. As Jason Serinus related in his concert review for *San Francisco Classical Voice*: 47

> It is impossible to describe the experience objectively; to even attempt to do so would miss the point of a sensual experience meant to induce a transcendent state. Throwing all caution to the winds, as it were, the “performance” was the closest to lift-off I have experienced short of chemically enhanced listening sessions or the final hours of a seven-days meditation intensive.

Closing my eyes, it was not hard to imagine that the singers’ voices were actually reverberating back and forth through Hagia Sophia’s enormous sanctuary and remarkable 50-meters high dome. The constant bass drone heard in much of the music helped ground an experience that sent the senses soaring, as the entire space seemed to fill with voices proclaiming the glories of the Christian God.
To the skeptical, or those allergic to computer-simulated environments, this may sound like so much caca or the hallucinations of an aging ’60s tripper. But I know no other way to describe an experience that, in Pentcheva’s words, was intended “to create the sensation that you were standing in a space that was neither in this world nor in heaven, that you were hovering in between.” Even without the additional visual and olfactory elements of the church—the incense, glittering walls, stunning mosaics, now absent tapestries, and floors of marble whose bookmatched pieces suggest the uninterrupted waves of the sea—the sonic environment was unique. Working in consort, the team of Abel, Pentcheva, and Lingas created an experience that is sure to make history, and spearhead further projects on multiple continents in the years ahead.

Conclusion

In this chapter, we have detailed several approaches to auralizing Byzantine chant in a virtual Hagia Sophia, bringing its acoustic response to recorded audio and real-time performance applications. Responses to these systems have been positive. The performers of Cappella Romana found the virtual acoustics presented over loudspeakers to be natural and to “feel like a real space.” The interactive nature of the real-time auralization was also well received; performers reported that it “responds like a real room.” Ison singers asserted, “It’s easy to find resonances,” also noting that it “holds its pitch.”

Notes

Cappella Romana at the Bing Concert Hall 221

13 Declercq et al., “Staircase of the El Castillo Pyramid.”

28 Välimäki et al., “Fifty Years of Artificial Reverberation.”

37 See the essay by Wieslaw Woszczyk in this volume.

38 Audio engineers use “dark” and “bright” to refer to sounds dominated by low and high frequency energy, respectively.

39 For the use of sinusoidal sweep in the acoustics measuring of Hagia Sophia in 2013, see Wieslaw Woszczyk’s essay in this volume.

41 Abel et al., “Estimating Room Impulse Responses.”

Abel et al., “Estimating Room Impulse Responses.”
Gerzon, “Ambisonics in Multichannel Broadcast and Video.”
Glossary

akolouthiai. Musical manuscripts recording the order and performance of primarily the proper chants of vespers, orthros, and the three Divine Liturgies, emerging in Late Byzantium. They are written in the Middle Byzantine intervallic notation.

anechoic. Sound with a nearly imperceptible amount of reverberation; it bears minimal acoustic imprint because the space in which it was propagated was extremely dry or the sound was recorded through close-miking, that is, the microphones were set very close to the sound source.

apēchēmata. A simple or elaborate intonation formula in a given mode that precedes a chant in the same mode.

apolytikon. Dismissal hymn sung at vespers, orthros, or after the Eucharist in the Divine Liturgy.

asmatic syllables. Nonsemantic vocalisms inserted to extend and beautify the chanted texts of the cathedral rite.

asmatikon. Choir book for the ekkłēsiastēs (cathedral rite of Constantinople) that contained the chants for the elite choir of Hagia Sophia.

auralization. The process of re-creating the aural experience of a particular space. It includes the rendering of audio data by digital means in order to achieve a virtual three-dimensional sound space.

automela. See heirmologion.

Cheroubikon. A hymn accompanying the procession with the Eucharist gifts in the Byzantine rite, introduced at the time of Justinian and ratified in 573–74.

contrafacta. See heirmologion.

convolution reverberation. A process for producing artificial reverberation, which uses a software (algorithm) in order to convolve the impulse response of the targeted space being modeled with the incoming audio signal, which can be either an anechoic recording or live sound. See also impulse response.

diataxis. A type of liturgical book (see typikon), which gives the rubrics regulating the ordinary structure of the services.

ēchēmata. Intonation formulas written in the middle of a chant or in between major sections of longer chants. In the musical manuscripts these are sometimes written out with intervallic neumes or, alternatively, are abbreviated as modal signatures. See also apēchēmata.

euchologion. A manuscript containing the priest’s prayers for the Divine Services, first surviving in MS Barberini 336 (seventh century; Vatican City, Biblioteca Apostolica Vaticana).
heirmologion. A type of musical manuscript dating as early as the tenth century that functioned as a reference book for heirmoi. It contains automela, or “model melodies,” that serve as a model to produce derivatives known as proshomoia or contrafacta texts within the strophic hymn genre of the Kanon.

heirmos. A hymn with a fixed rhythm and melody that is used as the standard rhythmic and melodic pattern for other hymns (troparia) in the Kanon of the morning office (orthros) in the Eastern Church.

hypakoai. Identifying short monostrophic hymns similar to Western responsories. In the cathedral rite (ecclesiastēs), the hypakoē (sing.) could be melismatic and lengthy.

