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ABSTRACT

Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream
infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised
individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of
these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered
hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings

completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has
then been singled out as an ‘urgent threat to human health’ by several organisations. This review summarises the
tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The
co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen
exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the
tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is

pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
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INTRODUCTION

Klebsiella pneumoniae was first described by Carl Friedlander in
1882 as a bacterium isolated from the lungs of patients who
had died from pneumonia (Friedlander 1882). Klebsiella species
are ubiquitously found in nature including water, soil and an-
imals, and they can colonise medical devices and the health-
care environment (Podschun and Ullmann 1998; Podschun et al.
2001). Klebsiella species are considered opportunistic pathogens
colonising mucosal surfaces without causing pathology; how-
ever, from mucosae Klebsiella may disseminate to other tis-
sues causing life-threatening infections including pneumonia,
UTIs, bloodstream infections and sepsis (Paczosa and Mecsas
2016). K. pneumoniae infections are particularly a problem among

neonates, elderly and immunocompromised individuals within
the healthcare setting (Magill et al. 2014). This organism is also
responsible for a significant number of community-acquired in-
fections worldwide (Ko et al. 2002). Defining features of these
infections are the ability to metastatically spread and their sig-
nificant morbidity and mortality (Paczosa and Mecsas 2016).
Klebsiella strains associated with these infections are regarded as
hypervirulent, and recent epidemiological studies indicate that
these strains share specific genetic characteristics (Holt et al.
2015).

K. pneumoniae is gaining attention due to the rise in the num-
ber of infections and the increasing number of strains resistant
to antibiotics. More than a third of the K. pneumoniae isolates
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reported to the European Centre for Disease Prevention and
Control were resistant to at least one antimicrobial group,
the combined resistance to fluoroquinolones, third-generation
cephalosporins and aminoglycosides being the most common
resistance phenotype (European Centre for Disease Prevention
and Control Antimicrobial resistance (EARS-Net) 2018). Further-
more, Klebsiella species are a known reservoir for antibiotic-
resistant genes, which can spread to other Gram-negative
bacteria. In fact, many of the antibiotic-resistant genes now
commonly found in multidrug-resistant organisms were firstly
described in Klebsiella. Very few therapeutic options are left for
patients infected with multidrug-resistant K. pneumoniae with
additional resistance to carbapenems, and are often limited to
combination therapy and to colistin. Alarmingly, recent stud-
ies have recognised that several K. pneumoniae virulent and
multidrug-resistant clones have access to a mobile pool of vir-
ulence and antimicrobial resistance genes (Holt et al. 2015; Lam
et al. 2018; MC Lam et al. 2018), making then possible the emer-
gence of a multidrug, hypervirulent K. pneumoniae clone capa-
ble of causing untreatable infections in healthy individuals. Un-
fortunately, there are already reports describing the isolation of
such strains (Zhanget al. 2015, 2016; Gu et al. 2018; Yao et al. 2018).
Despite its clinical relevance, our understanding of K. pneumo-
niae pathogenesis contains considerable gaps, thereby making
a compelling case to better understand its infection biology to
design new strategies to treat Klebsiella infections.

Recent excellent reviews have covered the epidemiology of
Klebsiella-triggered infections, the mechanisms of resistance to
antibiotics and the description of some of the virulence fac-
tors of this pathogen (Paczosa and Mecsas 2016; Navon-Venezia,
Kondratyeva and Carattoli 2017; Martin and Bachman 2018). This
review focuses on the complex interaction between Klebsiella
species and the innate immune system, and summarises our
understanding of Klebsiella anti-immune strategies. Although
central to the infection biology of multidrug-resistant pathogens
such as Klebsiella, the repertoire of their adaptations to the hu-
man immune system are generally overlooked. However, the co-
evolution of these bacteria in response to the challenge of an ac-
tivated immune system has made them formidable pathogens.
As will be apparent in this review, Klebsiella can no longer be
considered only as a stealth pathogen. Klebsiella has developed
an array of systems that ‘surgically strike’ key regulators and
effectors of the host immune system, placing this pathogen
as a master puppeteer controlling several anti-immune eva-
sion systems to overcome host responses to survive in the
tissues.

INNATE IMMUNE DEFENCES AGAINST
BACTERIAL INFECTIONS

Infection can be viewed as a consequence of specific interactions
between pathogens and the host, involving the early interaction
with the innate system, which includes mechanical, chemical
and cellular barriers. Mucociliary clearance is one of the first
mechanical defences faced by any pathogen in the respiratory
tract. Pathogens may be trapped in a blanket of mucus which
covers the airways and is constantly propelled by cilia from the
distal to proximal lung airways. The flow of urine in conjunction
with its low pH prevents colonisation of the genitourinary tract,
whereas peristalsis and the mucus lining of the gastrointesti-
nal tract limit the attachment of bacteria to the gut epithelium.
The presence of digestive enzymes, bile and the acid pH in the
stomach further prevents pathogen colonisation of the gastroin-
testinal tract.

Once pathogens overcome these mechanical barriers, they
face the challenge of chemical defences, chiefly the complement
system, collectins and antimicrobial peptides. In the classical
pathway of activation of the complement cascade, C1lq recog-
nises pathogen- or damage-associated patterns (such as IgG, IgM
or CRP) on foreign or apoptotic cells, inducing the formation
of the C3 convertase (C4b2b) (Holers 2014). In the lectin path-
way, mannose-binding lectins and ficolins bind to carbohydrates
leading to the activation of C4b2b, which subsequently activates
C3 in its active fragments C3a and C3b (Holers 2014). The de-
position of the latter on surfaces leads to the binding of fac-
tor B and conversion into the alternative pathway C3 conver-
tase (C3bBb), which cleaves more C3 into C3b, thereby ampli-
fying the complement response (Holers 2014). Opsonisation by
C1q, C3b and its degradation products induces phagocytosis via
a panel of complement receptors (Ricklin et al. 2016). In addition,
complement factors such as C3a and C5a are powerful chemoat-
tractants guiding neutrophils, macrophages and monocytes to
the sites of infection (Ricklin et al. 2016). Complement also
shapes inflammatory responses activated via pathogen recog-
nition receptors (PRRs), and even dictates the differentiation of
T cells, thereby acting as player and mediator in immune surveil-
lance (Ricklin et al. 2010).

Collectins are a family of proteins that include mannan-
binding lectin (mannose-binding protein) and lung surfac-
tant proteins (SPs), SP-A to D (Holmskov, Thiel and Jensenius
2003). These proteins share a common structure made of a C-
terminal-located C-type lectin domain which is attached to a
collagen-like region via an alpha-helical coiled-coil neck region
(Holmskov, Thiel and Jensenius 2003). Collectins bind surface
carbohydrates in pathogens leading to the opsonisation, ag-
glutination or killing of the pathogen. Interestingly, lung SPs
have also immunomodulatory roles by governing phagocy-
tosis and controlling inflammation (Sano and Kuroki 2005;
Kuroki, Takahashi and Nishitani 2007). Additional defences
against bacterial infections include antimicrobial peptides and
proteins, and cathelicidins produced by epithelial cells, neu-
trophils and macrophages in response to infection. The levels
of these antimicrobials in the site of infection may reach hun-
dreds of micrograms creating a harsh environment. Defensins
and lysozyme have potent antibacterial activity against Gram-
positive and -negative bacteria. The antibacterial action is based
on electrostatic interaction with the anionic bacterial surface
leading to membrane perturbations. LL-37/hCAP-18, the only
cathelicidin found in humans, is also antimicrobial. Interest-
ingly, defensins and cathelicidins have additional multiple roles
influencing diverse processes such as cell proliferation and mi-
gration, immune modulation, wound healing, angiogenesis and
the release of cytokines (Ganz 2003; Bowdish, Davidson and Han-
cock 2006).

Upon infection, the host activates a sophisticated program
dedicated to clear the pathogen by activation of germ-line
encoded receptors referred to as pathogen recognition recep-
tors (PRRs). Data support the notion that there is a com-
mon host response associated to infection, the so-called ‘alarm
signal’, mainly controlled by PRRs (Jenner and Young 2005;
Lachmandas et al. 2016; Li et al. 2016; Martinez et al. 2017).
Elements of this antimicrobial programme are antimicrobial
molecules, cytokines, chemokines and IFNs. Early production
of type I IFN is required to limit initial viral replication.
However, type I IFN-dependent responses can no longer be con-
sidered virus specific since a body of mainly recent data indi-
cates that type I IFNs are also produced in response to bac-
teria. However, depending on the bacterial infection, type I

810z Jaqwiaoa(] | | uo Jasn isejjag AlsiaAiun s,usanp Aq /79881 S/Sy0ANl/aiswal/c60 1 "0 L /I0p/10B1Sqe-8]oIiB-80UBApPE/aISWa)/Woo dno-oiwepese//:sdiy wWoll papeojumod



IFNs exert seemingly opposing functions (Boxx and Cheng 2016;
Kovarik et al. 2016).

The most extensively studied mammalian (human and
mouse) PRRs belong to the ‘Toll-like’ receptors (TLRs), the
nucleotide-binding and oligomerisation domain-like receptors
(NLRs) and the retinoic acid inducible gene I (RIG-I)-like receptor
(RLR) families (Takeuchi and Akira 2010). Activation of all these
PRRs converges on the activation of mitogen-activated protein
kinases (MAPKs), and a limited set of transcriptional factors,
mainly IRF3, IRF7 and NF-«B. These factors act cooperatively to
activate the transcription of genes. Several members of the NLR
protein family, NLRP1, NLRP3, NLRC4, may assemble into a mul-
tiprotein platform, known as inflammasome, to induce caspase-
1 activation (Latz, Xiao and Stutz 2013; Guo, Callaway and Ting
2015). This protease is responsible for the cytosolic processing of
pro-IL-18 and pro-IL-18 and for the secretion of their mature ac-
tive forms. IL-18 and IL-18 exert crucial roles orchestrating im-
mune responses to control infections. Activation of caspase-1
also triggers a form of cell death called ‘pyroptosis’. The role
of pyroptosis as a bona fide cell-autonomous defence mecha-
nism is still poorly understood, although recent evidence indi-
cates that pyroptosis triggers pore-induced intracellular traps
that capture bacteria and lead to their clearance by efferocytosis
(Miao et al. 2010; Jorgensen et al. 2016). Other inflammatory cas-
pases, caspase-11 in mouse and caspases4/5 in humans, detect
cytosolic lipopolysaccharide (LPS) and trigger the activation of
the so-called non-canonical inflammasome to produce IL18 and
induce cell death (Hagar et al. 2013; Shi et al. 2014).

Several PRRs detect RNA (Schlee and Hartmann 2016).
TLR3 and TLR7 detect double-stranded RNA in the endosome,
whereas TLR7 and TLR8 sense single-stranded RNA. The he-
licases RIG-I and melanoma differentiation associated gene 5
(MDAS) also detect double-stranded RNA in the cytosol. Stim-
ulation of these receptors results in the production of type I IFN,
as well as the expression of IFN-stimulated genes. There is still
limited knowledge on the possible contribution of these RNA-
sensing receptors to bacterial defence.

Only in the past years, the molecular basis of cytosolic DNA
sensing by the innate immune system has begun to be revealed
(Paludan and Bowie 2013). Several DNA sensors were identified,

Table 1. Models to assess K. pneumoniae infection biology.
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and a new family of DNA sensors called AIM2-like receptors
formed by, at least, IF116, AIM2 and p202 (a negative regulator of
AIM2), which are all PYHIN proteins, has been proposed. STING
is the central adaptor for cytosolic DNA sensing directing TBK1
to activate IRF3 for DNA sensing pathways. The role of STING
during bacterial diseases is controversial, ranging from protec-
tive to detrimental effects for the host (Marinho et al. 2017).

