Arene-polyfluoroarene π-π stacking between N-heterocyclic carbene ligands of pentamethylcyclopentadienyl group 9 metal complexes


Published in:
Journal of Fluorine Chemistry

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Arene-polyfluoroarene π-π stacking between N-heterocyclic carbene ligands of pentamethylcyclopentadienyl group 9 metal complexes

Alistair J. Lockley, Andrew C. Marr, Graham C. Saunders* and Hayden P. Thomas

b School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom

a School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

Graphical abstract

Highlights
- The crystal structures of the dichloromethane solvates of \( \eta^5 \)-pentamethylcyclopentadienyl)rhodium(κC-1-(4-trifluoromethyl)-2,3,5,6-
tetrafluorophenylmethyl)-3-benzylimidazol-2-ylidene) dichloride and its iridium analogue contain intermolecular $\pi-\pi$ stacking.

- The crystal structures of the dichloromethane solvates of ($\eta^5$-pentamethylcyclopentadienyl)rhodium(κC-1-(2,3,4,5,6-pentafluorophenylmethyl)-3-benzylimidazol-2-ylidene) dichloride and its iridium analogue contain intermolecular lone pair–$\pi$ interactions.

- The crystals structures possess hydrogen-bonding between the complex and dichloromethane molecules.

- The strengths of the interactions have been probed by DFT calculations.

- The presence of $\pi-\pi$ stacking or lone pair–$\pi$ interactions, which are of approximately the same strength, is determined by the steric requirements of the para moiety: fluorine or trifluoromethyl.

---

Abstract -

($\eta^5$-Pentamethylcyclopentadienyl)rhodium(κC-1-(2,3,4,5,6-pentafluorophenylmethyl)-3-benzylimidazol-2-ylidene) dichloride (1a) and its iridium analogue (1b) crystallize as dichloromethane solvates in the enantiomorphous space group $P2_12_12_1$. ($\eta^5$-Pentamethylcyclopentadienyl)rhodium(κC-1-(4-trifluoromethyl-2,3,5,6-tetrafluorophenylmethyl)-3-benzylimidazol-2-ylidene) dichloride (2a) and its iridium analogue (2b) crystallize as dichloromethane solvates in the polar space group $Pca2_1$. All the crystal structures possess columns of alternating complex and dichloromethane molecules which are linked by hydrogen bonding. Perpendicular to these is hydrogen bonding between the imidazol-2-ylidene hydrogen atoms and chloride ligands. The crystal structures of 2a and 2b also display intermolecular $\pi-\pi$ stacking between
the phenyl and trifluoromethyltetrafluorophenyl rings of molecules in a direction perpendicular to the
columns and hydrogen bonding between the complex molecules. In contrast those of 1a and 1b
display intermolecular lone pair–π interactions in the same direction as the hydrogen bonding between
the complex molecules. DFT calculations reveal that the π–π stacking and lone pair–π interactions are
of approximately the same energy. The difference in the structures arises from the steric requirements
of the trifluoromethyl group.

Keywords
N-Heterocyclic carbene, crystal structure, π–π stacking, lone pair–π interaction

1. Introduction

The attractive interaction between parallel arene and polyfluoroarene rings, commonly termed
π–π stacking, has been known for five decades [1]. Until recently its use in crystal engineering had
been restricted to relatively simple molecules [2], but more recently more elaborate systems that
allowed the crystal engineering of crystal structures with particular properties, such as polarity, have
been devised [3]. In particular, aryl- and polyfluoroaryl-substituted imidazolium salts have proved to
be fruitful [4-7]. For example, 1-(2,3,4,5,6-pentafluorophenylmethyl)-3-benzylimidazolium bromide
[4] and 1-(4-chloro-2,3,5,6-tetrafluorophenyl)-3-benzylimidazolium bromide [6] crystallize in the
polar space groups P1 and Cc respectively. Imidazolium salts are precursors to N-heterocycle
carbenes, and so it is reasonable to expect that π–π stacking between the aryl and polyfluoroaryl
substituents of NHCs coordinated to metals would also occur. The crystal structures of very few metal
complexes of NHCs bearing both aryl- and polyfluoroaryl substituents have been reported [8-10],
and none possess intermolecular π–π stacking between the complementary rings, although trans-
[PdBr2(kC=C6H5CH2NC3(C6H5)NCH2C6F5)2] does display intramolecular π–π stacking [9].
Figure 1. Aryl and polyfluoroaryl-substituted NHC ligands

Complexes of 1-perfluoroarylmethyl-3-benzylimidazol-2-ylidene (I) (Figure 1) provide a rational area of study because the crystal structures of the precursor imidazolium salts possess π–π stacking [4,6,11,12], and because complexes of 1-polyfluoroarylmethylimidazol-2-ylidene (II) undergo undesired reactions in their syntheses [13], and the sole example of an imidazolium salt that is a precursor to 1-polyfluoroarylmethyl-3-arylimidazol-2-ylidene (III) does not possess π–π stacking [7]. Consequently a structural study of ($\eta^5$-pentamethylcyclopentadienyl)rhodium and iridium complexes of 1-(2,3,4,5,6-pentafluorophenylmethyl)-3-benzylimidazol-2-ylidene and its analogue 1-(4-trifluoromethyl-2,3,5,6-tetrafluorophenylmethyl)-3-benzylimidazol-2-ylidene, $[\eta^5$-C$_5$Me$_5$]MCl$_2$(κC$_6$H$_5$CH$_2$NC$_3$H$_2$NCH$_2$C$_6$F$_4$X)] (I X = F, 2 X = CF$_3$; a M = Rh, b M = Ir) was undertaken. Here are reported the results of the study, augmented by a DFT study.

2. Results and discussion

The complexes $[\eta^5$-C$_5$Me$_5$]MCl$_2$(κC$_6$H$_5$CH$_2$NC$_3$H$_2$NCH$_2$C$_6$F$_4$X)] (I X = F; 2 X = CF$_3$; a M = Rh; b M = Ir) were prepared by transfer of the NHC ligand from the respective silver complexes. Recrystallization from dichloromethane yielded crystals of the monosolvates. The complexes, which are chiral by virtue of possessing different substituents on the NHC ligand, crystallized in non-centrosymmetric space groups in the orthorhombic crystal system; 1a and 1b as conglomerates in the enantiomorphous space group $P2_1$2$_1$2$_1$, and 2a and 2b as true racemates in the polar space group
Crystal data are given in Table 1 and selected distances and angles are given in Table 2. The bond distances and dihedral angles are virtually identical to those of the optimized structures of the rhodium complexes for gas phase molecules calculated using the oB97X-D [14] method and the 6-311G+(2d,2p) basis set. The structures of 1a (Figure 2) and 2a (Figure 3) are similar, but show differences in the positions of the phenyl and polyfluoroaryl rings (Figure 4). The iridium complexes, 1b and 2b, are isostructural with their rhodium analogues.