Iadgari. The Georgian tropologion (i.e., book of troparia hymns), which survives in different forms in at least seven codices dating as early as the tenth century, representing fourth-to-ninth-century Greek practices of the Cathedral of the Anastasis in Jerusalem and the Great Lavra of St. Sabas in Palestine.

impulse response. The acoustic signature of a space or the output of a dynamic system (that is, an architectural interior) when presented with a brief input signal such as a pistol shot, a balloon pop, or sinusoidal sweep. Impulse response can be likened to an indexical “snapshot,” which records the acoustic signature of a space measured as the decay of −60 dB in seconds of an impulsive signal fired in that space. A broadband sound source is usually used because it produces a wide range of sound waves from low to high frequencies (20 Hz to 40 kHz), thus giving an exhaustive “picture” of the way the particular space imprints itself on sound. See also reverberation time and convolution reverb.

kalophonic chant. A distinct musical style of Byzantine chant that flourished from the late thirteenth through fifteenth centuries, featuring virtuosic vocal phrases, text troping, and sections of nonsemantic text. See teretismata and kratemata.

kathisma. One of the meanings of this term identifies the divisions of the Psalter (twenty in all) according to the Rite of the Cathedral of the Anastasis in Jerusalem and, later, the Neo-Sabaitic Rite of Late Byzantium. Each kathisma consists of one to five psalms.

kondakar. In Slavonic Church chant tradition, this musical codex of melismatic chants contains the repertory of the Greek models of the psaltikon and the asmatikon. It is written in Old Church Slavonic notation, which resembles the prediastematic notations found in some psaltika.

kontakarion. See psaltikon and kondakar.

kontakion. Liturgical poems that developed from the fifth through the seventh centuries in Greek-speaking Syria, Palestine, and Constantinople that were sung as “chanted sermons” probably after the morning service and before the Divine Liturgy on great feasts in urban centers. It consists of an introduction (prooimion), followed by a varying number of stanzas (oikoi), connected to the prooimion by a refrain. The oikoi are linked by acrostic. A model stanza (heirmos), one each for the prooimion and the oikoi, signals the appropriate melodies to be used in their respective signing.

kratemata. Independent melodic units sung to nonsense syllables known as teretismata and used to prolong a hymn. A collection of kratemata is called a kratematarion. A kratematarion held such melodic units arranged according to the eight modes. See also teretismata and kalophonic.

melisma. The singing of many notes on a single syllable.

Missal (Roman). The liturgical book that contains the texts and rubrics for the celebration of the Mass in the Roman rite of the Catholic Church.
mode. See octoechos.

neumes. Early system of musical notation designating single pitches or small clusters of notes.

octoechos. The eight modes in Byzantium start with the four authentic (Gk. kyrios, “dominant”) followed by the four plagal (Gk. plagios, “oblique”) modes; the third plagal is also known as barys (Gk., “heavy,” “deep”). Ascribing a melody to a specific mode is based not on a specific scale structure, but on the application of a specific set of melodic formulas, considered to belong to one mode in one of the chant genres.

The eight musical modes (octoechos) are derived from the recitation of the Resurrection account of the four Gospels, each split into two parts for the resulting succession of eight weeks. Tenth-century Georgian manuscripts, purporting to preserve eight-century evidence from Greek liturgical manuscripts recording the Jerusalem rite, offer model psalms sung according to each musical mode. In the Byzantine rite, the Resurrection Gospel readings increase from eight to eleven, and a further eleven hymns, or troparia heothina, were added to the celebration of orthros. This new hymnody has been attributed to Emperor Leo VI (866–912).

orthros. Morning office or matins, celebrated at daybreak to consecrate the day to God. Along with the evening office (hesperinos or vespers), orthros was one of the two principal hours of the cathedral and monastic offices.

pannychis. Vigil service.

periēgēsis. The structure of ekphrasis of a building organized as a tour around and a journey though it.

prokeimena. These chants (melismatic in the cathedral rite of Constantinople) precede the readings from the Epistle in the Divine Liturgy (Eucharist rite) or introduce the Old Testament readings at hesperinos (vespers) or the New Testament at orthros (morning service). They correspond to the place of the gradual in the Roman rite.

proshomoia. Contrafacta melodies based on a musical-poetic model (automelon). See also heirmologion.

psaltikon. Also known as the kontakarion, the book for the precentor or soloist, which contains the most virtuosic chants of the cathedral rite of Constantinople.

reverberation time (RT). The time elapsed after an impulsive signal has been fired and its energy has decayed by –60 dB from its initial level. It is only measured in the interval –5 dB to –35 dB and doubled to match measurements over a decay of –60 dB in seconds. It could thus be described as RT \(T_{30} \).

stational liturgy. Peripatetic liturgy exemplified with stages of the rite celebrated at different churches along a preserved urban itinerary, with Mass celebrated at a selected church, known as the statio of the liturgy for that day. The richest evidence for the stational liturgy comes from Rome and Constantinople.

sticheraria. Musical manuscripts dating to the eleventh century containing (mostly) proper chants called stichera idiomela for the liturgical feasts of the calendar year. Stichera idiomela are chants that have their “own melody,” that is, they are not modeled after other melodies.

sticheron. A hymn genre performed at the morning (orthros) or evening (hesperinos) services as inserts in the recitation of the psalms. Stichera are further divided into sticheron idiomelon, hymns that have their own melody, as opposed to stichera proshomoia, which are new texts composed to a melody from a limited repertoire of well-known models.
synaxarion. A church calendar for the fixed (proper) feasts, with the appropriate readings indicated for each one, but no further texts.

teretismata. Musical vocalizations set to the nonsemantic syllables *te te te, to to to,* and *ri ri ri,* which appeared in certain thirteenth-century manuscripts and flourished in the fourteenth century as fundamental components of the *kalophonic* chant idiom. They recall the earlier practice of intercalating aspiratory nonsemantic syllables.

tituli. The specific churches in Rome, which claim to have their origins as house-churches of the pre-Constantinian era.