MODELS TO ASSESS KLEBSIELLA SPECIES
INFECTION BIOLOGY

Several research models have been implemented to assess
Klebsiella infection biology (Table 1). However, the vast major-
ity of evidence on the interplay between Klebsiella species and
the immune system has been obtained by infecting rodents,
chiefly mice. Inbred mouse strains allow the study of genetically
identical cohorts, whereas the development of methods for the
creation of transgenic, knock-out and knock-in mice has pro-
vided powerful tools to investigate Klebsiella infection biology.
Outcomes of infection vary with the mouse strain used, infec-
tion with 10 CFUs leads to bacteremia and death within 72 h in
CD-I, CBA/J and BALB/c mice while C57BL/6 mice are more resis-
tant (Mehrad and Standiford 1999). The mouse model has been
extensively used to investigate two clinical manifestations of
Klebsiella infections: pneumonia and sepsis. Studies of Klebsiella-
induced pneumonia in animal models date back to 1947 with
induction of pneumonia in rats with intratracheal instillation
of K. pneumoniae (Sale, Smith and Wood 1947; Sale and Wood
1947). The mouse pneumonia model recapitulates key features
of Klebsiella-induced pneumonia in humans, namely the mas-
sive inflammation characterised by an influx of polymorphonu-
clear neutrophils, and oedema. The results obtained with this
model have uncovered receptors and molecules implicated in
host defence against the pathogen. Moreover, the mouse model
has been useful to provide mechanistic evidence on why some
health factors such as alcohol abuse, obesity, poor glycaemic
control in diabetic patients and respiratory viral infection are
associated with increased susceptibility to Klebsiella infections
(Mancuso et al. 2002; Happel et al. 2006; Ballinger and Standiford
2010).

Infection model Useful to assess

Advantages

Limitations

Mus musculus Recapitulates many
clinical aspects of
Klebsiella infections.
Recapitulates
interactions with
phagocytic cells.

Early interactions with
ancient antibacterial
mechanisms.

Early interactions
between a pathogen
and a host.
Recapitulates
interactions with innate
immune system
(effectors and
phagocytes).
Interactions with a
complex immune
system

Dyctiostelium discoideium

Drosophila melanogaster

Caenorhabditis elegans

G. mellonella

virulence.
Danio rerio

mutant strains.

Well-established model. Available
knock-out and knock-in animals.

Easy to handle. Available genetic tools,
and bank of mutant strains.

Easy to handle. Available genetic tools,
and bank of mutant strains.

Easy to handle. Available genetic tools,
and bank of mutant strains.

Easy to handle. Growth conditions
(temperature). Good correlation with the
mouse model in terms of assessing

Possibility of easily imaging infection.
Available genetic tools, and bank of

Costs. Differences between mice and
human immune system.

Growth conditions (temperature and
growth medium to assess virulence).

Growth conditions. Not clear how to
translate findings in this model to model
human disease.

Growth conditions. Not clear how to
translate findings in this model to model
human disease.

Lack of genetic tools, and bank of mutant
strains.

Need for costly infrastructure. Not clear
how to translate findings in this model to
model human disease.
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In the mouse model, Klebsiella-induced pneumonia is
achieved either via intratracheal/endobronchial instillation or
via intranasal inoculation, each of which has its limitations. In-
tratracheal/endobronchial instillation delivers the inoculum to
the lower respiratory track bypassing the host barriers of the
upper airways but modelling oropharyngeal aspiration. The in-
tratracheal method of infection often results in a higher ratio
of infecting organisms to local defences at the site of infection
than those achieved with other inoculation routes. This results
in an exuberant inflammatory response and tissue destruction
already few hours after infection. We suggest that the intratra-
cheal/endobronchial inoculation route should be the one choice
to investigate the biology of Klebsiella-induced lung injury. How-
ever, to gain insights into Klebsiella-triggered respiratory infec-
tions, we favour the intranasal inoculation route because it cap-
tures the interaction between the pathogen and the defences of
upper and lower respiratory track. Furthermore, it is a simple
method of infection. Its major limitation is the variable deposi-
tion of microorganisms in the lungs which may lead to signifi-
cant differences between infected mice.

Intratracheal, intraperitoneal and intravenous routes of in-
fection are used to model Klebsiella-triggered sepsis, whereas in-
traperitoneal and orogastric routes of infection are used to in-
vestigate the virulence of Klebsiella strains inducing pyogenic
liver abscess (Siu et al. 2012). This syndrome was anecdotally
reported in Taiwan in the 1980s, although now it seems to be
spreading to countries outside Asia. Clinical evidence suggests
that healthy adults carry the virulent strains in their intestines,
and liver abscess occur when bacteria translocate across the in-
testinal epithelium (Siu et al. 2012). Experiments done in mice
provide initial evidence supporting this notion (Tu et al. 2009);
however, it should be noted that this infection model only
demonstrates the ability of these strains to spread from the gut
to other organs. Of note, there are no specific Klebsiella genetic
features associated with these infections, suggesting that per-
haps host factors might play a critical role in the outcome of
this Klebsiella-triggered pyogenic liver abscess. Currently, there
is no well-developed model to investigate the gut colonisation
by Klebsiella species. Recently, Krapp and colleagues (Krapp et al.
2017) have developed a subcutaneous model of infection to
model Klebsiella-induced skin and soft tissue infections. These
are rare clinical manifestations also associated with hyperviru-
lent strains.

Although the mouse model has proven useful to illuminate
K. pneumoniae infection biology, it is important to acknowledge
its limitations. There exist significant differences between mice
and humans in immune system development, activation and
response to infection (Mizgerd and Skerrett 2008). For exam-
ple, circulating neutrophil counts are lower in mice than in
humans (Haley 2003), and mouse neutrophils lack defensins
(Eisenhauer and Lehrer 1992). There are no murine homologs of
several chemokines including IL8, although mice express other
chemoattractant cytokines (Strieter et al. 1996). Species differ-
ences also exist in the receptors sensing infections. There are 10
known functional TLRs in humans and 12 in mice (Takeuchi and
Akira 2010); TLRs 1-9 are conserved in both species, although
the tissue expression and transcriptional regulation also dif-
fer (Rehli 2002). There is general conservation between mouse
and human TLR-controlled signalling pathways; however, there
are notable differences in the use of signalling adaptors (Sun
et al. 2016). In addition, the ligand specificities and affinities of
TLRs also differ in humans and mice. For example, human TLR4
exquisitely discriminates between lipid A structures, whereas
murine TLR4 does not and, as result, there are differences in

the inflammatory responses induced by lipid As with different
structures (Hajjar et al. 2002; Montminy et al. 2006). These dis-
crepancies and others (Mizgerd and Skerrett 2008) should be
carefully considered in interpreting experiments to translate the
findings to human disease.

More recently, other non-mammalian infection models have
been tested to investigate Klebsiella pathogenesis to circumvent
ethical and costs issues associated with animal research, and
to potentially facilitate large-scale analysis of virulence. The so-
cial amoeba Dictyostelium discoideum is a phagocytic cell that can
be used to screen potential roles of phagocytic immune cells
such as neutrophils and macrophages (Dunn et al. 2018). There
is evidence demonstrating that D. discoideum is a valuable sys-
tem for studying how pathogens evade fundamental processes
of phagocytic cells (Dunn et al. 2018). Benghezal and colleagues
(Benghezal et al. 2006) carried out a two-dimensional virulence
array to identify D. discoideum genes implicated in host defence
against Klebsiella, and Klebsiella genes require to survive in the at-
tenuated D. discoideum host. phgl and kil1, the D. discoideum genes
identified as essential to kill intracellular Klebsiella, have homo-
logues in mammalian cells, although their potential contribu-
tion to the physiology of phagocytic cells has not been studied
yet. The screen of bacterial mutants revealed that the surface
polysaccharides expressed by Klebsiella, the capsule polysaccha-
ride (CPS) and the LPS play a crucial role in the interaction with D.
discoideum (Benghezal et al. 2006). Additional studies have shown
that, in addition to the CPS and the LPS O-polysaccharide and
core, the outer membrane proteins (OMP) OmpA and OmpK36,
and the lipid A decorations with aminoarabinose and palmitate
are also necessary to avoid predation by D. discoideum (March
et al. 2013). Interestingly, these factors are also required to limit
phagocytosis by mouse alveolar macrophages (March et al. 2013),
suggesting that K. pneumoniae exploits the same factors to in-
teract with social amoeba and macrophages. Dictyostelium dis-
coideum has also proven to be useful to model the interac-
tion between Klebsiella and human neutrophils (Pan et al. 2011),
where CPS and LPS O-polysaccharide being also the important
factors governing the interaction of Klebsiella with neutrophils.
Further reinforcing the importance of Klebsiella surface polysac-
charide on the interaction with phagocytes, D. discoideum specif-
ically senses Klebsiella CPS to activate a predation programme
(Lima et al. 2014).

The nematode Caenorhabditis elegans and Drosopila
melanogaster have also been used to identify host path-
ways implicated in host defence against Klebsiella. In C. elegans,
PI3K-AKT/mTOR and the MAPK p38 are required for host protec-
tion against K. pneumonia (Kamaladevi and Balamurugan 2015,
2017), whereas Phgl, important in the Klebsiella-D. discoideum
interplay, is also essential to resist K. pneumoniae infection by
D. melanogaster (Benghezal et al. 2006). Whether these pathways
play any role in mammalian defence against K. pneumoniae is
currently unknown.

A common limitation of these models is that the optimal
temperature for maintaining them is 28°C, whereas the opti-
mum temperature for K. pneumoniae is 37°C. Since virulence
gene expression is frequently regulated by temperature, it is
likely that temperature requirements may affect the interac-
tion of K. pneumonaie strains causing human infections with
these hosts. Nonetheless, it is important to note that the im-
pact of environmental cues on the regulation of Klebsiella viru-
lence factors is poorly understood. The larvae of the wax moth
Galleria mellonella is emerging as a suitable model to study the
virulence of many human pathogens because, among other ad-
vantages, it grows at 37°C (Table 1) (Glavis-Bloom, Muhammed
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and Mylonakis 2012; Tsai, Loh and Proft 2016). G. mel-
lonella defence against bacterial infections consists of cellu-
lar and humoral immunity (Glavis-Bloom, Muhammed and
Mylonakis 2012; Browne, Heelan and Kavanagh 2013; Wojda
2017). The cellular response is mediated by phagocytic cells,
termed hemocytes, found within the haemolymph. Hemocytes
govern the clotting reaction to trap pathogens, and the melani-
sation response consisting of the deposition of melanin to en-
capsulate pathogens at the site of infection followed by the
coagulation of hemolymph. Melanisation can be considered
analogous to abscess formation in mammalian infections. The
humoral response is orchestrated by soluble effector molecules
that immobilise or kill the pathogen and includes complement-
like proteins, and antimicrobial peptides. The suitability of G.
mellonella as a model to investigate K. pneumoniae pathogenesis
has only been recently demonstrated (Insua et al. 2013). This in-
fection model discriminates the pathogenic potential of K. pneu-
moniae strains (Insua et al. 2013; Wand et al. 2013), and there is a
strong correlation with the virulence previously determined in
the mouse pneumonia model (Insua et al. 2013). Furthermore,
K. pneumoniae infection of G. mellonella results in responses sim-
ilar to those reported in the mouse pneumonia model includ-
ing cell death-associated with bacterial replication, inhibition of
phagocytosis and attenuation of host defence responses, chiefly
the production of antimicrobial peptides (Insua et al. 2013). In-
terestingly, virulence factors necessary in the mouse pneumo-
nia model, CPS, LPS and OMPs, are also required for K. pneumo-
niae survival in G. mellonella (Insua et al. 2013). The fact that all
attenuated Klebsiella mutants activate G. mellonella defensive re-
sponses (Insua et al. 2013) supports the notion that prevention of
host responses is an important feature of K. pneumoniae patho-
genesis. Despite the clear utility of G. mellonella as a surrogate
host to assess infections with K. pneumoniae, it is important to
note that the model only reflects early features of the interac-
tion between the pathogen and ancient innate immune mech-
anisms of defence. These mechanisms are indeed conserved in
evolution; however, the evolutionary distance between insects,
mice and humans makes that many host-specific phenomena
are likely to exist.