Figure 2. The structure of complex 1a showing the position of the closest molecule of dichloromethane. Thermal ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.
Figure 3. The structure of 2a showing the position of the closest molecule of dichloromethane. Thermal ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.
Figure 4. Overlay of the structures of complex 1a (red) and complex 2a (blue).

The crystal structures comprise columns of alternating complex and solvent molecules (parallel to the $a$ axis for 1a and 1b, and parallel to the $b$ axis for 2a and 2b) with the carbon atom of the closest dichloromethane molecule close to the chloride ligands of the complex (Figure 5). The geometric parameters suggest Cl$_2$CH$_2$···Cl hydrogen bonding (Table 3). In particular the C···Cl distances are less than, or close to, 3.45 Å, the sum of the van der Waals’ radii of carbon and chlorine [15]. The interactions were calculated to be attractive by 52 and 42 kJ mol$^{-1}$ for 1a and 2a respectively. There are also short distances between one of the chlorine atoms of another molecule of dichloromethane and carbon atoms of the pentamethylcyclopentadienyl ligand (Figure 4). The
geometric parameters suggest CH$_3$···ClCH$_2$Cl hydrogen bonding and the possibility of lone pair—π interactions. In support, theoretical studies on the interactions between anions, such as triflate and tetrafluoroborate, and the cyclopentadienyl ring of the neutral complex [(η$_5$-C$_5$Me$_5$)Ir(η$_6$-C$_6$H$_5$(O$_2$BF$_2$)$_2$)], which are attractive by ca. 100 kJ mol$^{-1}$, show that these comprise both hydrogen bonding and anion—π interactions [16]. The interactions in 1a and 2a were calculated to be attractive by 19 and 16 kJ mol$^{-1}$ respectively.

Figure 5. The interactions between dichloromethane and (a) complex 1a and (b) complex 2a within a column of alternating complex and solvent molecules. Thermal ellipsoids are at the 50% level. Hydrogen atoms are omitted for clarity.
The chloride ligands are also close to the imidazol-2-ylidene carbon atoms C(12) and C(13) of a complex molecule of an adjacent antiparallel column, although ca. 0.2 Å further than from the carbon atom of the closest dichloromethane molecule (Table 4). These contacts link adjacent antiparallel columns parallel to the \( b \) axis for 1a and 1b (Figure 6) and parallel to the \( a \) axis for 2a and 2b (Figure 7). The number of atoms prevented calculations of the energies of these interactions for the complexes, but interactions between molecules of the 1,3-methyl substituted NHC complex \([\eta^5-C_5Me_5]RhCl_2(κ-MeNC_3H_2NMe)\] using the atomic positions of 1a and 2a were calculated to be attractive by 51 kJ mol\(^{-1}\). For 1a and 1b the pentafluorophenyl ring of one molecule is also close to one of the chloride ligands of another, with distances that suggest a lone pair—\( π \) interaction [17] (Table 4). The energy of the interaction between a molecule of 1a and pentafluorotoluene in the same relative position as the pentafluorobenzyl group of a second molecule of 1a was calculated to be -38 kJ mol\(^{-1}\). Similar interactions are not present in the crystal structures of 2a and 2b, with the chloride ligands being more distant and lying on normals to the rings’ planes that are considerably outside the ring of carbon atoms.
Figure 6. The crystal structure of complex 1a viewed parallel to the \( a \) axis showing interactions between the molecules. Thermal ellipsoids are at the 50% level. Dichloromethane molecules and hydrogen atoms are omitted for clarity.
Figure 7. The crystal structure of complex 2a viewed parallel to the $b$ axis showing interactions between the molecules. Thermal ellipsoids are at the 50% level. Dichloromethane molecules and hydrogen atoms are omitted for clarity.

In the crystal structures of 2a and 2b there is $\pi-\pi$ stacking between the perfluorotolyl group of one molecule and the phenyl ring of an adjacent molecule of opposite configuration, thereby linking the complex molecules of parallel columns to form chains parallel to the $c$ axis (Figure 7). The interactions between the molecules of 1a and 4-trifluoromethyl-2,3,5,6-tetrafluorotoluene and between 1a and toluene, with the positions of the atoms of the toluene molecules as for those of a second molecule of 2a, were calculated to be attractive by 49 and 48 kJ mol$^{-1}$ respectively, and that between 4-trifluoromethyl-2,3,5,6-tetrafluorotoluene and toluene was calculated to be attractive by 33
kJ mol\(^{-1}\), which is consistent with those calculated for the interaction between toluene and hexafluorobenzene at a separation of 3.4 Å (33.6 and 36.0 kJ mol\(^{-1}\)) [18]. \(\pi\)–\(\pi\) stacking is not evident in the crystal structures of 1a and 1b.

The calculations strongly suggest that the absence or presence of \(\pi\)–\(\pi\) stacking is not a result of the strengths of the interactions between the molecules, and certainly not as a result of \(\pi\)–\(\pi\) stacking interactions being weaker than the other types of interaction. Rather it appears to be a consequence of the greater size of the trifluoromethyl group compared to the fluorine atom. The change of fluorine to trifluoromethyl (van der Waals’ radii 1.47 Å [15] and 2.73 Å [19] respectively) results in an increase in the unit cell volume of ca. 5%, which arises predominantly from an increase in the unit cell length in only one direction; parallel to the hydrogen bonding interactions between complex molecules (b for 1a and 1b and a for 2a and 2b) (Table 1). The values of the other analogous unit cell lengths are very similar for the four crystal structures. The trifluoromethyl group shifts the perfluoroaryl ring from a position that allows the lone pair–\(\pi\) interaction to one where \(\pi\)–\(\pi\) stacking can occur, without significantly disrupting the other interactions or changing the packing efficiency, which is ca. 28% for all four crystal structures. Since the two interactions are of approximately the same strength the absence of one is compensated by the presence of the other.