Trisagion. One of the central chants of the Divine Liturgy, praising the Trinity and chanted before the Apostle and Gospel readings. It is testified to as early as the fourth century.

troparion. The word *troparion* typically identifies a hymn, but it can also refer to a refrain.

typikon (liturgical). A typikon constitutes one of the two books regulating the services (see *diataxis*). It functions as a liturgical calendar with instructions for the propers for each day. In Byzantium there were three types of typika: that of Hagia Sophia; that of the monastic Sabaitic rite; and that of the monastic Neo-Sabaitic rite.
Primary Sources

Secondary Sources

238 Bibliography

Bibliography

Bibliography

Bibliography

Abel, Jonathan 3, 4, 184
absorption, of sound in air 179, 181
accentuation 59, 63
accepted performance versions 61
acoustic measurements; computer modeling
184; Hagia Sophia 186–91; La Fenice
opera house (Venice) 200
acoustics 176–95; 3-D models 72; absorption
in air 179, 181; of concave surfaces
179–81, 182; domes 181–83; Hagia
Sophia 179–81; intentional design 2; and
religious ritual 178–79; space
manipulating 201–07; virtual architecture
193–94; virtual Hagia Sophia 191–93
see also reverberation times (RT)
acoustic space 184–85
active acoustic enhancement 200
active chant transmission 54
ADAM Audio 214
Adam (Book of Genesis) 10, 115–16
Adoration of the Cross Trisagion 155
Agallianos, Manuel 151, 153, 154
agency: buildings 168–69; ekphraseis 167–72;
poet and orator 171–72; sources 169–71
akolouthiai manuscripts 70–71, 224
Alexandria 26–27, 57
“Alexandrian symbolism” (Bornert) 79
“all-powerful” (pantodyname) 119
“all-seeing” (pantepoptēs) 102–03, 104, 105,
109 see also Christ
Alonso, Alicia. 200
altar tables (trapeza) 88, 91
Ambisonics 199, 218
ambrosian chants 147
Amen melody 149–50
amplification of sound 177, 178
Anania Širakac’i 33
Anastasis Rotunda (Jerusalem) 14, 40–41
anechoic (dry) acoustics 2, 204, 206, 224
anechoic recordings 72–73
angelic vocalization 145
angelic worship 81
Angelopoulos, Lykourgos 73
Anthemius of Tralles 176
anthropomorphizing Christ 104
Antioch 26
Antiochene theology 79, 80
apēchēmata 146, 224
apokrypha (hymns) 59
apolytikion (dismissal hymn) 133–34, 224
apophatic theology (Dionysius) 80
apses 133
apsidal inscriptions 120–21
archaeoaoustics 2
archaeological sites 199–200
archaic notations 63
architecture: computer modeling 184; design
and acoustics 2; and reverberant acoustics
177–78; staging images of Christ 119;
symbolism 88, 94
Arezzo Codex 28n4
Armenia 32–48; architectural facades and
liturgical rite 47; church dedication service
study 37; dedication rite 46–47; exterior
services 37; as “northern region” 33; stone
crosses 39
Armenian Lectionary 33, 39, 44
Art and Agency (Gell) 169
ascent 43
asmatic syllables 73, 224 see also
nonsemantic language (teretism)
asmatika 6, 64–67, 147, 224 see also
notation
Asmatikon Cheroubikon 149, 150
Asmatikon Sanctus 154, 155
Asmatikon Trisagion 147, 154
Asteris, Leonidas 73
Augustine of Hippo 145
aural architecture 2, 192–94
“Aural Architecture: Music, Acoustics and
Ritual in Byzantium” seminar (Stanford
University) 3–4
aural exposure 53–54
auralization 72–73, 199–200, 208–12, 224
aural tradition/transmission 53
autokatakrion (“condemned by own judgment”) 110
automela (“model melodies”) 62 see also heirmologia
automelon-proshomoion principle 63

Baldovin, John 71
balloon-pop responses: Hagia Sophia 184, 207, 208–9; Memorial Church (Stanford University) 202–04; pressure waveform 201 see also impulse responses
Barber, Charles 103, 128–29
Barberini gr. 336 (euchologion) 81
basilicas 17–18, 27 see also Hagia Sophia (Constantinople)
Basil the Great 87
Beghin, Tom 193
Bema (synthronon) 87, 93–94
Berlincourt, Hector 145
Bing Concert Hall (Stanford University) 3–4, 194, 213–14, 217–19
Bing-corrected Hagia Sophia impulse responses 218
Blesser, Barry 2
Book of Memory (Carruthers) 56
Bornert, René 78, 79, 92
bread mold 138
breath/breeze (pneuma) 10, 169
“bridegroom of Christ” (John 3:29) 35, 38
British Isles 199
Bryennios, Manuel 145–46
Buhler, Konstantine 204, 207
Buildings (Procopius) 164–65, 167, 170
Byzantine chants 52–74, 147; akolouthiai manuscripts 69–71; definition 52; formulaic 60; location 71–73; oral and written traditions 52–53; Paleo-Byzantine 63–64; papadikai manuscripts 69–71; prokeimena 67–9; transmission 53–56, 64–67; troparion “Christ is risen” 25; typika 227; uses of manuscripts 60–63 see also chants
Byzantine Institute and Dumbarton Oaks
Fieldwork Records and Papers 101, 112, 113, 115, 120
Byzantine liturgy 15–16, 81
Byzantine melodic notation 63
Byzantine mystagogical texts 129
Byzantine poetics of fear 103
Byzantine psalmody 59
Byzantine rite 15–16, 25