The larvae of Danio rerio (zebrafish) is another non-
mammalian infection model receiving increasing attention be-
cause it is genetically tractable, optically accessible and present
a fully functional innate immune system with macrophages
and neutrophils that mimic their mammalian counterparts
(Torraca and Mostowy 2018). Although a wide variety of
pathogenic bacteria have been already investigated using ze-
brafish, only recently it has been assessed whether zebrafish lar-
vae are a suitable model to investigate K. pneumoniae virulence
(Cheepurupalli et al. 2017; Marcoleta et al. 2018). These studies re-
port the optimisation of the model to investigate K. pneumoniae
pathogenesis. Injection of larvae seems to be the most reliable
inoculation method to ensure consistent colonisation of the gas-
trointestinal tract (Cheepurupalli et al. 2017). Further studies are
warranted to validate whether the model is useful to identify
Klebsiella virulence factors and to uncover features of the inter-
action between K. pneumoniae and the immune system.

CONTRIBUTION OF HOST SIGNALLING
IN DEFENCE AGAINST K. PNEUMONIAE
INFECTIONS

The published evidence during more than 20 years clearly es-
tablishes that pro-inflammatory signalling is crucial to K. pneu-
moniae clearance (Fig. 1). One of the first conclusive piece of evi-
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dence showed that mice deficient in the TNF« receptors (TNFR1)
are susceptible to K. pneumoniae pneumonia (Laichalk et al. 1996,
1998; Moore et al. 2005). Subsequent studies reported that mice
lacking the chemokines CXCL15 (Chen et al. 2001) and CCL3
(Lindell et al. 2001), and unable to synthesise leukotrienes (Bailie
et al. 1996; Mancuso et al. 1998) and nitric oxide (Tsai et al.
1997) are also exquisitely susceptible to Klebsiella pneumonia.
All these are markers associated with human pneumonia and
are part of the common host response to infections (Jenner and
Young 2005; Lachmandas et al. 2016; Li et al. 2016; Martinez et al.
2017). In turn, strategies to boost pro-inflammatory signalling
in the airways have proven to be successful to limit K. pneumo-
niae infections. Intrapulmonary expression of CCL3 (Zeng et al.
2003), and KC (Tsai et al. 1998; Cai et al. 2010) leads to improved
clearance of K. pneumoniae. Intratracheal instillation of CpG in-
creases the production of TNF«, and Th1 cytokines, including
IL-12, IFNy and the IFNy-dependent ELR-CXC chemokines (Deng
et al. 2004a) in a TLR9-dependent manner (Bhan et al. 2007), en-
hancing bacterial clearance. Cyclic di-GMP, a molecule sensed by
STING (Burdette et al. 2011), also triggers a vigorous expression of
chemokines and Th1 cytokines (Karaolis et al. 2007). These treat-
ments also result in the increased recruitment of neutrophils,
aB and y§ T cells, and activated NK cells to the site of infection,
suggesting that these cells are crucial in host defence against
K. pneumoniae. Indeed, y§ T cells and NK cells play a pivotal role
in the resolution of Klebsiella infections by controlling early pro-
duction of pro-inflammatory cytokines (Moore et al. 2000; Xu
et al. 2014).

The role of different cytokines in host defence against K.
pneumoniae has been also investigated (Fig. 1). Early studies
demonstrated the importance of IFNy and IFNy-dependent cy-
tokines to control the progression of Klebsiella-induced pneumo-
nia (Yoshida et al. 2001; Moore et al. 2002; Zeng et al. 2005a,b). IL23
drives the production of IFNy and IL17 (Happel et al. 2003, 2005);
however, the fact that IL17 administration restores bacterial con-
trol in mice deficient on IL23 production indicates an indepen-
dent role for the IL17-governed axis on host defence against K.
pneumoniae (Happel et al. 2005). Adding further evidence to this
notion, IL17 signalling is critical for the induction of Th1 re-
sponses, neutrophil recruitment and local control of pulmonary
infection (Ye et al. 2001a,b). IL17 signalling is also augmented via
IL12 production through IFNy (Happel et al. 2005). The contribu-
tion of IL12 signalling to control Klebsiella pneumonia is exem-
plified by the fact that STAT4~/~ knock-out mice displayed im-
paired production of IFNy and Th1 cytokines and greater bac-
terial burden compared to wild-type infected mice (Deng et al.
2004b). STAT4 is a critical transcriptional factor in the IL12 sig-
nalling pathway (Bacon et al. 1995). IL22, produced in an IL23-
dependent manner, is also important in host defence against
K. pneumoniae (Aujla et al. 2008; Zheng et al. 2016). Administra-
tion of an anti-IL22 blocking antibody results in higher bacterial
loads in the lungs and dissemination of bacteria to spleen (Aujla
et al. 2008), whereas therapeutic administration of IL22 attenu-
ates Klebsiella-triggered peritonitis (Zheng et al. 2016). IL22 reg-
ulates the levels of IL6 and CCL3 upon Klebsiella infection, and
its role is predominant over IL17 in regulating these cytokines
(Aujla et al. 2008). The synergistic effect of both cytokines gov-
erning host defences against Klebsiella is marked by the fact that
neutralisation of IL22 in I117a~/~ mice results in greater bacte-
rial growth in the lung and significantly more bacterial dissem-
ination to the spleen than in those observed in infected I117a~/~
(Aujla et al. 2008).

Collectively, the summarised evidence strongly suggests
that the IL23/IL17 and IL12/IFNy axes are essential for the
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Figure 1. Mechanisms of innate immunity to K. pneumoniae infections. The figure depicts the cells implicated in containing K. pneumoniae infection. There is conclusive
evidence demonstrating the interaction of K. pneumoniae with neutrophils, macrophages (and monocytes [not shown)]), dendritic cells and epithelial cells. These
interactions are marked with black arrows. The interaction with different subset of T cells, NK cells and other lymphocytes has not been investigated yet, although
these cells participate in bacterial clearance. The network of connections between cells, and the role played by different cytokines activating host responses are

depicted with blue arrows.

generation of an effective innate immune response in the lungs
against K. pneumoniae. However, two questions require addi-
tional investigations: Which are the cell(s) responsible for the
production of these cytokines? and Which are the main innate
defence mechanisms (humoral and cellular) activated by these
cytokine networks responsible for the clearance of K. pneumo-
niae? To set the framework for future studies, we next discuss
the available evidence. Initial data suggest that y§ T and NK
cells could be the major source of IL17 and IL22, respectively,
in Klebsiella-infected mice (Xu et al. 2014; Murakami et al. 2016),
whereas alveolar macrophages could be the initial source of IL23
(Happel et al. 2005). Only recently, it has been also suggested that
type 3 innate lymphocytes could be another source of IL17 in
vivo (Xiong et al. 2016). Altogether, there is need to dissect the
source of IL17 during K. pneumoniae infections. Dendritic cells
have been shown to orchestrate the production of IL12, IL23 and
IL17 in vivo (Bhan et al. 2007), although the specific singular role
of dendritic cells in Klebsiella infections and the connection with
other immune cells have not yet been fully defined. There is ev-
idence showing that NK cells are the source of IFNy in Klebsiella-
infected mice (Van Elssen et al. 2010; Ivin et al. 2017), although it
cannot be ruled out that other cell types such as CD4 and CD8
T cells might contribute as well. Alveolar macrophages and re-
cruited inflammatory monocytes are considered the main cellu-
lar target for IFNy and IL17, respectively (Xiong et al. 2015, 2016;
Ivin et al. 2017). These cytokines enhance the microbicidal ac-
tivity of alveolar macrophages and inflammatory monocytes by
increasing phagocytosis and facilitating bacterial killing (Xiong

et al. 2015, 2016; Ivin et al. 2017). Whether IFNy and IL17 trig-
ger other antimicrobial activity on these cells remains to be in-
vestigated. IL17 and IL22 also aid in the clearance of Klebsiella
by regulating the antimicrobial activity of the lung epithelium
(Aujla et al. 2008; Chen et al. 2016). Both cytokines activate an-
timicrobial programmes in epithelial cells having in common
the production of CXCL5 and lipocalin 2 (Aujla et al. 2008; Chen
et al. 2016). Ablation of this programme results in higher bacte-
rial loads in the lungs of infected animals. CXCLS participates in
the recruitment of neutrophils to the site of infection (Chen et al.
2016), whereas lipocalin 2 inhibits the growth of some strains
of Klebsiella in vitro and in vivo by preventing bacterial iron ac-
quisition (Bachman, Miller and Weiser 2009; Chan et al. 2009;
Bachman et al. 2012). Additionally, lipocalin 2 may also pro-
mote the induction of pro-inflammatory responses, which
facilitates the recruitment of neutrophils like CXCL5 does.
However, it is important to be aware that there are conflicting
reports on the role of neutrophils in vivo to clear Klebsiella in-
fections (Greenberger et al. 1996; Broug-Holub et al. 1997; Xiong
etal. 2015). Therefore, the recruitment of neutrophils to the lungs
of Klebsiella-infected mice cannot be rigorously taken as conclu-
sive evidence of these cells being a major player in host defence
against the pathogen. In vivo mechanistic studies involving se-
lective depletion of neutrophils together with ex vivo experi-
ments testing isolated mouse neutrophils should be the norm
in these type of studies.

Only recently, the role of type I IFN and type I IFN-governed
signalling in host defence against Klebsiella infections has been

8102 1eqwisos(] | | Uo Jasn isejjag Alisianiun s,usend Aq /29881 S/Sy0AN/8ISWal/S601" 0L /I0p/10BISqE-3|01LIB-00UBAPR/ISWA)/WO0 dNo"oIWapeoe.//:sdny WoJj papeojumoq



investigated (Fig. 1). Alveolar macrophages are one of the
sources of type I IFN in vivo, and in vitro experiments revealed
that K. pneumoniae activates a TLR4-TRAM-TRIF-IRF3 signalling
pathway to induce type I IFN- and type I IFN-dependent genes
(Ivin et al. 2017). To assess the importance of type I IFN signalling
in host defence, researchers infected mice lacking type I IFN
1 receptor-deficient (Ifnarl~/~) mice (Ivin et al. 2017). Ifnar1 is
one of the subunits of the type I IFN receptor which mediates
type I IFN responses in innate and acquired immunity to in-
fection. Ifnarl~/~ are exquisitely sensitive to Klebsiella infec-
tion exhibiting a markedly decreased survival, higher bacte-
rial lung burden, increased dissemination to spleen and liver
and severe bronchopneumonia (Ivin et al. 2017). The lack of
type I IFN signalling results in defect in the production of
IFNy, IL-12 and CXCL10 in K. pneumoniae-infected lungs, but
it has no impact on the number of alveolar macrophages, in-
flammatory monocytes and neutrophils recruited to the site
of infection (Ivin et al. 2017). In contrast, the number of NK
cells was lower in the lungs of Ifnarl~/~-infected mice than
in the wild-type ones (Ivin et al. 2017). This is consistent
with the reduced levels of the NK chemoattractant chemokine
CXCL10 in the lungs of Ifnar1~/~-infected mice (Ivin et al. 2017).
Type 1 IFN signalling is crucial for NK cells to produce IFNy,
which is required for enhancing the bactericidal action and
the production of the NK cell response-amplifying IL-12 and
CXCL10 by alveolar macrophages (Ivin et al. 2017). Remark-
ably, type I IFN signalling is dispensable in myeloid cells in-
cluding alveolar macrophages, monocytes and neutrophils for
host defence and IFNy activation (Ivin et al. 2017), uncovering
a hitherto unknown crosstalk between alveolar macrophages
and NK cells based on type I IFN and IFNy in Klebsiella
infection.