3. Conclusion

Intermolecular \(\pi\)–\(\pi\) stacking occurs between the complementary rings of (\(\eta^5\)-pentamethylcyclopentadienyl)rhodium(\(\kappa\)C-1-(4-trifluoromethyl-2,3,5,6-tetrafluorophenylmethyl)-3-benzylimidazol-2-ylidene) dichloride (2a), but not between those of (\(\eta^5\)-pentamethylcyclopentadienyl)rhodium(\(\kappa\)C-1-(2,3,4,5,6-pentafluorophenylmethyl)-3-benzylimidazol-2-ylidene) dichloride (1a). Calculations reveal that hydrogen bonding interactions between complex molecules and between complex and dichloromethane molecules are stronger than the \(\pi\)–\(\pi\) stacking interaction, and give rise to similar non-centrosymmetric arrangements of molecules of 1a and 2a, although with different space groups. The lack of \(\pi\)–\(\pi\) stacking in 1a is ascribed to the
presence of a lone pair—π interaction between a chloride ligand and the pentafluorophenyl ring, which is of similar strength to a π–π stacking interaction. The presence of a trifluoromethyl group in 2a prevents this interaction for steric reasons and as a consequence the phenyl and polyfluorotolyl rings align to facilitate π–π stacking.

4. Experimental

4.1 Instrumentation

The 1H, 13C{1H} and 19F NMR spectra were recorded in deuterochloroform, except where stated otherwise, using Bruker DRX300 or DPX400 spectrometers. 1H (300.13 or 400.14 MHz) were referenced internally using the residual proto solvent resonance relative to SiMe4 (δ 0), 13C{1H} (75.48 or 100.61 MHz) externally to SiMe4 (δ 0), and 19F (282.40 MHz) externally to CFCl3 (δ 0). All chemical shifts are quoted in δ (ppm), using the high frequency positive convention, and coupling constants in Hz. Elemental analyses were carried out by the Campbell Microanalytical Laboratory, The University of Otago. Electrospray mass spectra were recorded on a Bruker Daltonics micrOTOF spectrometer.

4.2 Materials

The imidazolium salt [C6H5CH2NC6H5NCH2C6F5]Br [4] and the complexes [(η5-C5Me5)RhCl(μ-Cl)]2 and [(η5-C5Me5)IrCl(μ-Cl)]2 [20] were prepared as previously described. 1-Benzylimidazole, and silver(I) oxide (Aldrich), and 4-trifluoromethyltetrafluorophenylmethyl bromide (Apollo Scientific) were used as supplied.

4.3 Preparation of 1-(4-trifluoromethyl-2,3,5,6-tetrafluorophenylmethyl)-3-methylimidazolium bromide

1-Benzylimidazole (0.52 g, 3.3 mmol) was added to 4-trifluoromethyltetrafluorophenylmethyl bromide (1.02 g, 3.3 mmol) in dichloromethane (50 cm³). The mixture was left at ambient
temperature for 166 h. The solvent was removed by rotary evaporation yielding the product as a white solid. Yield 1.33 g (86%). [M – Br]+: [C18H12F3N2] + requires 389.0889; found 389.0942. δH ((CD3)2SO): 9.51 (1H, s, N2CH), 7.88 (1H, CH), 7.84 (1H, s, CH), 7.43 (5H, m, C6H5), 5.76 (2H, s, CH2), 5.46 (2H, s, CH2). δF ((CD3)2SO): -55.7 (3F, t, JFF = 22 Hz, CF3), -139.2 (2F, m, C6F5), -141.3 (2F, m, C6F5).

4.4 Preparation of (κC-1-perfluoroarylmethyl-3-benzylimidazol-2-ylidene)silver bromide

The silver complexes [(κC-C6H5CH2NC6H5NCH2C6F6X-4)-AgBr] (X = F, CF3) were prepared as described for [(κC-MeNC3H2NCH2C6F5)AgBr] [21].

[(κC-C6H5CH2NC6H5NCH2C6F6AgBr] from [C6H5CH2NC6H5NCH2C6F6Br (0.54 g, 1.2 mmol) and silver(I) oxide (0.16 g, 0.7 mmol). Yield 0.43 g (71%). [M – Br]+: [C34H22I07AgF10N4] + requires 783.0736; found 783.0679. δH: 7.30 (5H, m, C6H5), 7.01 (1H, d, 3JHBr = 1.8 Hz, CH), 6.94 (1H, d, 3JHBr = 1.8 Hz, CH), 5.56 (2H, s, CH2), 5.35 (2H, s, CH2). δF: -140.5 (2F, m, Fortho), -151.0 (1F, t, 3JFF = 21 Hz, Fpara), -159.7 (2F, m, Fmeta).

[(κC-C6H5CH2NC6H5NCH2C6F6CF3-4)AgBr] from [C6H5CH2NC6H5NCH2C6F6Br (0.47 g, 1.0 mmol) and silver(I) oxide (0.12 g, 0.5 mmol). Yield 0.50 g (87%). [M – Br]+: [C50H32I07AgF14N4] + requires 883.0672; found 883.0547. δH: 7.34 (5H, m, C6H5), 7.04 (1H, d, 3JHBr = 1.7 Hz, CH), 6.97 (1H, d, 3JHBr = 1.7 Hz, CH), 5.62 (2H, s, CH2), 5.34 (2H, s, CH2). δF: -56.5 (3F, t, 3JFF = 21.5 Hz, CF3), -138.1 (2F, m, C6F5), -138.6 (2F, m, C6F5).

