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Abstract: We demonstrate a frequency diverse, multistatic microwave 
imaging system based on a set of transmit and receive, radiating, planar 
cavity apertures. The cavities consist of double-sided, copper-clad circuit 
boards, with a series of circular radiating irises patterned into the upper 
conducting plate. The iris arrangement is such that for any given 
transmitting and receiving aperture pair, a Mills-Cross pattern is formed 
from the overlapped patterns. The Mills-Cross distribution provides 
optimum coverage of the imaging scene in the spatial Fourier domain (k-
space). The Mills-Cross configuration of the apertures produces 
measurement modes that are diverse and consistent with the computational 
imaging approach used for frequency-diverse apertures, yet significantly 
minimizes the redundancy of information received from the scene. We 
present a detailed analysis of the Mills-Cross aperture design, with 
numerical simulations that predict the performance of the apertures as part 
of an imaging system. Images reconstructed using fabricated apertures are 
presented, confirming the anticipated performance. 
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1. Introduction 

The use of microwaves and millimeter-waves for imaging has long been a subject of 
considerable interest, since electromagnetic waves in these frequency bands are non-ionizing 
and thus safe for applications such as security screening and biomedical imaging. Moreover, 
many materials in the radio-frequency (RF) regime are transparent or weakly scattering, thus 
allowing RF waves to visualize concealed objects, for example those behind walls or under 
clothes. The majority of active illumination, coherent RF imaging systems are variants on 
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either beam scanning or synthetic aperture radar (SAR). In SAR, field measurements are 
made over a large area, effectively synthesizing a large aperture [1–14]; alternatively, an 
aperture consisting of an array of sources can be used to create a focused beam that can then 
be scanned over an object. Phased arrays and active electronically scanned antennas are 
common examples of beam forming and scanning systems [15–19]. Both methods sample 
data at the Nyquist limit, with measurements that are essentially orthogonal in the spatial 
(beam scanning) or Fourier (SAR) domains. Although good image fidelity can be achieved, 
these methods often have limited imaging speed in the case of SAR, and high cost and system 
complexity in the case of phased arrays. 

All-electronic imaging of objects without using raster scanning and active electronic 
components can significantly reduce the required imaging time and simplify the system 
architecture. As the performance and capabilities of modern computing have advanced, 
computational imaging approaches have gained favor as a means of reducing the constraints 
associated with the RF system hardware and physical aperture. In essence, computational 
imaging schemes shift the burden of image reconstruction from physical hardware to 
processing; as a result, much more flexible and innovative apertures can be used for imaging, 
with the image estimation procedure becoming more akin to an optimization problem. With 
computational imaging systems, the radiation (or mode) characteristics of the aperture must 
be known in detail, along with the introduction of a scattering model for the object. Together, 
the illumination pattern combined with the scattering model and receive pattern form the 
system’s forward model. Unusual and non-traditional apertures can be used for computational 
imaging schemes, as long as the forward model for the system can be computed or measured 
[20–28]. 

Within the context of computational imaging, the frequency-diverse aperture provides an 
interesting alternative approach to the generation of diverse measurement modes [29–34]. If 
the aperture is intentionally designed to be frequency dispersive such that the spatial 
distribution of the aperture fields varies strongly as a function of frequency, then complex 
field patterns will in turn be radiated as a function of frequency. The scene can thus be 
interrogated from a passive aperture with numerous distinct measurements using a simple 
frequency sweep; as the frequency is swept over the operating frequency band, the frequency-
dependent complex radiation patterns produced by the aperture encode the scene information, 
enabling the scene to be reconstructed using computational imaging algorithms. Within this 
framework, computational imaging systems have been demonstrated involving the use of 
frequency-diverse metamaterial apertures [29–32] and cavity apertures [33,34]. Metamaterial 
apertures consist of sub-wavelength resonators patterned into the upper conductor of a 
double-clad printed dielectric circuit board (PCB). The PCB configuration is equivalent to a 
parallel-plate waveguide, supporting a guided wave that excites the resonators. The resonance 
frequencies of the metamaterial elements are randomly distributed over the operating 
frequency band. As the frequency is swept over the band, those elements whose resonance 
frequencies coincide with the excitation frequency couple to the guided mode inside the 
waveguide and radiate into free-space, resulting in complex radiation patterns that vary across 
the operating frequency band. The number of available measurement modes achieved by this 
approach is statistically related to the quality (Q-) factor of the resonant elements; for higher 
Q-factors, more measurement modes are available within the given operating frequency 
bandwidth. 