Few studies have addressed the contribution of PRR-
governed signalling to control Klebsiella infections. As with other
bacterial infections, TLR4 signalling plays a prominent role in
antibacterial defence against Klebsiella infection (Branger et al.
2004; Wieland et al. 2011; Standiford et al. 2012). TLR4~/~ mice
show reduced survival upon infection with increased bacte-
rial loads in lungs and bronchopneumonia (Branger et al. 2004;
Wieland et al. 2011; Standiford et al. 2012). The lack of TLR4 sig-
nalling is associated with a decrease in the levels of IL17 and
IL23 in the lungs of infected TLR4~/~ mice (Happel et al. 2003),
which may explain the susceptibility of these mice to Klebsiella
infection. It remains an open question which cells are more af-
fected by the lack of TLR4 signalling. Initial observations suggest
that TLR4 signalling is indispensable in cells of myeloid origin
for the clearance of Klebsiella (Wieland et al. 2011); however, it
cannot be ruled out that other cell types may require TLR4 sig-
nalling to aid in the elimination of Klebsiella infections. Support-
ing this notion, TLR4 signalling is required to protect the lung
epithelium from Klebsiella-induced pathophysiology (Standiford
et al. 2012). TLR9-controlled signalling is also required for pro-
tective immunity against Klebsiella-induced pneumonia (Bhan
et al. 2007, 2010). Mice deficient in TLRO fail to generate an ef-
fective Th1l cytokine response, resulting in increased bacterial
loads in the lungs and dissemination to other organs (Bhan et al.
2007). TLR9~/~-infected mice present no major defects on the
accumulation of immune cells except on the influx and matu-
ration of conventional dendritic cells (Bhan et al. 2007). This re-
duced accumulation and activation of dendritic cells explains
the impaired bacterial clearance because adaptive transfer of
dendritic cells from wild-type mice reconstitutes the protective
immunity in TLR9~/~ mice (Bhan et al. 2007). Since TLR9 is lo-
cated in endosomes and it recognises DNA oligonucleotides with
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unmethylated CpG base pairs (Hemmi et al. 2000), it is intriguing
to consider how Klebsiella infection may lead to the activation
of this intracellular receptor. Data obtained in other infection
models indicate that TLR9 can be activated by bacterial and host
DNA released into the airways during pneumonia (van der Meer
et al. 2016), as well as by intracellular bacteria and DNA of mi-
tochondrial origin released to the cytosol upon infection (Zhang
et al. 2010; Arpaia et al. 2011). Future studies should address this
knowledge gap. TLR2 signalling has a dual role in host defence
against Klebsiella (Wieland et al. 2011). In the early phase of in-
fection, TLR2 signalling has an anti-inflammatory role (Wieland
et al. 2011), perhaps to prevent a detrimental overwhelming in-
flammation as a result of the activation of other PRRs. Similar
observation has been done in Acinetobacter baumannii-triggered
pneumonia (Knapp et al. 2006), suggesting that the dampen-
ing function of TLR2 during pneumonia is not bacterial species-
specific. In the later stage of infection, TLR2 contributes to
antibacterial defence (Wieland et al. 2011). Interestingly, cooper-
ative roles of TLR4 and TLR2 signalling are involved in control-
ling Klebsiella infection because TLR4~/~xTLR2~/~ mice are more
susceptible to the infection than each of the single knock-out
mice (Wieland et al. 2011).

The role of TLR signalling during K. pneumoniae infection
has been further probed by demonstrating the contribution of
TLR adaptors in host defence. MyD88 is the universal adaptor
for all TLRs except TLR3 (O’'Neill and Bowie et al. 2007), and it
has been shown to be important for pulmonary host defence
against several respiratory pathogens (Baral et al. 2014). TRIF
is the sole adaptor for TLR3 and also contributes to TLR4 sig-
nalling (O’Neill and Bowie et al. 2007). Infections of MyD88~/~
and TRIF~/~ mice demonstrated that both adaptors are required
to restrict K. pneumoniae growth in the lungs (Cai et al. 2009; van
Lieshout et al. 2012). MyD88-dependent protection during Kleb-
siella pneumonia is mediated by both hematopoietic and resi-
dent cells excluding endothelial cells, whereas TRIF-mediated
protection is driven by hematopoietic cells (van Lieshout et al.
2012, 2014; Anas et al. 2017). MyD88 and TRIF deficiencies limit
the production of Th1 cytokines and the activation of signalling
pathways controlling host defence mechanisms (Cai et al. 2009).
Interestingly, the characteristic bronchopneumonia of Klebsiella
infections is virtually absent in infected MyD88~/~ mice and sig-
nificantly reduced in TRIF~/~ mice despite high bacterial loads
in both mice (Cai et al. 2009). This evidence indicates that the
histopathological changes associated with Klebsiella infection
are dependent on the host inflammatory response to the infec-
tion. TIRAP/MAL is another adaptor linking MyD88 to the acti-
vated TLR2 and TLR4 receptors (O’Neill and Bowie et al. 2007). In
this context, it is not surprising that MAL~/~ mice have substan-
tial mortality, higher bacterial burden in the lungs, enhanced
bacterial dissemination, attenuated production of Th1 cytokines
and no lung histopathology following K. pneumoniae infection
(Jeyaseelan et al. 2006). At present, the mechanisms underlying
MyD88-MAL-mediated defence against Klebsiella are ill-defined.
However, it is important to note here that MyD88-MAL are also
required for the activation of other signalling pathways such as
those governed by IL18 and IFNy (Cohen 2014; Ni Cheallaigh et al.
2016). Therefore, MyD88-MAL-dependent protective immunity
is most likely also mediated by IL18- and IFNy-governed host
antibacterial responses. Likewise IFNy-deficient mice, IL1R~/~
mice are exquisitely susceptible to Klebsiella infection demon-
strating the importance of IL18-controlled responses for host
survival and bacterial clearance (Cai et al. 2012). On the other
hand, the impaired antibacterial defence of TRIF~/* mice is asso-
ciated with the lack of IFNy in the lungs of infected mice (van
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Lieshout et al. 2015). The fact that TRIF is required for type I IFN
production following Klebsiella infection (Ivin et al. 2017) suggests
that the impairment of IFNy production in TRIF~/~ mice is sec-
ondary to the deficient type I IFN production in these mice.

A small number of studies have investigated the contribu-
tion of NLR signalling to defence against Klebsiella. NLRP3~/~
mice demonstrate an increase in mortality following Klebsiella
infection albeit the protective role of NLRP3 is not as impor-
tant as those of TLR4 and TLR2, and any of the TLR adaptors
(Willingham et al. 2009). In vitro experiments confirmed the
contribution of NLRP3 to caspase-1 activation and IL1p release
following Klebsiella infection (Willingham et al. 2009). In good
agreement, Klebsiella-induced IL18 is reduced in NLRP3~/~ mice
(Willingham et al. 2009). Recent evidence supports that the CPS
and the LPS are the Klebsiella components responsible for prim-
ing NLRP3, whereas Klebsiella-triggered ROS may be responsi-
ble for the activation (Hua et al. 2015). The NLRC4 inflamma-
some also contributes to Klebsiella-triggered IL18 production in
vitro and in vivo (Cai et al. 2012). However, there are contradic-
tory results on the importance of NLRC4 to confer protection
against Klebsiella infection (Willingham et al. 2009; Cai et al. 2012).
The main apparent difference between studies is the different
bacterial inoculum, with the study using an inoculum closer to
the LDsy showing a contribution of NLRC4 on host immunity
against Klebsiella (Cai et al. 2012). Nonetheless, an open question
is the identification of the Klebsiella component(s) inducing the
activation of NLRC4. This receptor senses bacterial flagellin and
the type III secretion system apparatus (Zhao et al. 2011; Dun-
can and Canna 2018). Notably, Klebsiella is not flagellated and
in silico analysis of more than 700 genomes confirms that this
pathogen does not encode any type III secretion system. It is
then tempting to speculate that any of the secretion systems
encoded by Klebsiella, including the type II and type VI secre-
tion systems, might be sensed by NLRC4. Intriguingly, Klebsiella-
induced pyroptosis requires NLRP3 but not NLRC4 (Willingham
et al. 2009; Cai et al. 2012). Whether pyroptosis is one of the
bona fide host defence mechanisms against Klebsiella infection
is yet unknown. In fact, the specific importance of pyroptosis in
host immunity remains a challenging question. Initial evidence
shows that NLRC4-dependent pyroptosis mediates the clearance
of the intracellular pathogen Salmonella typhimurium by generat-
ing a structure that entraps the previously intracellular bacte-
ria and drives their elimination by containing the bacteria and
elaborating signals that promote efferocytosis (Miao et al. 2010;
Jorgensen et al. 2016). However, it is unlikely that this mecha-
nism operates in the context of Klebsiella infections because, as
discussed before, the lack of NLRC4 does not affect Klebsiella-
triggered pyroptosis.

MICROBIOME PROTECTION AGAINST
KLEBSIELLA INFECTIONS

There is a wealth of evidence demonstrating the role of the in-
testinal microbiota to prevent infection by pathogenic bacte-
ria. This is achieved by interactions within the microbial com-
munity and by shaping the tissue immune responses to limit
infection (McKenney and Pamer 2015). Surprisingly, there is
virtually no data on the impact of the gut microbiome on Kleb-
siella gut colonisation and/or orogastric infection. This knowl-
edge gap is particularly relevant considering the recent clinical
evidence demonstrating that gastrointestinal carriage is a ma-
jor reservoir of K. pneumoniae infections in the healthcare en-
vironment (Martin et al. 2016; Gorrie et al. 2017). On the other

hand, the gut microbiota has been shown to protect against
Klebsiella pneumonia. Experiments infecting germfree mice re-
vealed that these animals are susceptible to Klebsiella in an IL-
10-dependent manner (Fagundes et al. 2012). In germfree mice,
IL-10 in the lungs restrains pro-inflammatory mediator produc-
tion and favours Klebsiella growth and dissemination (Fagundes
et al. 2012). Neutralisation of IL10, or transient TLR4 activation
with LPS, restores germfree mice resistance to K. pneumoniae in-
fection (Fagundes et al. 2012). Subsequent studies provided com-
pelling evidence on the members of the gut microbiota that drive
protection against Klebsiella infection and the signalling path-
ways responsible for this microbiota-controlled immune pro-
tection. A consortium of bacterial species common to the ro-
dent and human intestinal microbiota formed by Lactobacillus
reuteri, Enterococcus faecalis, Lactobacillus crispatus and Clostrid-
ium orbiscindens induces potent NOD2 activation to trigger IL17-
GM-CSF in the lung which, in turn, stimulates pathogen killing
and clearance by alveolar macrophages through MAPK extra-
cellular signal-regulated kinase signalling (Clarke 2014; Brown,
Sequeira and Clarke 2017). The source of IL17 in the lung and
how the microbiota governs the production of this cytokine re-
main open questions. Nevertheless, these findings further high-
light the critical role of IL17 in host defence against Klebsiella,
and the crucial role played by alveolar macrophages promoting
antibacterial defence in the lung. Although the contribution of
the upper airway microbiota, either permanent resident or as-
pirated from the oropharynx, to limit respiratory infections has
not been demonstrated yet, it is notable that intranasal inocu-
lation of bacteria colonising the upper airway of humans and
mice (Lactobacillus crispatus, Staphylococcus aureus, S. epidermidis)
enhances lung immunity against Klebsiella by the same IL17-
GM-CSF-alveolar macrophage axis (Brown, Sequeira and Clarke
2017). Collectively, this evidence demonstrates the facility of the
lung immune system to integrate microbial signals from differ-
ent mucosal sites to launch antibacterial defence mechanisms.

KLEBSIELLA EVASION STRATEGIES
OF HOST DEFENCES

The widely held belief is that K. pneumoniae is a stealth pathogen,
which fails to stimulate innate immune responses (Paczosa
and Mecsas 2016). Essentially, Klebsiella shields its pathogen-
associated molecular patterns from detection by PRRs and solu-
ble effectors of the immune system, and avoids the interaction
with hematopoietic and non-hematopoietic cells to prevent the
activation of host antimicrobial responses (Table 2). However,
there is now enough evidence demonstrating that Klebsiella also
actively subverts host defences (Table 2). We will review both
immune evasion strategies in the context of the interaction of
Klebsiella with different effectors of the immune system.