4.5 Preparation of (η5-pentamethylcyclopentadienyl)metal(κC-1-perfluoroarylmethyl-3-benzylimidazol-2-ylidene) dichloride complexes (1a - 2b)

Complexes 1a, 1b, 2a and 2b were prepared as described for [(η5-C5Me5)RhCl2(κC-MeNC3H2NCH2C6F5)] [21], and recrystallized from dichloromethane or dichloromethane and pentane. 1a from [(η5-C5Me5)RhCl(μ-Cl)]2 (0.097 g, 0.157 mmol) and [(κC-C6H5CH2NC6H5NCH2C6F5)AgBr] (0.165 g, 0.314 mmol). Yield: 0.191 g (94%). Anal. Calc. for C27H20Cl2F5N2Rh.(CH2Cl2): C, 45.9; H,
3.85; N, 3.8. Found: C, 45.7; H, 3.85; N, 3.8%. [M – Cl]$^+$: [C$_{27}$H$_{26}$ClF$_5$N$_2$Rh]$^+$ requires 611.0760; found: 611.0830. δ$_H$: 7.37 (5H, m, C$_6$H$_5$), 6.77 (1H, d, $^3$J$_{HH}$ = 2.0 Hz, CH), 6.57 (1H, d, $^3$J$_{HH}$ = 2.0 Hz, CH), 6.13 (2H, m, NCHHC$_6$H$_5$ and NCHHC$_6$F$_5$), 5.58 (1H, d, $^2$J$_{HH}$ = 15.8 Hz, NCHH), 5.31 (1H, d, $^2$J$_{HH}$ = 14.8 Hz, NCHH), 1.69 (15H, s, CH$_3$). δ$_C$: 172.3 (d, $^1$J$_{BC}$ = 57 Hz, RhCN$_2$), 145.8 (dm, $^1$J$_{CF}$ = 250 Hz, C$_6$F$_3$), 141.8 (dm, $^1$J$_{CF}$ = 250 Hz, C$_6$F$_5$), 137.8 (dm, $^1$J$_{CF}$ = 255 Hz, C$_6$F$_5$), 136.3 (s, C$_6$H$_5$), 128.9 (s, C$_6$H$_5$), 128.5 (s, C$_6$H$_5$), 128.2 (s, C$_6$H$_5$), 123.0 (s, NCH), 120.7 (s, NCH), 109.5 (td, $^2$J$_{FC}$ = 16 Hz, $^4$J$_{FC}$ = 4 Hz, C$_6$F$_5$$_{para}$), 96.7 (d, $^1$J$_{BC}$ = 7 Hz, C$_3$), 55.3 (s, NCH$_2$), 44.2 (s, NCH$_2$), 9.5 (s, CH$_3$). δ$_F$: -140.7 (2F, m, F$_{ortho}$), -151.4 (1F, t, $^3$J$_{FF}$ = 21 Hz, F$_{para}$), -159.9 (2F, m, F$_{meta}$).

1b: from [(η$^5$-C$_5$Me$_3$)IrCl(μ-Cl)$_2$] (0.108 g, 0.136 mmol) and [(κ-C$_6$H$_4$CH$_2$NC$_6$H$_5$NCH$_2$C$_6$F$_5$)AgBr] (0.143 g, 0.272 mmol). Yield: 0.172 g (86%). [M – Cl]$^+$: [C$_{27}$H$_{26}$ClF$_5$N$_2$Ir]$^+$ requires 701.1407; found: 701.1355. δ$_H$: 7.35 (5H, m, C$_6$H$_5$), 6.70 (1H, d, $^3$J$_{HH}$ = 2.1 Hz, CH), 6.50 (1H, d, $^3$J$_{HH}$ = 2.1 Hz, CH), 6.08 (1H, d, $^2$J$_{HH}$ = 14.9 Hz, NCHH), 6.04 (1H, d, $^2$J$_{HH}$ = 14.9 Hz, NCHH), 5.55 (1H, d, $^2$J$_{HH}$ = 15.9 Hz, NCHH), 5.25 (1H, d, $^2$J$_{HH}$ = 14.9 Hz, NCHH), 1.69 (15H, s, CH$_3$). δ$_C$: 158.6 (s, IrCN$_2$), 145.8 (dm, $^1$J$_{CF}$ = 247 Hz, C$_6$F$_3$), 141.7 (dm, $^1$J$_{CF}$ = 256 Hz, C$_6$F$_5$), 137.8 (dm, $^1$J$_{CF}$ = 251 Hz, C$_6$F$_5$), 136.4 (s, C$_6$H$_5$), 128.8 (s, C$_6$H$_5$), 128.4 (s, C$_6$H$_5$), 128.2 (s, C$_6$H$_5$), 122.1 (s, NCH), 119.9 (s, NCH), 110.0 (td, $^2$J$_{FC}$ = 17 Hz, $^4$J$_{FC}$ = 4 Hz, C$_6$F$_5$$_{para}$), 89.4 (s, C$_3$), 55.0 (s, NCH$_2$), 43.5 (s, NCH$_2$), 9.2 (s, CH$_3$). δ$_F$: -140.8 (2F, m, F$_{ortho}$), -151.5 (1F, t, $^3$J$_{FF}$ = 21 Hz, F$_{para}$), -160.0 (2F, m, F$_{meta}$).

