Project SunbYte: solar astronomy on a budget


Published in:
Astronomy & Geophysics

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 Oxford University Press. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
The Sheffield University Nova Balloon Lifted Solar Telescope (SunbYte) is a high-altitude balloon experiment devised and run largely by students at the University of Sheffield, and is scheduled for launch in October 2017. It was the only UK project in 2016 to be selected for the balloon side of the Swedish–German student programme REXUS/BEXUS (Rocket and Balloon Experiments for University Students; see box on p2.25). The success of the SunbYte team in the REXUS/BEXUS selection process is an unprecedented opportunity for the students to gain valuable experience working in the space engineering industry, using their theoretical knowledge and networking with students and technology companies from all over Europe.

Aims

The main aim of Project SunbYte is to design and build instrumentation that will gather scientific-quality data from high-altitude observations of the Sun’s highly magnetized and dynamic chromosphere. We want to design and test an observational platform that can obtain high-resolution solar images and will allow future missions to capture UV wavelengths. The Earth’s atmosphere is dense and distorts much of the light that arrives at its surface, reducing the quality of ground-based solar observations. Ground-based solar telescopes are expensive to build: they need significant investment for mirrors and hardware if they are to obtain images of the Sun that have scientific value. In contrast, the SunbYte team will use novel manufacturing techniques such as 3D printing to optimize the mechanical performance of the platform and produce a low-cost, high-altitude alternative. A balloon will lift the SunbYte telescope above the Earth’s lower atmosphere to observe the Sun’s chromosphere in the Hα spectral line. In principle, a small and high-quality telescope at an altitude of 25 km could be as effective as a large and expensive telescope on the ground.

The experiment will be equipped with a high-frame-rate camera, taking fast cadence, chromospheric images of the whole of the Sun’s disc in Hα, and has the potential to provide unique, scientifically valuable data. For this investigation, a scientifically valuable image is one from which information can be collected about processes in the Sun’s chromosphere. It is hoped that the resulting observations of plasma waves, flows and eruptions in the dynamic chromosphere will be much sought after by both the solar and stellar physics international communities. This is because high-cadence full-disc, or Sun-as-a-star Hα observations provide a
connection between the integrated chromospheric intensity and the chromospheric activity, with potential applications to measurements of chromospheric activity of other stars. Furthermore, the large field-of-view of the Sun offers the chance to capture novel data on some of the most powerful events in the solar system, such as solar flares and coronal mass ejections.

Previous missions
The NASA-backed High Altitude Student Platform (HASP), was the first system designed purely to house multiple payloads in a single flight. Its purpose was to encourage students to choose a career in aerospace. Since 2006, HASP has had 12 flights, each reaching altitudes of approximately 36 km and maintaining that altitude for 15 to 20 hours each time. This project gives students a way to conduct experiments in space-like conditions at relatively low cost.

In 2010, the Sunrise mission, led by the Max Planck Institute for Solar Systems Research in Göttingen, was launched to gather high-resolution images of the Sun’s lower atmosphere. The balloon-borne solar telescope worked at altitudes of about 37 km while observing in the UV range of the electromagnetic spectrum. At 1 m in diameter, the Sunrise telescope had high enough resolution to image small-scale features on the Sun. These balloon experiments have shown that capturing detailed images of the Sun from Earth’s upper atmosphere is possible; however, the aim of Project SunbYte is to show that comparable scientifically valuable results can be obtained with widely available – and much cheaper – technology.

To design the telescope, the SunbYte team had to consider the nature of the target. The Sun subtends an angle of approximately 165 arcsec (0.52°) to an observer on the Earth. The required resolution of 0.5 arcsec represents 3.731 x 10^4 m (373.1 km) on the surface of the Sun. Because the telescope will only observe the Sun, the optical system requires a narrow field of view. The telescope will be as small and light as is practicable, while producing an image at this resolution.

The SunbYte telescope
The SunbYte telescope design will be based upon a Raspberry Pi optical telescope called PiKon (http://piKon.com), developed by team member Mark Wrigley. The new design goes a step further than PiKon as it will use larger mirrors, specialist optical filters and a higher resolution camera provided by Andor Technology Ltd (Belfast, UK; http://www.andor.com) to increase the quality of the data. Having such specialist expertise on board will help the team deliver an innovative high-performance payload that could revolutionize the industry.

The telescope will also be equipped with a sensor and a motorized system to detect and control the pointing of the telescope. The tracking and stabilization system will benefit not only Project SunbYte, but also scientists and engineers in other research fields: the stabilization system will be usable at sea as well as on land.

Most telescopes use a primary imaging device (objective) and a secondary device to examine the image formed by the objective. For optical telescopes, that secondary device is an eyepiece, effectively a small microscope that reveals detail of the image. In the end, whatever the results, the telescope performs very sensitive to aberrations. But a design based on the Schmidt–Cassegrain design uses a parabolic primary mirror and hyperbolic (convex) secondary. While the design meets the requirements of long focal length with small physical size, the telescope performance is somewhat resilience to aberrations resulting from primary/secondary separation. The design has a relatively narrow field of view but is suitable for solar observations.

Future plans
The primary aim of SunbYte is to track and image the Sun. If this goal is achieved, the secondary aim concerns scientific analysis of the resulting chromospheric images. The team will evaluate the performance of the SunbYte system by comparing its data with that obtained by ground-based solar telescopes.

The SunbYte has been designed to observe in the UV, but if the experiment is successful then similar telescopes may be constructed to observe regions of the electromagnetic spectrum not visible from the ground, such as UV. In the end, whatever the results, the students playing such important roles in this project will gain invaluable experience in practical high-altitude science.

AUTHORS
The SunbYte Team: Fernando Alvarez Gonzalez, Ana-Maria Badilla, Andrew Baker, Yun-Hang Cho, Navtej Dhillon, Viktor Fedun, Chris Hare, Tianyou He, Megan Hobbs, Mahed Jawed, Helena Livesey, Charles Lord, Georgi Panayotov, Anton Permyakov, Simon Pope, Michael Portnell, Lauren Rhodes, Rahul Sharma, Petrica Tares, Jaye Taylor, Rosanna Tilbrook, Gary Verth, Stuart N Wrigley and Mohamed Yaqoob (University of Sheffield, UK), Michael Cook, James McCloughlin, Richard Morton, Eamon Scullion and Sergey Shelyag (Northumbria University, Newcastle, UK), Alexander Hamilton and Sergei Zharkov (University of Hull, UK), Dave Jess (Queen’s University of Belfast, UK), Mark Wrigley (Alternative-Photonics).