Counteracting soluble effectors of the immune system

Early research focused on investigating the interplay between
complement and K. pneumoniae. The OMPs and LPS of K. pneu-
moniae are known to activate the classical pathway (Alberti
et al. 1996a,b). OmpK36 and OmpK35, homologues to OmpF and
OmpC, respectively, and two of the most abundant porins in
the outer membrane of K. pneumoniae, bind Cq1l in an antibody-
independent manner triggering complement activation (Alberti
et al. 1993, 1996a). K. pneumoniae LPS without O-polysaccharide
also activates the classical pathway, although less efficiently
than the OMPs (Alberti et al. 1996b). C3b deposition on the
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Table 2. Immune evasion strategies of K. pneumoniae.
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Immune evasion strategies

Mechanism

Bacterial factor

References

(i) Stealth pathogen
Preventing the antimicrobial
action of soluble innate
immune effectors
Preventing complement
bactericidal effect,
and opsonisation
Limiting antimicrobial
activity of collectins
Counteracting bactericidal
action CAMPs and
polymyxins

Attenuating the interaction

with immune cells
Attenuating engulfment
by epithelial cells
Avoiding phagocytosis
by neutrophils
Avoiding phagocytosis
by macrophages

Limiting the activation of PPRs

(ii) Subversion host defences

Attenuating cell-intrinsic immunity

Controlling maturation
dendritic cells
Manipulation phagosome
maturation

Controlling cell death

Abrogating TLR-controlled
inflammatory responses:
Abolishing TLR signalling

Blunting NF-«B signalling

Blunting MAPKs

Manipulating mucosal
immunity

Counteracting nutritional
immunity

Limiting C3b deposition

Blunting interaction with SP-A
and SP-D

Limiting the interaction with
the bacterial surface. Efllux of
CAMPs.

Limiting the recognition of LPS
by TLR4

Activation PI3K-AKT-Rab14
axis

Cytotoxicity in epithelial cells.
Triggering apoptosis in
macrophages.

Upregulation deubiquitinase
CYLD by targeting NOD1 and
EGFR.

Upregulation MAPKs
phosphatase MKP-1 via NOD1
activation.

Induction of IL10.

Secretion of several
siderophores

CPS, LPS O-polysaccharide

CPS

CPS, LPS lipid A
decorations, AcrAB

CPS

CPS, OmpK36

CPS, LPS lipid A
decorations, OmpaA,

OmpK36
LPS lipid A 2-hydroxylation

CPS, LPS O-polysaccharide
Unknown

CPS Unknown

CPS, LPS O-polysaccharide,
OmpaA, T2SS

CPS, and other unknown
factor(s)

Unknown

Unknown

Yersiniabactin,
salmochelin, aerobactin

Merino et al. 1992; Alvarez et al.
2000; de Astorza et al. 2004

Kabha et al. 1997; Ofek et al.
2001; Kostina et al. 2005
Campos et al. 2004; Llobet et al.

2011; Kidd et al. 2017; Mills et al.

2017; Padilla et al. 2010

Cortes et al. 2002; Regueiro et al.

2006

Regueiro et al. 2006; Pan et al.
2011

March et al. 2013

Llobet et al. 2015

Evrard et al. 2010
Cano et al. 2015

Cano et al. 2009; Leone et al.
2016

March et al. 2011; Frank et al.
2013; Tomas et al. 2015
Regueiro et al. 2011; Frank et al.
2013

Regueiro et al. 2011

Greenberger et al. 1995;
Yoshida et al. 2001

Lawlor, O’connor and Miller
2007; Bachman et al. 2011;
Russo et al. 2011

bacterial surface upon complement activation results in in-
creased internalisation of Klebsiella by human lung epithelial
cells promoting bacterial clearance (de Astorza et al. 2004), as
well as opsonophagocytosis by neutrophils and macrophages
(Domenico et al. 1994; Salo et al. 1995; Regueiro et al. 2006).
Not surprisingly, the main complement evasion strategy of Kleb-
siella is based on preventing C3b deposition by exploiting Kleb-
siella surface polysaccharides. Whether K. pneumoniae may ex-
ploit other complement evasion strategies, such as targeting
factor H, has not been described yet. The CPS is the main fac-
tor protecting Klebsiella from complement; cps mutants are sus-
ceptible to the bactericidal action of complement and show in-

creased deposition of C3b on the surface (Merino et al. 1992;
Alvarez et al. 2000). The protection conferred by CPS is more
dependent on the thickness of the polysaccharide than the
chemical composition of the polysaccharide (de Astorza et al.
2004), although CPS containing manno(rhamno)biose may ac-
tivate the lectin complement pathway (Sahly, Keisari and Ofek
2009). The LPS O-polysaccharide also protects Klebsiella from
complement by limiting the deposition of C3b on the bacterial
surface (Merino et al. 1992). In those strains lacking the LPS O-
polysaccharide, the CPS is then the main factor protecting Kleb-
siella from the bactericidal action of complement (Alvarez et al.
2000).
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The CPS also confers protection against lung collectins SP-
A and SP-D, components of the lung surfactant, by preventing
the binding of the collectins to the LPS (Kabha et al. 1997; Ofek
et al. 2001; Kostina et al. 2005). The binding of both collectins to
the bacterial surface triggers bacterial agglutination and facili-
tates phagocytosis by macrophages (Kabha et al. 1997; Ofek et al.
2001; McCormack and Whitsett 2002). Interestingly, pulmonary
surfactant challenge shapes the transcriptome of K. pneumoniae,
inducing a programme strongly associated with virulence in the
pneumonia mouse model (Willsey et al. 2018). The CPS is one of
the systems induced by pulmonary surfactant, further empha-
sising the importance of this polysaccharide to protect Klebsiella
against collectins.

Like many other bacterial pathogens, K. pneumoniae has de-
veloped strategies to counteract host cationic antimicrobial pep-
tides (CAMPs), chiefly defensins. Importantly, CAMPs and an-
tibiotics such as quinolones and polymyxins share the same
initial target in the outer membrane of Gram-negative bacteria
(Nikaido 2003). Therefore, there is a relationship between resis-
tance to CAMPs and polymyxins (Campos et al. 2004; Campos,
Morey and Bengoechea 2006; Nizet 2006; Llobet et al. 2011; Kidd
et al. 2017). To counteract the bactericidal action of CAMPs and
polymyxins, K. pneumoniae exploits the versatility of the CPS and
the LPS. CPS limits the interaction of CAMPs and polymyxins
with Klebsiella surface, and, in fact, there is a correlation between
the amount of CPS expressed by a given strain and the resis-
tance to polymyxin B (Campos et al. 2004). Furthermore, free CPS,
which may be released from the bacterial surface by CAMPs and
polymyxins, binds CAMPs, neutralising their bactericidal effect
(Llobet, Tomas and Bengoechea 2008). Therefore, the CPS acts as
a bacterial decoy for CAMPs. Notably, this trait is shared by an-
ionic CPS expressed by Pseudomonas aeruginosa and Streptococcus
pneumoniae (Llobet, Tomas and Bengoechea 2008), strongly sug-
gesting that trapping CAMPs is a general feature of anionic CPS.

K. pneumoniae also remodels its LPS lipid A domain to coun-
teract CAMPs and polymyxins (Llobet et al. 2011, 2015; Kidd et al.
2017; Mills et al. 2017). Klebsiella pneumoniae lipid A can be dec-
orated with palmitate, 4-amino-4-deoxy-L-arabinose, phospho-
ethanolamine and 2-hydroxymyristate (Llobet et al. 2011, 2015;
Kidd et al. 2017). These decorations provide resistance to CAMPs,
and K. pneumoniae mutants lacking these lipid A decorations are
attenuated for virulence in the mouse pneumonia model (Llo-
bet et al. 2011, 2015; Kidd et al. 2017). There are reports show-
ing that the lipid A acylation also mediates resistance to CAMPs
(Clements et al. 2007; Mills et al. 2017). However, this role could
be indirect since mutants deficient in the late acyltransferases
IpxM and IpxL display changes in the CPS levels and the 2-
hydroxylation of the lipid A, respectively (Clements et al. 2007;
Mills et al. 2017).

The lipid A of K. pneumoniae shows a remarkable plasticity.
Just a brief incubation with CAMPs upregulates the expression
of the loci required to modify the lipid A with a concomitant
increase in the lipid A species containing such modifications
(Llobet et al. 2011). The regulatory network controlling these
transcriptional changes is complex and involves, at least, the
PhoPQ, PmrAB and the Rcs systems (Llobet et al. 2011). Of note,
and in contrast to Salmonella, PhoPQ and PmrAB control inde-
pendently the regulatory architecture governing these CAMPs-
induced changes (Llobet et al. 2011). Intriguingly, OmpA is also
part of the regulatory network controlling systems required
to ameliorate CAMPs bactericidal action (Llobet et al. 2009).
Whether there is any connection between the OmpA and the
PhoPQ and PmrAB-regulated networks is currently unknown.

Counteracting immune cells

Although it is well appreciated that the airway epithelium
plays a central role orchestrating pulmonary inflammatory and
immune responses against infections (Whitsett and Alenghat
2015), few studies detail the interaction of Klebsiella with these
cells. Initial research argued that Klebsiella entry into epithe-
lial cells may protect the pathogen from the actions of an-
tibiotics and the immune system (Sahly et al. 2000). These
studies clearly demonstrated the role of the CPS limiting the at-
tachment and internalisation to epithelial cells. However, sub-
sequent studies have shown that epithelial cells engulfment of
Klebsiella is most likely a host defence mechanism (Cortes et al.
2002; Cano et al. 2009). This interpretation is consistent with the
observations that bacterial internalisation triggers an inflamma-
tory response due to the activation of NF-«B signalling (Regueiro
et al. 2006), and that K. pneumoniae triggers a cytotoxic effect
on epithelial cells (Cano et al. 2009; Leone et al. 2016). Klebsiella-
induced cytotoxicity requires the presence of live bacteria and
of CPS since it is observed with isolates expressing different
amounts of CPS and/or different serotypes but not with non-
capsulated bacteria (Cano et al. 2009). K. pneumoniae infection
also increases the levels of TLR4 and TLR2 in human airway ep-
ithelial cells which results in enhanced inflammatory response
upon stimulation with TLR agonists (Regueiro et al. 2009). TLR
upregulation upon infection is dependent on the activation of
NF-«xB-governed signalling pathway by the CPS (Regueiro et al.
2009). Evidence demonstrates that Klebsiella CPS is sensed by
TLR4 (Regueiro et al. 2009; Yang et al. 2011; Frank et al. 2013).
There is scarce data on the interaction between Klebsiella
and neutrophils, although the recruitment of neutrophils to the
lung is one of the hallmarks of Klebsiella-triggered pneumonia.
In vitro experiments indicate that neutrophil-dependent clear-
ance of Klebsiella occurs after phagocytosis. In turn, CPS abro-
gates killing by neutrophils due to its anti-phagocytic activity
(Regueiro et al. 2006; Pan et al. 2011). Not surprisingly, antibodies
against the CPS empower neutrophil-mediated killing (Diago-
Navarro et al. 2018), showing promise as new therapeutics to
treat Klebsiella infections. Interestingly, K. pneumoniae does not
induce NETosis (Branzk et al. 2014), although anti-CPS antibod-
ies enhance the release of neutrophil extracellular traps (NETSs),
which may contribute to extracellular killing of Klebsiella (Diago-
Navarro et al. 2017, 2018). NETs are large, extracellular, web-like
structures composed of decondensed chromatin and neutrophil
antimicrobial factors. NETs trap and kill a variety of microbes
(Amulic et al. 2012). NET's are released primarily via a cell death
program that requires ROS, and the granule proteins myeloper-
oxidase and neutrophil elastase (Amulic et al. 2012). Recently,
it has been shown that K. pneumoniae interferes with clearance
of neutrophils by efferocytosis (Jondle et al. 2018). Efferocyto-
sis is a regulated process which facilitates the elimination of
apoptotic neutrophils by phagocytic cells, mainly macrophages,
which prevents heightened inflammation triggered by dead cells
(Ariel and Serhan 2012; Poon et al. 2014; Angsana et al. 2016).
Mechanistically, Klebsiella infection of neutrophils results in a
drastic decrease in the exposure of phosphatidylserine, which
is recognised as ‘eat-me’ signal by macrophages to initiate
the engulfment of neutrophils (Jondle et al. 2018). The Kleb-
siella factor(s) responsible for this phenotype is currently un-
known. Interestingly, evidence suggests that Klebsiella not only
limits the efferocytosis of neutrophils, but it may also pro-
gramme their cell death towards necroptosis (Jondle et al. 2018).
In contrast to apoptosis, necroptosis is a cell death triggering
inflammation (Pasparakis and Vandenabeele 2015). Therefore,
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Klebsiella-triggered necroptosis may also contribute to the exu-
berant inflammation observed in this infection. It is then tempt-
ing to speculate that inhibition of necroptosis may improve
Klebsiella-induced immunopathology. Preliminary observations
indicate that this might be the case (Jondle et al. 2018).