2a from [(η$^5$-C$_5$Me$_3$)RhCl(μ-Cl)$_2$] (0.086 g, 0.139 mmol) and [(κ-C$_6$H$_4$CH$_2$NC$_6$H$_5$NCH$_2$C$_6$F$_4$CF$_3$-4)AgBr] (0.161 g, 0.279 mmol). Yield: 0.183 g (94%). Anal. Calc. for C$_{29}$H$_{26}$Cl$_2$F$_7$N$_2$Rh.CH$_2$Cl$_2$: C, 44.5; H, 3.6; N, 3.6. Found: C, 44.5; H, 3.6; N, 3.6%. [M – Cl]$^+$: [C$_{27}$H$_{26}$ClF$_5$N$_2$Rh]$^+$ requires 661.0728; found: 661.0843. δ$_H$: 7.37 (5H, m, C$_6$H$_5$), 6.81 (1H, d, $^3$J$_{HH}$ = 2.1 Hz, CH), 6.63 (1H, d, $^3$J$_{HH}$ = 2.1 Hz, CH), 6.16 (2H, m, NCHHC$_6$H$_5$ and NCHHC$_6$F$_5$), 5.73 (1H, m, NCHH), 5.33 (1H, m, NCHH), 1.68 (15H, s, CH$_3$). δ$_C$: 172.9 (d, $^1$J$_{BC}$ = 57 Hz, RhCN$_2$), 145.6 (dm, $^1$J$_{CF}$ = 241 Hz, C$_6$F$_4$), 144.2 (dm, $^1$J$_{CF}$ = 267 Hz, C$_6$F$_5$), 136.2 (s, C$_6$H$_5$), 128.9 (s, C$_6$H$_5$), 128.4 (s, C$_6$H$_5$), 128.3 (s, C$_6$H$_5$), 123.3 (s, NCH), 121.0 (s, NCH), 120.5 (q, $^1$J$_{CF}$ = 275 Hz, CF$_3$), 119.2 (t, $^2$J$_{CF}$ = 16 Hz, C$_6$F$_4$$_{para}$), 110.9 (m, CCF$_3$), 96.8 (d, $^1$J$_{BC}$ = 7 Hz, C$_3$), 55.3 (s, NCH$_2$), 44.9 (s, NCH$_2$), 9.5 (CH$_3$). δ$_F$: -56.4 (3F, t, $^4$J$_{FF}$ = 21 Hz, CF$_3$), -138.7 (2F, m, C$_6$F$_4$), -139.1 (2F, m, C$_6$F$_4$).
2b from [(η⁵-C₅Me₅)IrCl(μ-Cl)]₂ (0.108 g, 0.136 mmol) and [(κC₆H₅CH₂NC₅H₂NCH₂C₆F₄CF₃-4)AgBr] (0.143 g, 0.272 mmol). Yield: 0.172 g (86%). [M – Cl]⁺: [C₂₀H₂₀Cl₂F₁⁷IrN₂]⁺ requires 751.1375; found: 751.1323. δH 7.35 (5H, m, C₆H₅), 6.72 (1H, d, 3JHH = 2.1 Hz, CH), 6.57 (1H, d, 3JHH = 2.1 Hz, CH), 6.15 (1H, d, 2JHH = 15.8 Hz, NCHH), 6.05 (1H, d, 2JHH = 14.9 Hz, NCHH), 5.66 (1H, d, 2JHH = 15.8 Hz, NCHH), 5.25 (1H, d, 2JHH = 14.9 Hz, NCHH), 1.69 (15H, s, CH₃). δC: 159.2 (s, IrCN₂), 145.6 (dm, 1JCF = 239 Hz, C₆F₅), 144.1 (dm, 1JCF = 267 Hz, C₆F₅), 136.3 (s, C₆H₅), 128.9 (s, C₆H₅), 128.4 (s, C₆H₅), 128.2 (s, C₆H₅), 122.5 (s, NCH), 120.2 (s, NCH), 120.5 (q, 1JCF = 275 Hz, CF₃), 119.3 (t, 2JCF = 16 Hz, C₆F₄(μ-H)), 110.6 (m, CCF₃), 89.5 (s, C₃), 55.0 (s, NCH₂), 44.1 (s, NCH₂), 9.2 (CH₃). δF: -56.4 (3F, t, 4JFF = 21 Hz, CF₃), -138.8 (2F, m, C₆F₅), -139.2 (2F, m, C₆F₅).

4.6 X-ray crystallography

Crystals of 1a, 1b, 2a and 2b were obtained from dichloromethane. Diffraction data were collected on an Agilent SuperNova, single source at offset, Atlas diffractometer with graphite-monochromated Cu—Kα radiation. The structures were solved using Olex2 [22] with olex2.solve [23] structure solution programme using Charge Flipping and refined with the olex2.refine [23] refinement package using Gauss-Newton minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters, except for C(1) - C(5), C(7) - C(10), C(13), C(15), C(16), C(18), C(21), C(23), C(24), N(1) and F(23) of 2b. Hydrogen atom positions were added in idealized positions and a riding model with fixed thermal parameters (Uij = 1.2Ueq for the atom to which they are bonded (1.5 for CH₃)) was used for subsequent refinements. The function minimized was Σ[w(|Fo|² - |Fc|²)] with reflection weights w⁻¹ = [σ² |Fo|² + (g1P)² + (g2P)] where P = [max |Fo|² + 2|Fc|²]/3.

CCDC 1874162 (1a), 1874163 (1b), 1874164 (2a) and 1874165 (2b) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4.6 Density functional theory calculations
DFT calculations were performed using Gaussian09 [24] with the long-range corrected functional ωB97X-D [14] method and the 6-311G++(2d,2p) basis set, except for the rhodium atom, for which LANL2DZ [25] was used. Harmonic vibrational frequencies were calculated to confirm that the optimized structures were indeed minima. The energies of interaction were calculated as the difference between the energy of the species and the sum of those of its components. All the C─H bond distances were adjusted to 1.083 Å [26] prior to single point energy calculations being undertaken.

5. Acknowledgement

We thank the University of Waikato for support and Dr J. Burrows for technical assistance.
References

(b) C.K. Prout, J.D. Wright, Observations on the Crystal Structures of Electron Donor-Acceptor Complexes, Angew. Chem., Int. Ed. 7 (1968) 659-667;


c) J.R. Lane, G.C. Saunders, S.J. Webb, Engineering of a polar crystal structure exclusively by \( \pi-\pi \) stacking between aryl and polyfluoroaryl groups, CrystEngComm 15 (2013) 1293-1295.


Table 1
Crystallographic data for ($\eta^5$-pentamethylcyclopentadienyl)metal(κC-1-perfluoroarylmethyl-3-benzylimidazol-2-ylidene) dichloride complexes 1a, 1b, 2a and 2b.