Byzantine Trisagia and Cheroubika
(Conomos) 144, 151–56, 158–59

Cabasillas, Nicholas 79, 89–93, 95
cadence 59
Caesareum (Alexandria) 27
CAHRISMA project 184
Caillois, Roger 111–12
Cappella Romana (vocal ensemble): “From Constantinople to California” concert 3, 194, 212–14, 216, 218; experimental recording session 209–12; feedback 219–20; “Holy Week in Jerusalem” 214 “captivation” (Gell) 167
Carpenter, Marjorie 119
Carruthers, Mary 56
Catechetical Homilies (Cat. Hom. Theodore of Mopsuestia) 78–79
Cathedral Chant 64–67
Cathedral Library (Kastoria) 65
Cathedral of Holy Wisdom (Hagia Sophia) see Hagia Sophia (Constantinople)
Celestial Hierarchy (CH, Dionysius the Areopagite) 79
Center for Computer Research in Music and Acoustics (CCRMA) 209, 210, 214
chant manuscripts: ownership 69; uses 60–63 see also notation
chant settings: development 70–71; locations for 71–73; “ordinary” and “proper” days 60; training 54; transmission models 53–55 see also Byzantine chants
chant teachers 70
chant melodies derived from a model (proshomoia) 63
Chartres notation 64
Chavin de Huántar (Peru) 199
cheirographic chant administration 56
cheironomy (hand gestures) 56

Cheroubikon 224; Agathon Korones’ settings 152; composing 144; escorting-singing motif 155, 156; Great Entrance 81, 129, 143–44; kalophonic singing 145; Manuel Agallianos’ setting 151, 153, 154; musical symbolism 147; processional motif 154;
singing formula 153; Thrice Holy 149–50 see also Sanctus; Trisagion (“Thrice Holy” hymn)
cherubim 143, 145, 148
Chorikios of Gaza 164, 165–69
Christ: “all-powerful” (pantodyname) 119; “all-ruling” 86, 98, 103, 106–07, 109–111, 114–15, 118, 122; “all-seeing” (panteoptēn) 102–03, 104, 105, 109; angelic procession decoration (Trikomo) 109; anthropomorphizing 104; entry in Jerusalem on a donkey 148; “eyes” (blemmata) 104–05; “no respecter of persons” (apropōlēptos) 108; “out of sight” (ex apotopou) 103; “Overseer and Governor of the universe” (epoptēn kai kybernētēn) 114; represented in liturgy 90; “standing against” (exista) 119; terrifying voice 113–14; titles 103, 118–19
Christ “in the clouds” ceiling fresco 119
“Christ is risen” troparion (Χριστὸς ἀνέστη) 25
Christological controversy 81–82
Christ Pantokrator (Icon at the Monastery of St. Catherine, Sinai) 106–07
Christ’s Second Coming 103, 116
Christ the Judge image (Trikomo) 116
Christ with Deesis fresco (Trikomo) 101
Chrysaphes, Manuel 143, 146
Chrysostom, John 89
Church as bride of Christ 38, 87
church buildings: agency 167–68; assigning meaning to 90–91; as a human body 168; interiors 133; meditation on 83–84; symbolism 87, 88, 94; synaxis of the faithful 84–85
church of S. Eusebio (Rome) 16
church of S. Pancrazio (Rome) 16
church of S. Saba (Rome) 17
Church of St. Sergios (Gaza) 164, 165–66
Church of Sts. Sergius and Bacchus (Constantinople) 72, 73
“Church of the Holy Apostles at Perachorio and Its Frescoes” (Hawkins & Megaw) 110, 111
Church of the Holy Cross (Belmont, California) 214
Church of the Holy Sepulchre (Jerusalem) 14
Church of the Koimesis (Daphni, Greece) 114, 115
Church of the Panagia Chryseleousa (Strovolos, Cyprus) 115
cicadas 145–46
Clement of Alexandria 102
clericalism 95
“close-miked” recordings 204
Coislin musical notations 64