The specific role of dendritic cells in the clearance of K.
pneumoniae has been poorly characterised, although there are
data indicating that Klebsiella may activate different subsets
of dendritic cells (Hackstein et al. 2013). An outer membrane
fraction of K. pneumoniae, containing CPS, LPS and porins, in-
duces dendritic cell maturation (Van Elssen et al. 2010). How-
ever, K. pneumoniae CPS and LPS attenuate dendritic maturation
by hampering bacterial binding and internalisation (Evrard et al.
2010). It should be mentioned that the latter results were ob-
tained testing UV-killed bacteria. This technical approach is use-
ful to assess the impact of an intact bacterial surface on cell
activation/maturation but hampers any investigation on anti-
immune systems deployed by live bacteria such as the injection
of effector proteins by secretion systems. Nonetheless, future
investigations are warranted to deconstruct the interaction be-
tween dendritic cells and K. pneumoniae to address whether the
pathogen is able to survive intracellularly, the impact of Klebsiella
infection on signalling governing cell maturation and whether
Klebsiella may interfere with the processing of antigens and pre-
sentation of antigen-derived peptides to T cells, among other
questions.

Historically, K. pneumoniae is considered an extracellular
pathogen, yet there are reports suggesting that K. pneumoniae
can survive in macrophages (Willingham et al. 2009; Greco et al.
2012; Fevre et al. 2013; Fodah et al. 2014). Providing compelling
evidence for this hypothesis, Cano and co-workers (Cano et al.
2015) have demonstrated that K. pneumoniae survives within hu-
man and mouse macrophages in a unique vacuolar intracellu-
lar compartment which deviates from the canonical endocytic
pathway and it does not fuse with lysosomes. Furthermore, data
suggest that K. pneumoniae triggers a programmed cell death in
macrophages displaying features of apoptosis 10 h post infec-
tion (Cano et al. 2015). One of the hallmarks of the Klebsiella con-
taining vacuole (KCV) is its acidic pH, and, likewise for other
pathogens (Yu et al. 2010; Martinez, Siadous and Bonazzi 2018),
phagosome acidification is essential for the intracellular sur-
vival of K. pneumoniae (Cano et al. 2015). Klebsiella pneumoniae
targets the PI3K-AKT-Rab14 axis to control phagosome matu-
ration to survive inside macrophages (Cano et al. 2015), strategy
shared with S. typhimurium and Mycobacterium tuberculosis (Kuijl
et al. 2007), two classical intracellular pathogens. Interestingly,
this axis is suitable for therapeutic manipulation to develop new
anti-infective drugs. AKT inhibitors have already proven use-
ful to eliminate intracellular Salmonella and M. tuberculosis (Kuijl
et al. 2007; Lo et al. 2014), suggesting these inhibitors might pro-
vide selective alternatives to manage K. pneumoniae infections.
Providing initial support to this hypothesis, in vitro experiments
showed that AKT inhibition abrogates Klebsiella intracellular sur-
vival (Cano et al. 2015). At present, the Klebsiella factors inter-
fering with the phagosomal maturation pathway are unknown.
Unexpectedly, the CPS does not play a large role, if any, in in-
tracellular survival of Klebsiella as a cps mutant does not display
any loss of viability upon phagocytosis (Cano et al. 2015). In fact,
Klebsiella downregulates the expression of the cps once inside
the KCV (Cano et al. 2015). It is tempting to speculate that Kleb-
siella may downregulate capsule expression to better survive in
the intracellular environment which is poor in nutrients or be-
cause CPS may interfere with other factors required to manipu-
late phagosome maturation, among other possibilities.
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Despite the crucial role of macrophages to clear Klebsiella
infections in vivo, the macrophage responses following Kleb-
siella infection are poorly characterised. This is particularly
relevant considering the plasticity of these cells, which can ad-
just their phenotype and physiology in response to environ-
mental cues (Lavin et al. 2014; Davies and Taylor 2015; Liddiard
and Taylor 2015). These functional phenotypes led to classify
macrophages as either classically activated M1 macrophages
or alternatively activated M2 macrophages (Mills et al. 2000;
Murray et al. 2014). M1 phenotype is characterised by the expres-
sion of high levels of pro-inflammatory cytokines, high produc-
tion of reactive oxygen intermediates and iNOS-dependent re-
active nitrogen intermediates, and promotion of Th1l response
by IL12 production (Mills et al. 2000; Murray et al. 2014). The
released cytokines and chemokines play a crucial role dictat-
ing cell-to-cell communications, hence regulating global tissue
responses to infection. M2 macrophages are characterised by
little to no secretion of pro-inflammatory cytokines, increased
secretion of anti-inflammatory cytokines, enhanced scaveng-
ing of cellular debris, and promotion of tissue remodelling and
repair (Mills et al. 2000; Murray et al. 2014). M1 macrophages
are generally considered responsible for resistance against in-
tracellular pathogens. However, uncontrolled M1 responses as-
sociated with acute infections may lead to immunopathology
(Benoit, Desnues and Mege 2008). The M1-M2 transition may
provide protection against overwhelming inflammation; how-
ever, a phenotypic switch may also favour pathogen survival. In-
deed, a growing number of studies show that some pathogens
have evolved different strategies to interfere with M1 polarisa-
tion, whereas chronic evolution of infectious diseases is thought
to be associated with macrophage reprogramming toward a M2
profile (Benoit, Desnues and Mege 2008). Of note, reports exist
showing the presence of M2 macrophages in Klebsiella-infected
mouse models recapitulating human diseases, and the improve-
ment in bacterial clearance when this macrophage population
is eliminated in vivo (Dolgachev et al. 2014; Ohama et al. 2015;
Tsuchimoto et al. 2015). These observations suggest that K. pneu-
moniae might induce the polarisation of macrophages towards
an M2-like phenotype. This hypothesis is initially supported
by the fact that macrophages expressing high levels of IL10,
a classical marker of M2 macrophages, are required to estab-
lish a macrophage/monocyte polarising tissue microenviron-
ment (Fevre et al. 2013). Conversely, treating mice with GM-CSF
to stimulate M1 polarisation enhances K. pneumoniae clearance
in vivo (Standiford et al. 2012).

Ablating host defence signalling

Early studies showed that Klebsiella-triggered pneumonia is
characterised by high levels of the anti-inflammatory cytokine
IL10 (Yoshida et al. 2000, 2001). This cytokine is expressed by
many cells of the immune system, and impacts on many cell
types controlling the activation of innate immune responses
(Gabrysova et al. 2014). The induction of the anti-inflammatory
response is mediated through the IL-10 receptor (IL-10R) and
activation of signal transducer and activator of transcription 3
(STAT3) (Gabrysova et al. 2014). The facts that neutralisation of
IL10 in vivo results in prolonged survival of Klebsiella-infected
mice with an enhancement of bacterial clearance in the lungs
and blood, and an upregulation of inflammation (Greenberger
et al. 1995) suggests that Klebsiella exploits IL10 to attenuate im-
mune responses. In agreement with this idea, IL10 overexpres-
sion causes a more pronounced bacteraemia and accelerated
mortality in intratracheally infected mice (Dolgachev et al. 2014).
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In turn, IFNy plays an important role counteracting Klebsiella-
induced IL10-dependent immune evasion because production of
IL10 is significantly upregulated in infected IFNy~/~ with a con-
comitant increase in bacterial burden and decreased in inflam-
matory mediators (Moore et al. 2002). Collectively, this evidence
strongly supports the notion that induction of IL10 is part of
the arsenal of K. pneumoniae immune evasion strategies. Adding
additional weight to this notion, IL10 production is associated
with K. pneumoniae pathogenicity because high levels of IL10 are
only detected in mice infected with the wild-type strain but not
in those mice infected with a cps mutant (Yoshida et al. 2001;
Lawlor, Handley and Miller 2006). These results may suggest that
the CPS is necessary for induction of IL10, although this has not
been rigorously addressed yet. The identification of the cellular
source of IL10 in vivo, the signalling pathway controlling Kleb-
siella induction of IL10 and the bacterial factor(s) needed for in-
duction of IL10 are questions warranting future investigations.

In vitro and in vivo evidence demonstrates that a signifi-
cant number of anti-Klebsiella responses are controlled by the
transcriptional factor NF-«B upon activation of a TLR4/2-MyD88
signalling pathway (Regueiro et al. 2006; Moranta et al. 2010;
Wieland et al. 2011; Frank et al. 2013; Tomas et al. 2015). By lim-
iting Klebsiella internalisation by epithelial cells, the CPS lim-
its the activation of NF-«B and, hence, the production of IL8,
ICAM1 and human defensins (Regueiro et al. 2006; Moranta et al.
2010). The reduced production of defensins by epithelial cells
following Klebsiella infection can be considered another mecha-
nism of resistance against these antimicrobial agents. However,
Klebsiella also actively supresses NF-«B signalling by hijacking
the host deubiquitinase cylindromatosis (CYLD) (Regueiro et al.
2011, Frank et al. 2013). CYLD deconjugates K63-linked ubiquitin
chains to factors of the NF-«B signalling pathway, thereby abro-
gating the activation of the NF-«B signalling pathway (Sun 2008).
In cyld knock-down cells, Klebsiella is no longer able to blunt the
activation of TLR4/2-MyD88, leading to the production of IL8 fol-
lowing Klebsiella infection (Frank et al. 2013). To upregulate the
levels of CYLD, K. pneumoniae activates a NOD1 and an EGF recep-
tor (EGFR)-phosphatidylinositol 3-OH kinase (PI3K)-AKT-PAK4-
ERK-GSK3p signalling pathways (Regueiro et al. 2011; Frank et al.
2013). To the best of our knowledge, K. pneumoniae is the first
pathogen to date activating a NLR receptor to blunt inflamma-
tion. The activation of NOD1 is mediated by the inhibition of the
Rho GTPase Racl, although the Klebsiella factor(s) responsible is
unknown (Regueiro et al. 2011). Whilst other bacterial pathogens
are known to activate EGFR (Zhang et al. 2004; Keates et al. 2007;
Choi et al. 2011; Xu et al. 2011), only Klebsiella manipulates this
receptor to ablate the production of inflammatory cytokines.
Klebsiella-dependent activation of the EGFR pathway is mediated
by the CPS and, therefore, a cps mutant does not activate EGFR
(Frank et al. 2013). Interestingly, CPS-mediated EGFR activation is
indirect and requires the cSRC kinase, which is activated upon
recognition of the CPS by TLR4 (Frank et al. 2013). NOD1 and EGFR
do not play redundant roles in Klebsiella-triggered block of NF-
«B activation because in cells in which EGFR and NOD1 expres-
sions are downregulated by siRNA the anti-inflammatory effect
is completely abolished in contrast to what happens in the sin-
gle knockdown cells (Regueiro et al. 2011; Frank et al. 2013).

The production of inflammatory mediators and defensins
by epithelial cells following Klebsiella infection is also governed
by the MAPKs p38, ERK and JNK (Wu et al. 2006; Moranta et al.
2010; Regueiro et al. 2011). Klebsiella inhibits MAPKs activation
via the MAPK phosphatase-1 (MKP-1) (Regueiro et al. 2011). Kleb-
siella upregulates the levels of MKP-1 by activating NOD1, and
both MKP-1 and CYLD play synergistic roles to abrogate the pro-
duction of IL8 by infected epithelial cells (Regueiro et al. 2011).

It is remarkable that Klebsiella hijacks two host proteins, CYLD
and MKP-1, involved in immune homeostasis after inflamma-
tion to protect the host from an overwhelming inflammatory
response (Liu, Shepherd and Nelin 2007; Sun 2008). This im-
mune evasion strategy is radically different to that deployed by
other pathogens based on exploiting bacterial effectors to ablate
NF-«B and MAPKs activation.