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th>1b</th>
<th>2a</th>
<th>2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$C_{27}H_{26}Cl_{2}F_{5}N_{2}Rh.CH_{2}Cl_{2}$</td>
<td>$C_{27}H_{26}Cl_{2}F_{5}N_{2}Ir.CH_{2}Cl_{2}$</td>
<td>$C_{28}H_{26}Cl_{2}F_{7}N_{2}Rh.CH_{2}Cl_{2}$</td>
<td>$C_{28}H_{26}Cl_{2}F_{7}N_{2}Ir.CH_{2}Cl_{2}$</td>
</tr>
<tr>
<td>Weight</td>
<td>732.26</td>
<td>821.57</td>
<td>782.26</td>
<td>871.57</td>
</tr>
<tr>
<td>System</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space</td>
<td>$P2_12_12_1$</td>
<td>$P2_12_12_1$</td>
<td>$Pca2_1$</td>
<td>$Pca2_1$</td>
</tr>
<tr>
<td>$a$, Å</td>
<td>10.6087(18)</td>
<td>10.6467(2)</td>
<td>16.3955(4)</td>
<td>16.3938(3)</td>
</tr>
<tr>
<td>$b$, Å</td>
<td>15.6614(2)</td>
<td>15.6791(3)</td>
<td>10.75786(16)</td>
<td>10.7913(3)</td>
</tr>
<tr>
<td>$c$, Å</td>
<td>17.5915(3)</td>
<td>17.5997(4)</td>
<td>17.3761(4)</td>
<td>17.3948(4)</td>
</tr>
<tr>
<td>$V$, Å$^3$</td>
<td>2922.78(8)</td>
<td>2937.94(10)</td>
<td>3064.8(1)</td>
<td>3077.31(12)</td>
</tr>
<tr>
<td>$Z$</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$D_c$ (g cm$^{-3}$)</td>
<td>1.664</td>
<td>1.8573</td>
<td>1.695</td>
<td>1.8811</td>
</tr>
<tr>
<td>Crystal size (mm$^3$)</td>
<td>$0.142 \times 0.088 \times 0.060$</td>
<td>$0.189 \times 0.082 \times 0.029$</td>
<td>$0.109 \times 0.052 \times 0.031$</td>
<td>$0.317 \times 0.063 \times 0.044$</td>
</tr>
<tr>
<td>$\mu$ (mm$^{-1}$)</td>
<td>8.571</td>
<td>12.625</td>
<td>8.316</td>
<td>12.195</td>
</tr>
<tr>
<td>( \theta ) range (°)</td>
<td>3.78 - 73.88</td>
<td>3.78 - 74.02</td>
<td>4.11 - 74.00</td>
<td>4.10 - 73.81</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Total reflections</td>
<td>15608</td>
<td>8718</td>
<td>15692</td>
<td>9352</td>
</tr>
<tr>
<td>Unique reflections (( R_{int} ))</td>
<td>5775 (0.0394)</td>
<td>4916 (0.0299)</td>
<td>5580 (0.0483)</td>
<td>4933 (0.0318)</td>
</tr>
<tr>
<td>Observed reflections ([I &gt; 2\sigma(I)])</td>
<td>5264</td>
<td>4430</td>
<td>4845</td>
<td>4562</td>
</tr>
<tr>
<td>Parameters</td>
<td>366</td>
<td>361</td>
<td>393</td>
<td>303</td>
</tr>
<tr>
<td>Final ( R ) indices ([I &gt; 2\sigma(I)])</td>
<td>( R_1 = 0.0334, ) ( wR_2 = 0.0746 )</td>
<td>( R_1 = 0.0305, ) ( wR_2 = 0.0367 )</td>
<td>( R_1 = 0.0466, ) ( wR_2 = 0.1196 )</td>
<td>( R_1 = 0.0482, ) ( wR_2 = 0.1453 )</td>
</tr>
<tr>
<td>( R ) indices (all data)</td>
<td>( R_1 = 0.0464, ) ( wR_2 = 0.0792 )</td>
<td>( R_1 = 0.0735, ) ( wR_2 = 0.0771 )</td>
<td>( R_1 = 0.0564, ) ( wR_2 = 0.1268 )</td>
<td>( R_1 = 0.0547, ) ( wR_2 = 0.1510 )</td>
</tr>
</tbody>
</table>
| Weighting scheme | \( w = 1/\sigma(F_o)^2 + \{0.0370 \} \) \((F_o^2 + 2F_c^2)/3\)^2 + 3.6990 \((F_o^2 + 2F_c^2)/3\) \| \( w = 1/\sigma(F_o)^2 + \{0.0370 \} \) \((F_o^2 + 2F_c^2)/3\)^2 + 3.6990 \((F_o^2 + 2F_c^2)/3\) \| \( w = 1/\sigma(F_o)^2 + \{0.0400 \} \) \((F_o^2 + 2F_c^2)/3\)^2 + 0.0860 \((F_o^2 + 2F_c^2)/3\) \| \( w = 1/\sigma(F_o)^2 + \{0.0370 \} \) \((F_o^2 + 2F_c^2)/3\)^2 + 3.6990 \((F_o^2 + 2F_c^2)/3\) \| \( w = 1/\sigma(F_o)^2 + 162.8190 \) \((F_o^2 + 2F_c^2)/3\)
| Max., min. \( \Delta \rho \)(eÅ\(^{-3}\)) | 1.182, -1.201 | 1.079, -1.246 | 1.573, -0.640 | 2.739, -1.541 |
| Goodness of fit on \( F^2 \) | 1.049 | 1.0326 | 1.025 | 1.038 |
| Flack parameter | -0.022(8) | -0.005(11) | 0.007(12) | -0.04(2) |
a Estimated standard deviations are given in parentheses.
Table 2 Selected distances (Å) and angles (°) for (η⁵-pentamethylcyclopentadienyl)metal(κC-1-perfluoroaryl methyl-3-benzylimidazol-2-ylidene) dichloride complexes 1a, 1b, 2a and 2b.