colonnades 183
Comes of Würzburg 16
Commentaires byzantins de la Divine Liturgie (Bornert) 78
Commentary on the Divine Liturgy (DL, Cabasilas) 90–93
communion 94, 138 see also Eucharistic composite rites 69
composition during performances 60
computer modeling of architecture 184
concave surfaces 179–81, 182 see also domes
concert hall acoustics 179–81, 200
conches 128
confrontational power 105
congregations 157, 178
Conomos, Dimitri 144–45, 147, 151–56, 158–59
consecration rites 32, 43, 43–44, 92
Constantine (emperor) 14
Constantinian basilicas 16–17
Constantinople 23–26, 148
Constantinopolitan cathedral rite 69
contrafacta 62–63 see also heirmologia
convolution reverberation 199, 201, 208, 215, 224
“convulsive possession” (Caillous) 112
Conybeare, Frederick Cornwallis 37
Copenhagen Cathedral 73
Coptic chant tradition 27
Cosmatesque (S. Clemente, Rome) 21
Council of Chalcedon (451) 81, 148, 149
Council of Constantinople (553) 81–82
Council of Ephesus (431) 81
Countryan B2D headset microphones 209, 210
Countryan B2D lavalier microphones 213, 214
craftsmen 170
Cremer, Lothar 182
Cyprus 116–17
Cyril of Alexandria (saint) 81–82
Dalassene, Anna 102
deaconries 16
decoding-encoding rules 54–55
Dedication of the Holy Cross canon 38
Dedication of the Holy Places of Jerusalem (Encaenia) 39
dedication rites 46
Demus, Otto 131–32
Descriptio S. Sophiae (Paul the Silentiary) 164–65, 168–69, 171
design of buildings see architecture
Devereux, Paul 199
diataxis 224
didactic chants 60
Die byzantinische Liturgie (Schulz) 78
diēgēsis 84, 164
Diethart, Johannes 56–57
digital audio workstations (DAW) 212, 214
digital re-creations see virtual acoustics
digital waveguide networks 199
Dionysius the Areopagite 79–80, 81, 92, 93–94, 144–45
divine agency 170
divine invisibility 103
divine judgment 105, 116
Divine Liturgy (Hagia Sophia) 143
divine voice 115–16
Dochai (receptions/responses) 69
domes: acoustics 181–83; conduit for communication 114; effect of containment 109; Hagia Sophia 170, 176–79, 181–83; Pantokrator decoration 109; spatial effects 112 see also concave surfaces
Donabédian, Patrick 38, 39, 42
double accents ([Diple] 63
double-gamma endings ([γγ] 67, 73
dread ([dedoika]) 108–09
drones ([ison]) 73, 178, 219
dry (anechoic) acoustics 2, 204, 206, 224
dry microphone signals 218
Durnovo, L. 40
dynamic mixing 194–95
dynamic sonic animations 191–92
dyophysitism 149
"earcon" (Blesser and Salter) 2, 6
eveready medieval Armenian churches 32–48; Jerusalemic imagery in architecture 40–41; Mastara (Mazdara) 33–39; Mren 44–47; Zuart'noc' 33, 39–44, 47
eveready Roman churches 17–18
Easter (Pascha): Eucharistic Divine Liturgy 25; Palm Sunday 44, 72; Roman stational calendar 17; Triodion hymn 117
ecclesiarches (liturgy masters) 61
ecclesiastes cathedral rite 23–25
Ecclesiastical Hierarchy (EH, Dionysius the Areopagite) 79
ēchēmata 146, 224
Ecumenical Patriarchate chant tradition 73
Egeria (pilgrim) 15–16, 39
eikonizontes (representing) 149, 158
ekphrasis 104, 114, 163–66, 170–72
El Castillo pyramid (Chichén Itzá, Mexico) 199
Elsner, Jaś 133
"embedded focalization" 165
enargeia 165
Encaenia (Dedication of the Holy Places of Jerusalem) 39
Epistolary of Würzburg 16
epoιείθειν 102
Ergin, Nina 177
escorting-singing motifs 155–56
esoptron (mirroring) 10, 11
Ethiopian chant 61
Eucharist: anamnesis 81; Hagia Sophia 177; prayers 80; sacrificial symbolism 90; symbolism of hypodexomenoi 144; Transfiguration 136–39
Eucharistic see also communion
enuchologion (patriarchal prayers) 81, 224
evening (hesperinos) services 53, 56, 71, 211
Evergetis typikon 71
experience 166
experimental recording sessions 209–12
Explanation of the Divine Temple (E, Symeon of Thessaloniki) 91, 92–94 “exposed to view” (tetrachēlismoi) 119
exterior services and processions 37, 42–43, 71–72
“external coherence” (Riegl) 130–32
“eyes” (blemmata) 104
Farina, Angelo 200
fear ([πτοα]) 102, 108–09
“fearsome voice” ([φοβερὰ φόνε]) 113
Feast of the Transfiguration (6 August) 71–72, 133–39 see also Transfiguration mosaics
Feasts of the Cross 38, 147
feedback from loudspeakers 212–13
Findikyan, Michael Daniel 37–38, 39, 43, 44, 48
Floros, Constantin 63
Follieri, Enrica 59
formulaic structure of chant 60, 61
frescos 113
“From Constantinople to California” concert (Cappella Romana) 213–14, 216, 217–18
Ganjaran (Book of Canticles) 37
Garibian de Vartavan, Nazènie 33, 40
Gell, Alfred 167, 169
Geography (Anania Širakac’i) 33
Georgian Book of Hymns (ladgari) 39, 225
Gerasimos of Crete 145
Germanus of Constantinople 85–87, 94–95, 137, 144–45
Glykys, John 60
“God-Man” ([θεανθρωπόν]) 104
Golgoltha (“place of the skull”) 38
Good Friday Kontakion 65, 66
gradual psalms ([σαλμος’ astijanac’]) 43
Great Entrance procession: Cherubikon 143–44; Christ’s burial procession 94; Conomos’ identification of a procession
ison (drones) 73, 178, 219
Italy 69 see also Rome
Itinerarium (Egeria) 28n3

Jahn, Robert 199
Jeffery, Peter 4, 61, 147
Jerusalem 14–16, 33, 44
Jerusalem chant 147
Jerusalem Encaenia 47
Jerusalemic imagery 40
Jerusalem rite 15
“jeweled style” aesthetic 174n24
John II (Pope) 21
John of Damascus Cheroubikon 149, 150
John of Sardeis 164
John VII (Pope) 20
Juanšēr (prince) 32
judgement without verdict (Trikomo) 109–13
judgment scene (Holy Apostles Church, Pera Chorio) 110–11
Justinian (emperor) 23, 170, 176
Justinianic church liturgy 7, 9, 10–11

kalophonic chant 145, 225
dononches (prompter) 61
dhisma 135, 225
dholaikon (main church) 127, 128
Kaufman Shellemay, Kay 61
Kazaryan, Armen 33, 40, 41
kinesthesia 166
King, Richard 194
Klentos, John 134
koĩnōnikā (Communion verses) 137
kondakar notation 65, 225
kontakarion see psaltikon
“Kontakion on the Second Coming” (Romanos the Melodist) 102, 108
kontakion (sung sermon) 61, 116, 211–12, 225
Kontakion “Τὸν δὲ ἡμᾶς σταυρωθέντα” (The one crucified for us) 65, 66
Korones, Agathon 150, 152
Koukouzeles, John 60, 62, 70, 157
kratemata 9, 145, 146, 225
Krueger, Derek 117
Kuttruff, Heinrich 182
labe (“seize”) 118
LACconvolver 214
La Fenice opera house (Venice) 200
La Jérusalem nouvelle et les premiers sanctuaires chrétiens de l’Arménie (Garibian de Vartavan) 33
Lamb of God 88–89
language of trembling 117
Larchet, Jean-Claude 84
Last Judgment: frescos 112–13; liturgy 116