An alternative approach to achieving a frequency diverse aperture is to increase the 
dispersion associated with the waveguide excitation mode. An example of this approach is the 
chaotic cavity imager, recently presented [33]. A version of the chaotic cavity imager consists 
of three-dimensional (3D) printed, air-filled cavity with a multi-wavelength thickness that 
allows multi-mode operation. Guided modes within the cavity are mixed in a chaotic manner, 
so that the excitation field rapidly disperses with frequency. Since the excitation mode varies 
rapidly with frequency, simple, non-resonant irises patterned into the cavity suffice to couple 
radiation out forming the desired measurement modes. Since the air-filled cavity has no 
dielectric losses, and the non-resonant irises have only radiative losses, the air-filled chaotic 
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cavity presents a significantly higher Q-factor (and therefore mode-diversity) in comparison 
to the metamaterial apertures. However, due to its chaotic multi-mode operation, predictive 
modeling of the air-filled mode-mixing cavity can be a challenging task, increasing the 
difficulty of obtaining a reliable forward model for image reconstruction. In addition, due to 
its multi-wavelength thickness, the mode-mixing cavity is not suitable for use in imaging 
applications where a low-profile aperture is preferred. 

The chaotic, air-filled cavity aperture and the metamaterial aperture are two examples of 
non-traditional imaging configurations that take advantage of computational imaging, and 
that possess relative strengths and weaknesses. A hybrid version of these configurations has 
been developed, consisting of a PCB based cavity consisting of a dielectric substrate roughly 
a half-wavelength in thickness, with non-resonant radiating circular irises forming the 
aperture [34]. Distinct from the air-filled mode-mixing cavity, the printed cavity operates with 
a single mode parallel to the radiation direction, with its irises distributed in a non-periodic 
Fibonacci pattern to randomize the projection of the radiated fields within the imaging 
domain. Similar to the prior frequency-diverse apertures, the radiating irises of the printed 
cavity are distributed across the full-aperture, resulting in overlapping sampling of the Fourier 
components as the imaging frequency is swept, collecting redundant information from the 
imaging scene. 

The transmitting and receiving apertures used in a frequency-diverse imaging system 
should satisfy certain criteria in order to leverage the computational imaging concept to the 
full extend. It is desirable in a frequency-diverse imaging system that the transmitting and 
receiving apertures maximize the spatial coverage (effective aperture) pattern. This enables 
the aperture pair to maximize the sampled Fourier components, extending the Fourier domain 
(k-space) support, which is required to optimize the imaging resolution. Moreover, it is also 
important to reduce the sampling redundancy of the Fourier components, minimizing the 
correlation of the information collected from the imaging scene as a function of frequency. 
Minimization of the sampling redundancy can be achieved by choosing optimum aperture 
patterns producing non-overlapping radiated fields within the imaging domain. Using 
frequency-diverse apertures with the radiating elements distributed across the full-aperture, 
such as the metamaterial [29–32] and cavity apertures [33,34], brings three disadvantages; 
first, a poor effective aperture pattern, second, redundant sampling of the Fourier components, 
and third, a reduced Q-factor. Since the Q-factor statistically determines the orthogonality of 
the frequency measurement modes, the aperture should be optimized to minimize the number 
of radiating elements while maximizing the k-space support [35]. 

