Willow coppice as a riparian buffer strip


Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2019 The Authors.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Willow coppice as a riparian buffer strip

Aim: To assess the effectiveness of SRC willow as a riparian buffer strip using LCA

Introduction
Understanding the Food-Energy-Water nexus (FEW) is vital to meeting the Sustainable Development Goals set out by the United Nations in 2015.

As agricultural intensity increases across Europe there has been a growing concern over water quality.

The EU average for water bodies not achieving ‘Good or Better’ status is 47% [1].

Water pollution is often the result of nutrients from agricultural run-off, mainly caused by the over use of fertilizer.

Methodology
The site consists of willow buffer and unfertilised grassland plots trialled in triplicate (Fig. 2).

The site will be assessed to determine the effectiveness the system in regards to the impact categories:
- Global warming potential (GWP)
- Eutrophication potential (EP)
- Energy ratio (ER)

The study will follow the principles described in the ISO standard 140 44 [3].

The use of LCA has several advantages and limitations as described in Table 1.

Table 1 - Advantages and limitations of LCA

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCA highlights environmental impacts from a cradle-to-grave perspective [4].</td>
<td>LCA is static in nature, ignoring the effect of the timing of emissions.</td>
</tr>
<tr>
<td>LCA has been applied extensively to willow coppice in the literature.</td>
<td>LCA does not consider spatial variations.</td>
</tr>
<tr>
<td>LCA can identify priority areas where improvements will be most significant for reducing environmental impacts [2].</td>
<td>LCA does not consider temporal variations.</td>
</tr>
<tr>
<td>LCA is recognised by the European Commission as a useful tool for informing policy [3].</td>
<td>Agricultural systems are heavily affected by temporal and spatial variations.</td>
</tr>
</tbody>
</table>

Conclusions
The use of SRC willow as a riparian buffer strip can result in several positive environmental impacts:
- Protection of water resources
- Improvements in the sustainability of agriculture
- The provision of renewable energy
- A reduction in GHGs
- The implementation of SRC willow is limited by land availability and proximity to suitable conversion technologies.

Further work
Upon completion of the initial LCA of the system a novel LCA technique will be developed to incorporate the spatial and temporal variations of the system. Throughout literature this has been cited as a key way to improve the reliability of LCA results.