Index 253

Last Supper 80
Latinizing theology 93
Lawson, Graeme 2
Lazarus (John 11:1–44) 16
lectionary 26–27
leitmotif 145
Leo (Pope) 16
Leo VI (emperor) 114
Levine, Scott 213
Levy, Kenneth 52
Library of the Great Laura (Athos) 65
Life in Christ (LC, Cabasilas) 90, 91
life of Christ cycle 128 see also
Transfiguration mosaics
life-of-Christ symbolism 88, 92, 94
Lingas, Alexander 4, 213
linguistic cues 147
literacy 55–56
liturgical commentaries 78–95; background 78–81; Germanus 85–87; Maximus the Confessor 81–85; Nicholas Cabasilas 89–91; Nicholas of Andida 87–89; post-iconoclastic 95; Symeon of Thessaloniki 91–94
liturgical mimesis 129
liturgical rubrics 69
liturgical year 14–15
liturgy 79, 88, 95
liturgy masters (ecclesiarches) 61
Liturgy of the Catechumens 83
Liturgy of the Faithful 83
live auralization 3–4, 212–20
location for chants 71
Longinos (On the Sublime) 165
Lot-Borodine, Myrrha 91
loudspeakers 212–13, 214
low-frequency acoustic energy 186–87
lullabies 53