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th></th>
<th>1b</th>
<th></th>
<th>2a</th>
<th></th>
<th>2b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Calculated b</td>
<td>Experimental</td>
<td>Experimental</td>
<td>Calculated b</td>
<td>Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp*—M</td>
<td>1.805(4)</td>
<td>1.822</td>
<td>1.802(7)</td>
<td>1.809(7)</td>
<td>1.821</td>
<td>1.82(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M—Cl(1)</td>
<td>2.4715(9)</td>
<td>2.444</td>
<td>2.4152(14)</td>
<td>2.4716(14)</td>
<td>2.446</td>
<td>2.474(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M—Cl(2)</td>
<td>2.4023(9)</td>
<td>2.423</td>
<td>2.4786(13)</td>
<td>2.4009(14)</td>
<td>2.421</td>
<td>2.410(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M—C(11)</td>
<td>2.069(4)</td>
<td>2.050</td>
<td>2.056(6)</td>
<td>2.061(5)</td>
<td>2.050</td>
<td>2.075(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)—N(1)</td>
<td>1.361(5)</td>
<td>1.354</td>
<td>1.363(7)</td>
<td>1.355(9)</td>
<td>1.355</td>
<td>1.36(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)—C(21)</td>
<td>1.464(5)</td>
<td>1.449</td>
<td>1.453(8)</td>
<td>1.483(10)</td>
<td>1.445</td>
<td>1.471(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)—C(22)</td>
<td>1.513(5)</td>
<td>1.508</td>
<td>1.511(8)</td>
<td>1.515(9)</td>
<td>1.508</td>
<td>1.51(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)—N(2)</td>
<td>1.354(5)</td>
<td>1.351</td>
<td>1.351(8)</td>
<td>1.359(9)</td>
<td>1.350</td>
<td>1.35(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)—C(14)</td>
<td>1.464(5)</td>
<td>1.462</td>
<td>1.483(8)</td>
<td>1.484(9)</td>
<td>1.463</td>
<td>1.476(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)—C(15)</td>
<td>1.507(6)</td>
<td>1.507</td>
<td>1.488(10)</td>
<td>1.529(9)</td>
<td>1.507</td>
<td>1.48(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)···C(21)</td>
<td>3.232(5)</td>
<td>3.230</td>
<td>3.227(6)</td>
<td>3.373(7)</td>
<td>3.217</td>
<td>3.37(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(2)···C(14)</td>
<td>3.283(5)</td>
<td>3.308</td>
<td>3.287(7)</td>
<td>3.310(7)</td>
<td>3.302</td>
<td>3.34(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle 1</td>
<td>Angle 2</td>
<td>Angle 3</td>
<td>Angle 4</td>
<td>Angle 5</td>
<td>Angle 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp*—M—Cl(1)</td>
<td>119.6(1)</td>
<td>121.9</td>
<td>120.3(2)</td>
<td>120.7(2)</td>
<td>121.8</td>
<td>121.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp*—M—Cl(2)</td>
<td>124.5(1)</td>
<td>123.0</td>
<td>125.5(2)</td>
<td>124.4(2)</td>
<td>123.5</td>
<td>125.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp*—M—C(11)</td>
<td>128.5(2)</td>
<td>126.0</td>
<td>128.9(3)</td>
<td>124.7(2)</td>
<td>126.0</td>
<td>125.1(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1)—M—Cl(2)</td>
<td>88.77(3)</td>
<td>89.67</td>
<td>86.68(5)</td>
<td>88.85(5)</td>
<td>89.39</td>
<td>86.6(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)—M—Cl(1)</td>
<td>95.2(1)</td>
<td>93.8</td>
<td>94.4(2)</td>
<td>97.0(2)</td>
<td>93.7</td>
<td>96.6(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)—M—Cl(2)</td>
<td>89.9(1)</td>
<td>93.0</td>
<td>89.6(2)</td>
<td>92.33(17)</td>
<td>92.9</td>
<td>91.8(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M—C(11)—N(1)</td>
<td>126.5(3)</td>
<td>126.9</td>
<td>127.3(5)</td>
<td>127.9(5)</td>
<td>126.5</td>
<td>127(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M—C(11)—N(2)</td>
<td>128.9(3)</td>
<td>128.4</td>
<td>128.6(4)</td>
<td>125.9(5)</td>
<td>128.8</td>
<td>126(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)—C(11)—N(2)</td>
<td>104.5(3)</td>
<td>104.1</td>
<td>104.1(5)</td>
<td>103.2(5)</td>
<td>104.1</td>
<td>104(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)—N(1)—C(21)</td>
<td>124.3(3)</td>
<td>126.4</td>
<td>124.1(5)</td>
<td>126.6(6)</td>
<td>126.3</td>
<td>127(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)—C(21)—C(22)</td>
<td>112.6(3)</td>
<td>113.3</td>
<td>112.5(5)</td>
<td>108.5(5)</td>
<td>114.4</td>
<td>110(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)—N(2)—C(14)</td>
<td>127.2(3)</td>
<td>127.3</td>
<td>127.9(5)</td>
<td>127.6(5)</td>
<td>127.3</td>
<td>129(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)—C(14)—C(15)</td>
<td>112.3(3)</td>
<td>111.5</td>
<td>112.7(6)</td>
<td>109.4(5)</td>
<td>111.2</td>
<td>111(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp*—M—C(11)—N(1)</td>
<td>88.4(4)</td>
<td>84.8</td>
<td>88.9(8)</td>
<td>-82.1(7)</td>
<td>84.2</td>
<td>84(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp*—M—C(11)—N(2)</td>
<td>-89.3(4)</td>
<td>-84.5</td>
<td>-90.0(7)</td>
<td>74.8(6)</td>
<td>-85.3</td>
<td>-76(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond/Angle</td>
<td>M—C(11)—N(1)—C(21)</td>
<td>M—C(11)—N(2)—C(14)</td>
<td>C(11)—N(1)—C(21)—C(22)</td>
<td>C(11)—N(2)—C(14)—C(15)</td>
<td>N(1)—C(21)—C(22)—C(23)</td>
<td>N(1)—C(21)—C(22)—C(27)</td>
<td>N(2)—C(14)—C(15)—C(16)</td>
<td>N(2)—C(14)—C(15)—C(20)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>3.3(5)</td>
<td>5.0(5)</td>
<td>-166.8(3)</td>
<td>-131.4(4)</td>
<td>-90.3(4)</td>
<td>90.4(5)</td>
<td>45.1(5)</td>
<td>-138.5(4)</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>-8.0</td>
<td>120.2</td>
<td>-126.3</td>
<td>-38.5</td>
<td>144.7</td>
<td>60.5</td>
<td>-119.8</td>
</tr>
<tr>
<td></td>
<td>-2.7(9)</td>
<td>5.4(9)</td>
<td>-163.8(6)</td>
<td>-132.0(7)</td>
<td>-90.8(7)</td>
<td>90.3(8)</td>
<td>43.6(9)</td>
<td>-139.8(6)</td>
</tr>
<tr>
<td></td>
<td>-24.3(9)</td>
<td>29.2(9)</td>
<td>-128.5(7)</td>
<td>108.1(7)</td>
<td>63.4(8)</td>
<td>-114.3(7)</td>
<td>-60.2(8)</td>
<td>119.1(7)</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>-8.8</td>
<td>111.3</td>
<td>-126.1</td>
<td>-29.0</td>
<td>155.1</td>
<td>60.5</td>
<td>-119.2</td>
</tr>
<tr>
<td></td>
<td>23(2)</td>
<td>-28(2)</td>
<td>130(2)</td>
<td>-109(2)</td>
<td>-61(2)</td>
<td>114(2)</td>
<td>60(2)</td>
<td>-119(2)</td>
</tr>
</tbody>
</table>

* Estimated standard deviations are given in parentheses. Cp* indicates the centroid of the five carbon atoms of the cyclopentadienyl ring. *b* Calculated using the oB97X-D [14] method with the 6-311G++(2d,2p) basis set, except for the rhodium atom, for which LANL2DZ [25] was used.
Table 3 Selected intermolecular distances (Å) and angles (°) between dichloromethane and (η⁵-pentamethylcyclopentadienyl)metal(κC-1-perfluoroarylmethyl-3-benzylimidazol-2-ylidene) dichloride complexes 1a, 1b, 2a and 2b.