As a result of a high-throughput screen interrogating a li-
brary of 5320 K. pneumoniae transposon mutants using as a read-
out a gain of NF-«B activation (Tomas et al. 2015), 114 mutants
no longer blunting NF-«B signalling were identified. Metabolism
and envelope-related genes are the gene ontology categories ac-
counting for half of the loci identified in the screening (Tomas
et al. 2015). Follow-up characterisation conclusively established
that the LPS O-polysaccharide and the pullulanase (PulA) type 2
secretion system (T2SS) are required for full effectiveness of the
immune evasion (Tomas et al. 2015). Importantly, the CPS, the
LPS O-polysaccharide and the PulA T2SS do not play a redun-
dant role attenuating inflammation (Tomas et al. 2015). In good
agreement with the in vitro results, the LPS O-polysaccharide and
pulA mutants induce higher inflammation in vivo than the wild-
type strain (Tomas et al. 2015). Furthermore, they are attenuated
in the pneumonia mouse model (Tomas et al. 2015). The fact that
LPS O-polysaccharide and T2SS mutant-induced responses are
dependent on TLR2-TLR4-MyD88 activation suggests that LPS O-
polysaccharide and PulA perturb TLR-dependent recognition of
K. pneumoniae.

OmpA has also been shown to be implicated in prevent-
ing TLR activation to limit inflammatory responses in vitro and
in vivo (March et al. 2011). The contribution of OmpA to Kleb-
siella immune evasion is independent of CPS because a double
mutant lacking cps and ompA induces higher inflammatory re-
sponse than any of the single mutants (March et al. 2011). An
ompA mutant is also attenuated in the pneumonia mouse model
(March et al. 2011), further highlighting the importance of im-
mune evasion for Klebsiella virulence. However, studies testing
OmpA purified from K. pneumoniae have yielded opposite results.
Purified OmpA activates TLR2 signalling leading to enhanced
cytokine production (Jeannin et al. 2000; Soulas et al. 2000;
Pichavant et al. 2003), and instillation of the purified protein
in vivo also results in upregulation of inflammation (Jeannin
et al. 2000; Soulas et al. 2000; Pichavant et al. 2003). Of note,
an E. coli ompA mutant strain induces higher expression of
pro-inflammatory mediators (Selvaraj and Prasadarao 2005),
strongly suggesting that indeed OmpA plays a role in immune
evasion. The contradiction between the results observed assess-
ing the role of OmpA in the biological context of the bacterial
membrane and those testing the protein as ligand reflects the
importance of investigating the interplay between pathogens
and the immune system interrogating whole live bacteria in-
stead of purified ligands.

Subversion of nutritional immunity

To limit infections, humans and other mammals restrict ac-
cess to essential metals in a process termed ‘nutritional immu-
nity’. Originally referring to restriction of iron availability, the
term now also applies to mechanisms for withholding other
metals in addition to Fe such as Zn, Mn and Cu, or direct-
ing the toxicity of these metals against pathogens (Palmer and
Skaar 2016). In the case of Klebsiella infections, most of the re-
search has focused on understanding how Klebsiella subverts
iron nutritional immunity. Like many other Enterobacteriaceae,
Klebsiella secretes the siderophore enterobactin to compete iron
off of iron-loaded host proteins (Wooldridge and Williams 1993).
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Notably, and as a perfect example of a host-pathogen arms race,
the host employs lipocalin 2 to compete out bacteria from bind-
ing the siderophore (Bachman, Miller and Weiser 2009; Bachman
et al. 2011, 2012). It is then not surprising that Klebsiella strains
secrete additional siderophores, namely aerobactin, salmoche-
lin and yersiniabactin (Bachman et al. 2011; Russo et al. 2011,
2014). Yersiniabactin promotes Klebsiella pneumonia by evading
lipocalin 2 (Lawlor, O’connor and Miller 2007; Bachman et al.
2011). Furthermore, epidemiological studies demonstrate that
the acquisition of yersiniabactin is one of the traits of Klebsiella
strains causing invasive infections (Bachman et al. 2011; Holt
et al. 2015), highlighting the importance of overcoming nutri-
tional immunity in Klebsiella infection biology. It is interesting to
consider the regulation of the expression of these siderophores
during infection but also in the context of survival in the envi-
ronment. Initial findings suggest that enterobactin plays a major
role under more iron-restricted conditions than any of the other
siderophores (Lawlor, O’connor and Miller 2007).

Intriguingly, recent evidence argues that in Klebsiella-
triggered pneumonia siderophores contribute to bacteria dis-
semination by stabilising the transcriptional factor HIF-l«
(Holden et al. 2016). This transcriptional factor governs mucosal
immunity and cellular intrinsic immunity (Palazon et al. 2014).
However, in the case of Klebsiella infections the data are consis-
tent with the hypothesis that the pathogen exploits HIF-1a to
promote infection (Holden et al. 2016). Further studies are war-
ranted to validate this hypothesis, and to identify the HIF-la-
governed responses facilitating Klebsiella dissemination.

ANTIBIOTIC RESISTANCE AND KLEBSIELLA
IMMUNE EVASION

Whilst the impact of antibiotic resistance in bacterial physiology
is well appreciated, it is still poorly understood the relationship
between virulence and antibiotic resistance in the absence of
antibiotic challenge, and whether antibiotic resistance mecha-
nisms affect the interaction of pathogens with innate host de-
fence mechanisms. In the case of Klebsiella infections, recent
studies have investigated these questions by comparing infec-
tion outcomes between strains with different patterns of an-
tibiotic resistance. For example, the inflammatory responses in-
duced by one strain of each of the two clades of the globally
disseminated K. pneumoniae ST258 clonal group have been com-
pared. Preliminary results might support that one of the clades
triggers more inflammation than the other (Castronovo et al.
2017; Clemente et al. 2017). The ability of few clinical isolates
of the same clonal group to avoid phagocytosis by neutrophils
and to survive in serum has been also investigated (Kobayashi
et al. 2016; DeLeo et al. 2017). However, the number of strains
tested is small and it is not evident how representative these
strains are. Furthermore, there is limited information on the
Klebsiella factor(s) responsible for the phenotypes described. One
possible explanation is the challenge to construct mutants in
multidrug-resistant clinical isolates. This is exemplified in the
recent work from the Prince laboratory in which authors inves-
tigated the evolution of a local outbreak of a clone of the ST258
group (Ahn et al. 2016). The locally predominant clone, repre-
sented by strain KP35, outcompeted related ST258 strains by
becoming more competent supressing inflammatory responses
(Ahn et al. 2016). Mechanistically, KP35 triggered the recruitment
to the lung of Ly6CM monocytic myeloid-derived suppressor cells
that lacked phagocytic capabilities and contributed to create an
anti-inflammatory microenvironment (Ahn et al. 2016). Authors
identified the acquisition of four new orthologues by KP35 in
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comparison to other ST258 strains (Ahn et al. 2016), suggesting
that the acquisition of these novel genes contributed to its fit-
ness and persistence. Unfortunately, the lack of genetic tools to
manipulate KP35 made impossible to pinpoint any of the ge-
netic changes as responsible for the enhanced fitness in vivo.
Nonetheless, this study demonstrates how the challenge im-
posed by the immune system drives the adaptation of strains
to the host microenvironment enhancing fitness independently
of the antimicrobial selective pressure.

Few studies have addressed the contribution of antibiotic re-
sistance mechanisms to virulence in the absence of antibiotic
pressure. However, the emerging scenario supports a strong re-
lationship between immune evasion, virulence and antibiotic
resistance mechanisms in K. pneumoniae. OmpK35 and OmpK36
are two porins whose expression is downregulated in many
clinical isolates including ESBL-producing and carbapenem-
resistant strains (Ardanuy et al. 1998; Hernandez-Alles et al.
1999, 2000; Mena et al. 2006; Shin et al. 2012). Downregulation of
OmpK35 and OmpK36 limits the influx of antibiotics to the bac-
terium (Ardanuy et al. 1998; Hernandez-Alles et al. 1999, 2000;
Mena et al. 2006; Shin et al. 2012), whereas restoration of expres-
sion decreases antibiotic resistance (Martinez-Martinez et al.
1999; Doumith et al. 2009; Tsai et al. 2011). OmpK36 contributes
to Klebsiella virulence in the peritonitis and pneumonia mouse
model (Chen et al. 2010; Tsai et al. 2011; March et al. 2013). Mech-
anistically, OmpK36 is not required for serum resistance (Tsai
et al. 2011), and does not play any role counteracting the bac-
tericidal action of CAMPs (Llobet et al. 2009). However, OmpK36
prevents phagocytosis by neutrophils and alveolar macrophages
(Tsaietal. 2011; March et al. 2013) which may explain the attenu-
ation of the ompK36 mutant. Interestingly, the antiphagocytic ef-
fect of OmpK36 is also observed in the absence of CPS because a
double mutant lacking cps and ompK36 is phagocytosed in higher
numbers than the single mutants (March et al. 2013). Whether
OmpK36 or any other porin shapes the inflammatory response
following Klebsiella infection warrants investigation.

AcrAB s an efflux pump implicated in antibiotic resistance in
K. pneumoniae and other Enterobacteriaceae (Li, Plesiat and Nikaido
2015). Increased expression of AcrAB contributes to resistance
against several antibiotics in clinical isolates (Bialek-Davenet
et al. 2015; Wang et al. 2015) which is consistent with the wide
range of substrates that this pump transports (Li, Plesiat and
Nikaido 2015). However, AcrAB is also necessary for Klebsiella vir-
ulence because an acrAB mutant is attenuated in the pneumonia
mouse model (Padilla et al. 2010). Moreover, the acrAB mutant
is more susceptible to CAMPs present in human bronchoalve-
olar lavage fluid and to human antimicrobial peptides than the
wild-type strain (Padilla et al. 2010), demonstrating a role for this
efflux pump counteracting innate defences in addition to con-
tributing to a multidrug resistance phenotype.

Several regulators have been demonstrated to influence
acrAB expression in Klebsiella and other Enterobacteriaceae
(Weston et al. 2017). For example, the AraC family transcrip-
tional regulator RamA is involved in tigecycline resistance via
upregulation of AcrAB (Rosenblum et al. 2011). This antibiotic
has been introduced into clinical practice for the treatment
of community-acquired Gram-negative infections caused by
extended-spectrum pB-lactamase-producing Enterobacteriaceae.
Interestingly, RamA overexpression, a feature observed in
clinical isolates even before the introduction of tigecycline
(Rosenblum et al. 2011), results in a multidrug-resistant strain
with enhanced virulence (De Majumdar et al. 2015). Increased
levels of RamA decrease susceptibility of Klebsiella to polymyx-
ins and the human CAMP LL-37, and reduce bacterial adhesion
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and uptake into macrophages (De Majumdar et al. 2015). Infec-
tion with a strain overexpressing RamA results in higher bac-
terial burden in the lungs and increase systemic dissemination
(De Majumdar et al. 2015), demonstrating the relevance of these
phenotypes to heightened fitness in vivo. RamA overexpression
triggers significant changes in Klebsiella transcriptome making
then difficult the identification of the RamA-controlled loci re-
sponsible for the increase virulence (De Majumdar et al. 2015).
Initial experimental evidence demonstrates that RamA directly
activates acrAB and loci implicated in lipid A remodelling (De
Majumdar et al. 2015). Based on the discussed evidence, it is
tempting to postulate that these loci may underline RamaA-
linked phenotypes.