manuscripts see chant manuscripts
“Man Who Confessed to an Image of Our Lord Jesus Christ” (Paul of Monemvasia) 105–08
Maranci, Christina 4
marble (marmaron) 11
marble stripes (“rivers”) 25–26, 88–89
“marginal repertory” (Strunk) 62
Marinis, Vasileios 4
Markouris, Ioannis 70
marmarygma (glitter) 11
Mass on Christmas 16
Mastara cross 39
Mastara (Mazdara, Armenia) 33–39
Maximus the Confessor 81–85, 92, 93
Mazza, Enrico 80
McGill University 184, 194
Meatfare Sunday (Apokreas) 116, 117
Medieval Byzantine chant melodies 146
megalai hypostaseis (group signs, “phrasing
signs”) 60
Megaw, Arthur 110, 111
melismas 67–69, 178, 225
melodic formulas 145, 146, 151–52
Memorial Church (Stanford University)
201–08
memory 54–55, 60
Mercurius (presbyter) 21
Mesarites, Nikolaos 104–05
Messina typikon 69
metamorphoses 135, 136–37 see also
Transfiguration mosaics
Meyendorff, John 93
Michael the Deacon 168
Michigan-Princeton-Alexandria Expedition to
Mount Sinai 106–07, 132
microphones 213, 215
Middle-Byzantine notation 58, 60, 64
miracles 108
mirroring (esoptron) 10, 11
Missals (Roman) 17, 225
Mnac’akanyan, Step’an 40
modal ascription 62
modal indications 58
modal signatures 64
model melodies (automela) 62–63
modes (octoechos) 5, 16, 57–58, 59, 226
Monastery of Christ Panepoptès
(Constantinople) 102
Monastery of Christ the Savior (Messina,
Italy) 134
Monastery of Kauleas (Constantinople) 114
Monastery of Mar Saba (Palestine) 117
Monastery of St. Catherine (Sinai) 65, 117,
131, 132–33
Monastery of St. John the Evangelist
(Patmos) 64, 65, 69
Monastery of St. John the Forerunner
(Constantinople) 117
Monastery of Theotokos Evergetis
(Constantinople) 61, 69
monastic communities of Rome 16
monophonic melodic progressions 178 see
also reverberation times (RT)
Monophyite Christians 26, 149
Monson, Ingrid 61
Monumenta Musicae Byzantinae (MMB) 144
Moran, Neil 179
Moretti, Laura 2–3, 200
morning (orthros) services 56
mosaics, as a face-to-face encounter 133
Mosaics of Nea Moni on Chios (Mouriki) 127
Moses and the Burning Bush mosaic
(Monastery of St. Catherine, Sinai) 133
motif see melodic formulas
mountain scenes 132–37 see also
Transfiguration mosaics
Mount of Olives to the Anastasis procession
44
Mount Sinai 133
Mount Tabor 127, 133, 135
Mouriki, Doula 127
Movsēs Daxuranc’i 32
Mozarabic chants 147
Mren church (Italy) 44–47
Müller, Helmut A. 182
multiplication of symbolisms 92
Muñoz, Salvador 200
musical culture 63
musical literacy 56
musical manuscripts 60–61
musical performances 178
musical punctuation 59
musical symbolism 147, 157
musico-dramatical correspondence 145
mystagogiai 6
Mystagogy (Myst. Maximus the Confessor)
81–85
mystikos low voice 157, 158
Nakayama, I. 198–99
narthexes 93, 94, 113
National Library (Ochrid) 65
Navarro, Jaime 200
naves 91
Naxos International 193
Nea Moni (Chios, Greece) 127–39; history
and legends 133; Transfiguration mosaic
127–33, 137, 139
neanes intonation 150–51, 153
“negative perspective” 130, 131–32
Nelson, Robert 131
Nersès III (patriarch of Armenia) 39
Nestorius (archbishop of Constantinople) 81
neumes 53, 64, 143, 144, 226
Nicholas of Andida 87–89
Nikolaos the Sophist 164
nonfigural decorative program 10–11
nonsemantic language (teretism) 145, 147
see also asmatika
nonwritten music theory 54–55
“no respecter of persons” (aprosōpolēptos)
108 see also Christ
notation 52–71; group signs 60; manuscripts
without 56–60; Middle Byzantine 64, 65;
model melody 62–63; multiplicity of
versions 61–62; Paleo-Byzantine 63–64,
65; partial notation 63; seldom sung
chants 60 see also asmatika; chant
manuscripts; psaltika
nuptial imagery 37
N-waves 202–04, 206
octoechos (modes) 5, 15, 57–58, 226
Odeon software 184
Odyssey (Homer) 102
Old Church Slavonic notation 65
Old Roman chants 147
Old Testament 115–16
Onassis Foundation (USA) 4
Onassis Seminar on Aural Architecture (Stanford) 3–4
Ong, Walter 56
On the Sacred Liturgy (SL, Symeon of Thessaloniki) 91–94
On the Sacred Temple (Symeon of Thessaloniki) 92, 94
“On the Second Coming” canon (Theodore the Stoudite) 117–18
On the Sublime (Longinos) 165
oral–aural transmission 53–56, 60
“oral notation” 56
oral tradition 52–53
“ordinary” (“common”) days 60
Orthodox Liturgy (Wybrew) 78
orthros (laudes, matins) 16, 136–37, 211, 226
“otherworldly powers” 94
outdoor performances see exterior services and processions
“out of sight” (ex apotopou) invisibility 103
overlaying and dissolving notes 178
“Overseer and Governor of the universe” (epoptēn kai kybernētēn) 114 see also Christ
Pagenagous (Clement of Alexandria) 102
pagan temples 27
Paleo-Byzantine notations 60, 63–64
Palestinian monastic rite 25
Palm Sunday 44, 72 see also Easter (Pascha)
Panagia Phorbiotissa Church (Asinou, Cyprus) 120
Panagia Theotokos Church (Trikomo, Cyprus) 101–21; apse 119; Christ fresco 101–05, 109, 113–15; epigrams 119; hetoimasia 101, 112; “I shiver and dread” (phrittō kai dedoikai) 108; judgement without verdict 109–13; language of trembling 117; Last Judgment 112–13, 119; Theotokos fresco 120
pannychis service 134, 226
pantepeoptēs (“all-seeing”) 102, 104, 105, 109 see also Christ
pantodyname (“all-powerful”) 119
Pantokrator: art history name 8, 118; Church of the Koimesis (Daphni Monastery) 114, 115; and Eucharistic prayers 86; Holy Apostles Church (Pera Chorio) 109–10; Monastery of St. Catherine, Sinai 106–07;
Progymnasmata (Nikolaos the Sophist) 164
prokeimena chants 6, 66–69, 134, 211–12, 226
prompters (kanonarches) 61
prophecies of Christ’s coming (Germanus) 86
proproioception 166
prosadontes (singing) 157, 159
prosērmōsthai (to have been fitted together) 170
proshomoia 61, 62–63, 226
Protheoria (P, Nicholas of Andida) 87–89, 95
prothesis 88–89, 90, 94–95
protopsaltai (soloists) 61
prototype, and representation 129
psalmody 59
psaltika see also notation
psaltikon (kontakarion) 6, 64–67, 65–67, 226
Pseudo-Dionysius the Areopagite 79–80, 81, 92, 93–94, 144–45
psychosomatic mortification 109
ptoa (fear) 102
punctuation 59
Quintilianus, Aristides 146
Raasted, Jørgen 64
“reasonable and bloodless worship” (Testament of Levi) 80
recalled model of chants 59
re-composition 60, 61
reconstruction: aural architecture 192–93; liturgical space 41
redaction of repertories 62
reflected returns of sound 178–79
reflection 11
religious fear 108–09
Rembrandt van Rijn 130–31
reminiscence motif 145
Renoux, Athanase (Charles) 38
repertories, redaction of 62
representation, and prototype 129
resonating vases 200
responsorial chants 66 see also prokeimena chants
Resurrection of Christ 80, 87
Resurrection vigil 15
Return of the Cross 39, 45–46
reverberant acoustics 177–78
reverberation times (RT) 226; absorption in air dependent on humidity 181; affecting tempo and timing 198; Bing Concert Hall 218; chanters’ responding to 211; Constantinopolitan churches 72–73; Hagia Sophia 72, 73, 179–80, 186, 188, 211; 73; Memorial Church (Stanford University) 204; monophonic melodic progressions 178; Onassis Seminar 3–4; outdoor performances 71; San Francisco Ritz-Carlton Ballroom 215 see also acoustics; “wet” acoustics
Riegl, Alois 130–31
Rindel, Jens Holger 72
Ritz-Carlton Ballroom (San Francisco) 214, 215, 219
Roman churches 16
Roman Missals 17, 225
Romanos the Melodist 102, 105, 108, 116, 119, 121
Roman stationals calendars 17
Rome 16–23
Room Acoustics (Kuttruff) 182
Royal Ontario Museum 138
Sabaitic liturgical tradition 76n38
saint’s days 60
Salter, Linda-Ruth 2
Sampling Officials of the Draper’s Guild (Rembrandt) 130–31
sanctuary (thysiastērion) 88, 91, 93
Sanctus 148, 153, 154–5 see also Cheroubikon; Trisagion (“Thrice Holy” hymn)
San Francisco Classical Voice 219–20
Santa Cecilia (Rome) 17, 24
Santa Cecilia church (Rome) 17, 24
Santiago de Compostela cathedral (Spain) 200
Santissimo Salvatore (Messina, Sicily) 69
Sargsyan, Minas 45
Scarre, Chris 2
Schafer, Murray 1
scholia 61
Schulz, Hans-Joachim 78, 79, 89, 90, 95
S. Clemente (Rome) 17, 18, 21, 22
scripture 79
S. Croce in Gerusalemme 17
Second Vatican Council 18
“seeing” (blepei) 105
self-awareness 112
Sendra, Juan J. 200
sense of sight and touch 166 see also ekphraseis
Septuagint 102
seraphim 148
Serinus, Jason 219–20
“Sermon 28” (Leo VI) 114
shock and awe (thauma) 167
signal processing-based approaches 200
simulated acoustics 211 see also virtual Hagia Sophia
Sinan, Mimar 177
singer microphone channels 215
singing formula leitmotif 150–56
single acute accents (Oxeia) 63
Slavonic Church chant 65
Sleepless Eye 105
S. Lorenzo fuori le Mura 17
S. Marco (Piazza Venezia, Rome) 18
S. Maria Antica (Roman Forum) 18–20
S. Maria Maggiore basilica (Rome) 16–17
smearing (slurring) effects 178
soloists 66
Solomonic themes 32
sonic mirroring 11 see also reverberation times (RT)
sonic signatures 3, 199–200
sound: amplification 177, 178; as experiential
Sound & Space in Renaissance Venice (Howard and Moretti) 2–3
soundscape 1–2
sound sources 185–86
sound studies 1
space: effects on chant 198–99; processing sound 178, 201–07
Spaces Speak, Are You Listening? (Blesser and Salter) 2
“Space within Space” (Sterne) 198
S. Paolo fuori le Mura 16
spatiality 163–66
spatial sound 193
Stanno, Nicole 45
Thierry, Nicole 45
Thodberg, Christian 64
Thomas Aquinas 90
Thompson, Emily 1–2
Timios Stauros Church (Pelendri, Cyprus) 113–14
tituli 16, 227
“to lead” (bēgeomat) 164
tomb of Jesus 14
tonal area 73
T’oramanyan, T’oros 40
transcriptions 144
Transfiguration mosaics: Monastery of St. Catherine, Mount Sinai 131, 132–33; Nea Moni (Chios, Greece) 127–28, 130, 132
St. Sabas Cathedral (Alexandria) 27
Sts. Sergius and Bacchus (Constantinople) 72, 73
Suárez, Rafael 200
“substitutability” (Jeffery) 61
Süleymaniye Mosque 177
Summary Meditation on the Symbols and Mysteries Accomplished in the Divine Liturgy (Protheoria (P) Nicholas of Andida) 87–89, 95
Sunday of the Last Judgment (Meatfare Sunday, Apokreas) 116, 117
Sung Office (“asmatic”) 23–25
sung sermon see kontakion (sung sermon) surround sound recordings 211
suspenseful interstice effects 113
syllable rou in singing formula 153
symbolism of buildings 94
Symeon of Thessaloniki 89, 91–94
synaxarion 227
Synaxarion of Theotokos Evergetis 130, 133–34, 135
Synod of Laodicea (fourth century) 58–59
synthetic impulse responses 184
synthronon (bema) 87, 93–94
Taft, Robert 79
Temple of Aphrodite (Jerusalem) 14
Temple of Solomon 42
teretismata 9, 146, 227
teretism (nonsemantic language) 145–46
Testament of Levi 3:5–7 80
text accentuation 59–60
Theodore of Andida 87–89
Theodore of Mopsuestia 78–79, 81–82, 86
Theodore Psalter 135, 136
Theodore the Stoudite 117, 129
Theodosius II (emperor) 23
theosis (deification) 80
Theotokos (Panagia Theotokos, Trikomo) 120
Theta notation 63
Thierry, Nicole 45
Thodberg, Christian 64
Thomas Aquinas 90
Thompson, Emily 1–2
Timios Stauros Church (Pelendri, Cyprus) 113–14
title and image instability 103
St. John Lateran basilica (Rome) 16, 17
St. Mark’s Coptic Orthodox Cathedral (Alexandria) 27
Stonesenge 199
Stoudite–Sabaitic monastic rites 69, 134
St. Peter’s basilica (Vatican Hill) 16–17
Strasbourg papyrus fragment 63
stressed syllables 59
“struck” (ekpleittō) 167
struck with awe (ekplēxis) 167
Strunk, Oliver 52, 59, 62, 63
see also Feast of the Transfiguration (6 August); metamorphosis