In this paper, we demonstrate an imaging system consisting of planar cavity apertures 
with sparse complementary radiating irises forming a Mills-Cross pattern for a given 
transmitting and receiving aperture pair. As a result of employing the Mills-Cross distribution 
for the radiating irises, the effective aperture is optimized, maximizing the number of the 
frequency components sampled in the k-space while reducing the sampling redundancy. 
Moreover, the mode diversity is significantly improved in comparison to the frequency-
diverse apertures consisting of radiating elements distributed across the full-aperture. This 
paper is organized as follows. In section 2, the concept of frequency-diverse image 
reconstruction is briefly explained. In section 3, we demonstrate the design of the Mills-Cross 
cavity apertures. This section covers the optimization of the radiating elements, investigation 
of the effective aperture concept and the sampling of the k-space. It also demonstrates the 
analysis of the mode-orthogonality for the proposed Mills-Cross cavity apertures through 
singular value decomposition (SVD), and assessment of the mode-diversity and the radiation 
efficiency performance of these apertures for computational imaging applications. In section 
4, we show an experimental imaging system for the imaging of a number of targets. Finally, 
section 5 provides concluding remarks. 

2. Frequency-diverse computational imaging and image reconstruction 

As with any computational imaging system, it is essential to determine a forward model that 
provides a description—exact as possible—of the radiated field pattern from the aperture, as 
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well as the scattering from objects in the scene. At RF wavelengths, humans as well as many 
objects and structures of interest are partially conductive and can be reasonably approximated 
as metallic scatterers. Thus, we can model the scene by discretizing it into a set of 3D voxels, 
each voxel represented by an isotropic susceptibility that relates the local incident field to the 
scattered field. Making the approximation that the incident field from the aperture is 
unperturbed by scattering from the scene (first Born approximation) vastly simplifies the 
forward model and allows the measurement matrix to be computed rapidly [30]. A 
measurement of the scene consists of the signal reflected from the object of interest 
(amplitude and phase); the collection of these signals over the operating frequency band 
comprise the measurement vector, g. Since the number of measurements is limited by the 
cavity Q factor, and the number of scene sampling points is limited by the system resolution, 
the imaging problem reduces to a finite dimension matrix equation that relates the 
measurements to the reflectivity values of the scene, f, according to 

 1 1Mx MxN Nx=g H f  (1) 
In Eq. (1), M is the total number of measurements while N denotes the number of voxels 

into which the imaging scene is discretized. Ideally, the number of measurements would be 
equal to or greater than the number of reflectivity values to be reconstructed; however, finite 
Q-factors tend to limit the number of measurement modes available through frequency 
diversity. In addition, the typical mode patterns that result from the frequency diverse 
aperture tend to exhibit some degree of correlation, so that the effective number of modes can 
even be less than that calculated by dividing the bandwidth by the resonance bandwidth. For 
computational imaging systems like the frequency-diverse aperture considered here, 
correlations of the modes allow the data to be undersampled, reducing both the data 
acquisition and computational burden. The optimum number of measurements and optimal 
field patterns is dependent on the details of the system and the types of objects to be imaged. 

H in Eq. (1) is the measurement matrix. Within the first Born approximation, the element 
of H that relates the reflectivity value at a given position to a measurement is proportional to 
the pointwise product of the fields radiated by the transmitting, TxE , and receiving, RxE , 
frequency-diverse apertures, or � Tx RxH E E , where the fields are evaluated at the position of 
the reflectivity value. Reconstructing the scene reflectivity (or contrast) vector, f, in Eq. (1) 
thus constitutes an inverse problem. Investigating Eq. (1), it can be seen that the measurement 
matrix H is not full-rank, M�N, (ill-conditioned) and therefore does not have an exact inverse. 
Many reconstruction techniques can be applied to estimate the reflectivity vector that range 
from straightforward (e.g., matched filter, pseudo-inverse) to sophisticated (e.g., compressive 
techniques, such as least-squares and TwIST + TV) [32]. The more advanced techniques can 
make use of prior information to arrive at a better estimation of the scene, but generally 
require iterative refinement making them slower. For the reconstructions presented here, we 
use matched filter reconstruction as it requires no matrix inverse and allows for fast 
reconstructions. Using the matched-filter technique, we reconstruct the imaging scene, reconf , 
as follows [32]: 

 †=reconf H g  (2) 
In Eq. (2), †H  is the conjugate (or Hermitian) transpose of the measurement matrix, H. 