IpxO is one of the lipid A loci regulated by RamA (De
Majumdar et al. 2015). LpxO mediates the 2-hydroxylation of
the lipid A in Klebsiella and other Gram-negative pathogens in-
cluding Salmonella and Pseudomonas (Gibbons et al. 2000, 2008;
Moskowitz and Ernst 2010). Remarkably, K. pneumoniae switches
on this lipid A modification in the lungs of infected mice in a
PhoPQ-dependent manner (Llobet et al. 2015). This modified lipid
A does not activate inflammatory responses in vivo and in vitro to
the same extent as the lipid A produced by Klebsiella in normal
laboratory medium (Llobet et al. 2015), demonstrating that the
2-hydroxylation of the lipid A contributes to immune evasion.
Not surprisingly, an IpxO mutant is attenuated in the pneumonia
mouse model (Insua et al. 2013; Llobet et al. 2015). Furthermore,
this lipid A modification also mediates resistance to human an-
timicrobial peptides and colistin (Llobet et al. 2015; Mills et al.
2017), one of the last options to treat multidrug-resistant Kleb-
siella (Li et al. 2006). Changes in the lipid A acylation pattern have
also been linked to resistance to colistin and virulence indepen-
dently of the lipid A decorations (Clements et al. 2007; Halaby
et al. 2016; Mills et al. 2017).

Resistance to colistin is of significant concern in those set-
tings with high number of ESBL and carbapenem-producing
Klebsiella strains. Unfortunately, colistin resistance arises fre-
quently upon treatment and even following decontamination
protocols to limit infections in the healthcare setting. Several
recent studies highlight the emergence of colistin resistance in
multidrug-resistant K. pneumoniae arising from loss of function
mutations of the mgrB gene, a negative regulator of the PhoPQ
signalling system (Lippa and Goulian 2009; Cannatelli et al. 2013,
2014). Alarmingly, mgrB-dependent colistin resistance is not as-
sociated with any fitness cost in vitro and in vivo and it is stably
maintained in the absence of selective pressure (Cannatelli et al.
2015; Kidd et al. 2017). This may explain the rapid dissemina-
tion of strains carrying this resistance mechanism in the clini-
cal setting. Further complicating the health problem posed by
these infections, inactivation of mgrB enhances K. pneumoniae
virulence (Kidd et al. 2017). In fact, the heightened virulence of
these strains might be one of the explanations underlying the
increased mortality associated with these infections (Capone
et al. 2013; Falcone et al. 2016). Mechanistically, mgrB mutation
induces PhoPQ-governed lipid A remodelling which confers not
only resistance to polymyxins, but also enhances K. pneumoniae
virulence by decreasing CAMPs susceptibility and attenuating
the activation of early host defence responses in macrophages
(Kidd et al. 2017). These findings also illustrate that the devel-
opment of antibiotic resistance is not inexorably linked with
subdued bacterial fitness and virulence. Overall, this research
stresses the importance of considering antimicrobial resistance
and virulence together, and the urgent need to include the iden-
tification of virulent clones in clinical microbiology laboratories.

CONCLUSIONS AND PERSPECTIVES

The World Health Organization has recently included Klebsiella
in the critical list of microorganisms for which new therapeu-
tics are urgently needed. The increasing isolation of strains re-
sistant to ‘last resort’ antimicrobials has significantly narrowed,
or in some settings completely removed, the therapeutic op-
tions for the treatment of Klebsiella infections. Not surprisingly,
several international organisations including the United Na-
tions have regarded multidrug-resistant Klebsiella as an ‘urgent
threat to human health’. Whilst there are several new therapeu-
tic approaches under investigation including the use of bacte-
riophages, enzybiotics (phage-derived lytic enzymes) and an-
tibodies against Klebsiella surface molecules; unfortunately, at
present, we cannot identify candidate compounds in late-stage
development for treatment of multidrug Klebsiella infections.
This pathogen is exemplary of the mismatch between unmet
medical needs and the current antimicrobial research and de-
velopment pipeline. Furthermore, our understanding of Kleb-
siella pathogenesis still contains considerable gaps. Therefore,
understanding the various Achilles heels of host defence against
Klebsiella is a high priority and timely for the development of
preventative and novel therapeutic measures to combat these
infections.

K. pneumoniae has been traditionally considered a formidable
pathogen evading defence mechanisms. The roles of CPS lim-
iting the activation of inflammatory responses, preventing the
bactericidal action of complement and CAMPs, and abrogating
phagocytosis by neutrophils and macrophages are perfect ex-
amples of Klebsiella stealth strategies. The lack of expression of
porins to avoid complement activation, and the role of the LPS O-
polysaccharide to limit complement deposition on the bacterial
surface are other examples of this Klebsiella stealth behaviour.

However, a body of evidence mostly recently obtained
strongly suggests that Klebsiella has also evolved mechanisms to
actively supress innate immune responses, illustrating the di-
versity and sophistication of Klebsiella immune evasion strate-
gies. The manipulation of phagosome maturation to establish
the KCV, the upregulation of lipid A decorations upon sensing
the host microenvironment to counteract the action of CAMPs
and to avoid the activation of NF-«kB-controlled inflammation
are examples of these Klebsiella subversion strategies. At the cel-
lular level, the evidence clearly demonstrates that an essential
aspect of K. pneumoniae infection biology is to thwart the TLR-
dependent activation of host defence responses controlled by
NF-xB and MAPKs. To do so, Klebsiella hijacks the deubiquiti-
nase CYLD and the MAPKs phosphatase MKP-1. Both proteins
play a pivotal role in host homeostasis by limiting overwhelm-
ing inflammatory responses to avoid immunopathology. This
is an exquisite example of how a bacterial pathogen exploits
the host machinery to avoid immune activation. This immune
evasion strategy is different to those deployed by other bacte-
rial pathogens such as Listeria, Legionella, E. coli, Salmonella or
M. tuberculosis based on deploying bacterial proteins and effec-
tors to blunt host defence signalling pathways. Considering the
increasing number of host proteins contributing to balance host
responses, it is tempting to speculate that Klebsiella may hijack
other proteins as well. Interestingly, Klebsiella activates TLR4 and
NOD1 signalling to increase the levels of CYLD and MKP-1. Thus,
Klebsiella infection biology is largely based on the balance be-
tween avoiding PRR detection/activating PRR for immune eva-
sion, hence being a true pathogen-host arms race. At the tis-
sue level, Klebsiella exploits the anti-inflammatory properties of
IL10 to shape the local microenvironment. Collectively, the data
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strongly suggest that Klebsiella hijacks host effectors devoted
to prevent overwhelming inflammatory responses as virulence
strategy.

The CPS is necessary but not sufficient for Klebsiella immune
evasion, and Klebsiella exploits few other factors acting syner-
gistically to abrogate immune responses. The importance of
avoiding immune responses in Klebsiella pathogenesis is marked
by the fact that mutants lacking these factors are attenuated
in vivo. However, we believe there is much left to be uncovered
about which K. pneumoniae factors are required during infec-
tion. In this regard, recent epidemiological studies have demon-
strated the wide spectrum of genetic diversity within the genus
(Holt et al. 2015; MC Lam et al. 2018). It is important to note
that the epidemiological studies are biased towards strains of
clinical origin. There is limited information on the attributes of
strains isolated from the environment, and the potential trans-
mission route between the environment, and the healthcare set-
ting. The immune evasion strategies described so far rely on
factors belonging to the Klebsiella core genome, indicating that
Klebsiella anti-immunology is at the fulcrum of the species biol-
ogy. However, the Klebsiella accessory genome is close to 30 000
genes, more than the human genome (Holt et al. 2015). More-
over, around 50% of the genes of an individual strain belong to
the accessory genome (Holt et al. 2015), illustrating the consid-
erable genomic plasticity that is contained within this species.
Notably, there is virtually no information on the contribution of
the accessory genome to Klebsiella immune evasion, although re-
cent findings suggest that the accessory genome may also fa-
cilitate the adaptation of Klebsiella to host microenvironments
(Ahn et al. 2016). Future studies should address the relative con-
tribution of the core and accessory genome to Klebsiella infection
biology, and uncover the regulatory networks coordinating the
spatial-temporal expression of these factors. Additionally, there
is a significant knowledge gap on the virulence of other Klebsiella
species including K. oxytoca and K. variicola. To obtain compre-
hensive information, it will be necessary to assess infection phe-
notypes interrogating large collection of strains from different
environments and genomic backgrounds to capture Klebsiella di-
versity. Ideally, these studies will yield a catalogue of virulence
factors and host pathways subverted across different infections
and common to many strains, leading to the definition of the
Klebsiella signature of infection. This knowledge may help to bet-
ter stratify patients and to tailor treatments not only based on
the antibiotic resistance profile but also taking into considera-
tion virulence features of the infecting strain. Nonetheless, it re-
mains a challenge to develop efficient genetic tools to construct
mutants and to complement multidrug-resistant strains to pro-
vide mechanistic information on the specific factors responsible
for the investigated virulence phenotypes.

It is also important to understand how Klebsiella evades the
immunological challenges it faces when colonising/infecting
the GI tract and the oropharyngeal sites. This may require de-
veloping new infection models to follow bacterial colonisation
for at least several days. It is exciting to consider that the im-
mune evasion strategies of Klebsiella may differ in different mu-
cosae. There is much to be learnt about how Klebsiella dissemi-
nates from the primary infection site, either the lung or the gut,
to other sites. For example, a yet poorly investigated question
is the interaction between Klebsiella and endothelial cells lining
vascular and lymphatic vessels. This interaction is clinically rel-
evant considering the number of sepsis cases associated with
Klebsiella infections (Girometti et al. 2014). We do foresee that
the interplay between Klebsiella-endothelial cells could be an-
other host-pathogen battleground playing an important role in
Klebsiella infection biology.

Bengoechea and Sa Pessoa | 15

As mentioned above, a crucial virulence strategy of Klebsiella
is to subdue TLR-mediated inflammatory responses. Substan-
tial data also confirm the relative importance of IL23/IL17 and
IL12/IFNy-activated signalling pathways to generate an effective
innate immune response against Klebsiella. It can be then argued
that Klebsiella lack of immunostimulatory activities may limit
the activation of these signalling axes. However, and considering
the sophisticated strategies deployed by the pathogen to perturb
TLR recognition and activation, we postulate that Klebsiella has
devised specific strategies to attenuate IL23/IL17 and IL12/IFNy
signalling. Among other possibilities, it is tempting to speculate
that Klebsiella may target the cells responsible for the produc-
tion of these cytokines, ablate the signalling pathways needed
for the production of these cytokines, and even subvert the re-
ceptors and signalling pathways activated by these cytokines.
Future studies combining in vivo and in vitro approaches are war-
ranted to investigate these questions.

The concept of targeted specific antibiotic therapy for Kleb-
siella infections is plausible with the availability of real-time
PCR-based methods for rapid detection. This will vastly reduce
the time required to direct appropriate therapy and limit the
use of empirical broad range treatments. However, the global
emergence of multidrug-resistant Klebsiella strains significantly
reduces the available options to treat these infections, making
it imperative to consider other options. It is evident that thera-
peutic strategies to improve innate immune mechanisms may
enhance clearance of Klebsiella. This could be achieved through
pro-inflammatory agents or by boosting TLR-governed defences,
or by abrogating Klebsiella immune evasion strategies. In this
context, it would appear that targeting major Klebsiella immune
evasins such as the CPS could be a successful avenue to coun-
teract Klebsiella anti-immune strategies. However, given the ge-
netic diversity of this pathogen we consider likely the selec-
tion of clones able to evade this therapy focused on a single
or even a limited number of gene products. Instead, we favour
the approach of targeting the host factors manipulated by Kleb-
siella to subvert host defence responses (Zumla et al. 2016). This
host-directed therapeutics approach is thought to apply less se-
lective pressure for the development of resistance than tradi-
tional strategies, which are aimed at killing pathogens or pre-
venting their growth. Interestingly, there might be drugs al-
ready available targeting the host factors hijacked by Klebsiella,
which might be even in clinical use to treat other diseases.
From the drug discovery point of view, this significantly cir-
cumvents the drug development process, hence allowing a fast-
track transition from pre-clinical research to clinical develop-
ment.

Despite our significant advances on our understanding of
Klebsiella pathogenesis during the last years, we still have a frag-
mented picture of the interaction of K. pneumoniae with the im-
mune system, and there is a significant knowledge gap on the
repertoire of virulence factors enabling Klebsiella to overcome de-
fences to multiply in the tissues. Further studies on the fasci-
nating infection biology of Klebsiella will help to shore-up more
precisely the vulnerable hot spots of our immune system while
uncovering new means exploited by a human pathogen to coun-
teract the challenge of an activated immune system.
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