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th>1b</th>
<th>2a</th>
<th>2b</th>
<th>1a</th>
<th>1b</th>
<th>2a</th>
<th>2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)····C(1S)</td>
<td>3.400(4)</td>
<td>3.422(7)</td>
<td>3.584(8)</td>
<td>3.56(2)</td>
<td>Cl(1)····C(1S)</td>
<td>3.582(4)</td>
<td>3.596(7)</td>
<td>3.472(8)</td>
</tr>
<tr>
<td>Cl(1)····Cl(1S)</td>
<td>106.7(2)</td>
<td>106.6(3)</td>
<td>123.0(4)</td>
<td>121.4(9)</td>
<td>Cl(1)····Cl(1S)</td>
<td>133.4(2)</td>
<td>132.2(3)</td>
<td>107.1(4)</td>
</tr>
<tr>
<td>Cl(2)····Cl(1S)</td>
<td>109.4(2)</td>
<td>108.9(3)</td>
<td>104.2(4)</td>
<td>102.9(8)</td>
<td>Cl(2)····Cl(2S)</td>
<td>84.4(2)</td>
<td>83.9(3)</td>
<td>144.4(4)</td>
</tr>
<tr>
<td>Cl(1)····C(1S)</td>
<td>42.3(2)</td>
<td>42.0(4)</td>
<td>18.5(7)</td>
<td>16.8(4)</td>
<td>Cl(1)····Cl(1S)</td>
<td>71.0(7)</td>
<td>71.4(4)</td>
<td>62.1(6)</td>
</tr>
<tr>
<td>Cl(1)Cl(2)Cl(1S)(plane)</td>
<td>3.278(5)</td>
<td>3.270(8)</td>
<td>3.291(7)</td>
<td>3.32(1)</td>
<td>M····Cl(xS)</td>
<td>157.7(2)</td>
<td>158.0(3)</td>
<td>156.0(3)</td>
</tr>
<tr>
<td>Cl(1)·Cl(1S)(plane)</td>
<td>3.278(5)</td>
<td>3.270(8)</td>
<td>3.291(7)</td>
<td>3.32(1)</td>
<td>M····Cl(xS)</td>
<td>157.7(2)</td>
<td>158.0(3)</td>
<td>156.0(3)</td>
</tr>
</tbody>
</table>

x = 2 for 1, 1 for 2

Estimated standard deviations are given in parentheses. Cp* indicates the centroid of the five carbon atoms of the cyclopentadienyl ring.
Table 4 Selected intermolecular distances (Å) and angles (°) between molecules of
($\eta^5$-pentamethylyclopentadienyl)metal($\kappa$C-1-perfluoroarylmethyl-3-benzylimidazol-2-ylidene) dichloride complexes 1a, 1b, 2a and 2b.\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th>1b</th>
<th>2a</th>
<th>2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)···C(13)'</td>
<td>3.627(5)</td>
<td>3.643(6)</td>
<td>3.786(7)</td>
<td>3.80(1)</td>
</tr>
<tr>
<td>M—Cl(1)···C(13)'</td>
<td>111.34(7)</td>
<td>112.5(1)</td>
<td>90.8(1)</td>
<td>91.3(2)</td>
</tr>
<tr>
<td>Cl(1)···N(2)'</td>
<td>159.2(3)</td>
<td>160.3(4)</td>
<td>132.8(4)</td>
<td>133(1)</td>
</tr>
<tr>
<td>Cl(1)···C(12)'</td>
<td>92.7(3)</td>
<td>92.3(4)</td>
<td>121.7(5)</td>
<td>120(1)</td>
</tr>
<tr>
<td>Cl(2)···C(12)'</td>
<td>3.571(4)</td>
<td>3.590(7)</td>
<td>3.317(7)</td>
<td>3.32(2)</td>
</tr>
<tr>
<td>M—Cl(2)···C(12)'</td>
<td>105.03(7)</td>
<td>105.6(1)</td>
<td>110.2(1)</td>
<td>110.3(3)</td>
</tr>
<tr>
<td>Cl(2)···N(1)'</td>
<td>132.9(3)</td>
<td>132.4(4)</td>
<td>154.3(4)</td>
<td>154(1)</td>
</tr>
<tr>
<td>Cl(2)···C(13)'</td>
<td>121.3(1)</td>
<td>120.7(4)</td>
<td>88.5(4)</td>
<td>88(1)</td>
</tr>
<tr>
<td>Cl(2)···C(23)'</td>
<td>3.375(4)</td>
<td>3.374(7)</td>
<td>3.785(8)</td>
<td>3.80(2)</td>
</tr>
<tr>
<td>Cl(2)···C(24)'</td>
<td>3.128(4)</td>
<td>3.122(7)</td>
<td>3.699(7)</td>
<td>3.72(2)</td>
</tr>
<tr>
<td>Cl(2)···C$_6$F$^\text{**}$</td>
<td>3.375(5)</td>
<td>3.383(8)</td>
<td>4.211(8)</td>
<td>4.23(2)</td>
</tr>
<tr>
<td>M—Cl(2)···C$_6$F$^\text{**}$</td>
<td>163.5(3)</td>
<td>163(1)</td>
<td>121.4(1)</td>
<td>121.0(3)</td>
</tr>
<tr>
<td>Angle</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Angle</td>
<td>Value 1</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>41.0(1)</td>
<td>41.6(1)</td>
<td></td>
<td>53.7(1)</td>
</tr>
<tr>
<td></td>
<td>3.9(3)</td>
<td>3.9(4)</td>
<td></td>
<td>22.0(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\angle$ Cl$_2$(plane) Cl$_2$(plane)</td>
<td>41.0(1)</td>
<td>41.6(1)</td>
<td></td>
<td>53.7(1)</td>
</tr>
<tr>
<td>$\angle$ Cl$_2$(plane) C$_3$N$_2$(plane)</td>
<td>3.9(3)</td>
<td>3.9(4)</td>
<td></td>
<td>22.0(4)</td>
</tr>
</tbody>
</table>

\(^a\) Estimated standard deviations are given in parentheses. C$_6$ and C$_6$F’ represent the phenyl and polyfluorophenyl rings respectively. C$_6$F”* indicates the centroid of the six carbon atoms of the trifluoromethyltetrafluorophenyl ring.