Transfiguration (Theodore Psalter) 136
Trdat (pagan king) 44
“tremble with fear” (ptoeisthe) 102
Treu, Kurt 56–57
Triadion Ton Trisagion lyric (to the Trinity the Thrice Holy) 149–50
Tridentine Roman Missal 21
Trinity 93, 148–49
Triodion (hymnal) 116–20
Triodion period (Lent) 71–72
Trisagion (“Thrice Holy” hymn) 71, 143, 145, 147–55, 227 see also Cherubikon; Sanctus
Troelsgård, Christian 4
Tronchin, Lamberto 200
Tronzo, William 128–29
troparia 25, 56–57, 59, 61, 71–72, 227
troparión sticherón 58
True Cross 39, 45–46
Turkey: Directorate of Museums 184; Ministry of Culture and Tourism 184
typika 71, 134
typographic chant administration 56
underground galleries 199
unity in Christ (Maximus the Confessor) 85
Urban Character of Christian Worship (Baldovin) 71

Valarsapat Cathedral 33
vespers (hesperinos) 53, 56, 71, 211
virtual acoustics 193–94

virtual Church of the Holy Cross (Belmont) 215
virtual Hagia Sophia: acoustic rendering 191–93; auralization 208–12; digital re-creation 185; live auralization performances 212–20 see also Hagia Sophia (Constantinople)
Virtual Haydn recording project (McGill University) 193
“visible” (optos) 102–03
visual mirroring 11
Vitruvius 200
vocalizations of performed rite 157
voice of God 145

Washing of the Feet (Nea Moni, Chios) 129
Webb, Ruth 4
Wellesz, Egon 146
“wet” acoustics 2, 3, 204 see also reverberation times (RT)
wet spectrogram 206
word painting 145, 149
worshippers 83
Woszczyk, Wieslaw 4, 201
written chant administration 55–56
written music theory 52–53, 55
Wybrew, Hugh 78

Young, Frances 79–80
Yovhannēs Ējneč’i 37, 43

zeon 90
Zwart’noc’ church (Armenia) 33, 39–44, 47