3. Planar Mills-Cross cavity apertures 

Aperture optimization is an important aspect of designing an imaging system [36]. Given that 
the number of measurement modes for a frequency-diverse aperture is limited by the Q-
factor, it is important that the information content within those modes be maximized as much 
as possible, which can be achieved generally by making the field patterns of the measurement 
modes as orthogonal as possible in some basis. With the design of the PCB cavity assumed as 
fixed, the degree of freedom available for optimizing the field patterns is the number and 
arrangement of the radiating irises over the aperture, as well as the aperture layout. The 
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design approach followed here is to maximize the sampling of the k-space components, 
accessing as many components as possible while minimizing mode sampling overlap. 

Since the measurement matrix elements are proportional to the product of the fields from 
the transmit and receive apertures, the Fourier space sampled by the combination is jointly 
determined by the arrangement of irises on both the transmit and receive apertures. Ideally, 
the fields radiated by the receiving and transmitting apertures should sample different (non-
overlapping) sub-sets of k-space, ensuring the non-redundant sampling of the Fourier 
components. Redundant sampling reduces the information content of the measurement modes 
sampling the imaging scene and therefore needs to be avoided [35]. 

The k-space analysis can be simplified under cirtain conditions. For the sake of simplicity, 
assume that two apertures are placed in the spatial-domain, transmitting and receiving, with 
linearly-oriented radiating elements as shown in Fig. 1. As an example, each array contains 
three radiating irises. As shown in Fig. 1(a), if the apertures are far away from the imaging 
domain, 0 1k >>r , the vectors denoting the Fourier components between the points and the 
imaging domain, r , are nearly parallel. When Fourier transformed, these points from the 
transmit and receive irises are projected onto their respective k-spaces reflected over the 
origin as depicted in Fig. 1(b). The 3D convolution of their projections in the k-space are 
placed in a k-space that is approximately a sphere double the radius of the transmit and 
receive k-spheres. As shown in Fig. 1(c), as the transmit and receive Fourier components 
occupy only a small region of the sphere that is approximately a section of a plane, the 
convolution of these two sections is likewise a plane. Alternatively, for the given case, we can 
convolve these discrete points in the spatial domain as shown in Fig. 1(a). Investigating Figs. 
1(a)-1(c), it can be seen that under the far-field condition, the projection of the convolved 
components on the k-space sphere to a 2D plane produces a similar pattern to the convolution 
of the selected discrete points in the spatial domain. 

 

Fig. 1. Spatial and k-space analysis of two apertures - 
0 1k >>r  (a) apertures with discrete 

transmit and receiving points, and their convolution in the spatial domain (b) projections of the 
discrete points onto k-spheres in the Fourier domain (c) convolution in the Fourier domain and 
projection onto a 2D plane. Rx and Tx denote receiving and transmitting, respectively. 

This suggests that the convolution of the fields at the aperture planes in the spatial domain 
provides a good estimation for analyzing the sampling provided by these apertures in the k-
space. It should be mentioned here that this assumption approximately holds in the close 
range case (Fresnel region), and exhibits a reliable approach for the optimization of the 
aperture distribution to optimize the k-space sampling in imaging applications. 

We analyzed various aperture structures with different radiating iris arrangements with the 
goal of maximizing diversity in k-space, including periodic, aperiodic, diagonal, square, 
circular and Mills-Cross configurations as shown in Fig. 2. 
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