Kernel-based local order estimation of nonlinear nonparametric systems

Wenxiao Zhaoa, Han-Fu Chena, Er-wei Baib, Kang Lic

a Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
b Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
c School of Electronics, Electrical Engineering and Computer Science, Queen’s University, Belfast, UK

\textbf{A R T I C L E I N F O}

Article history:
Received 20 January 2013
Received in revised form 4 July 2014
Accepted 1 September 2014
Available online xxxx

Keywords:
Nonlinear ARX system
Recursive local linear estimator
Order estimation
Strong consistency

\textbf{A B S T R A C T}

We consider the local order estimation of nonlinear autoregressive systems with exogenous inputs (NARX), which may have different local dimensions at different points. By minimizing the kernel-based local information criterion introduced in this paper, the strongly consistent estimates for the local orders of the NARX system at points of interest are obtained. The modification of the criterion and a simple procedure of searching the minimum of the criterion, are also discussed. The theoretical results derived here are tested by simulation examples.

\section{1. Introduction}

Consider a single-input–single-output (SISO) nonlinear autoregressive system with exogenous input (NARX),

\begin{equation}
y_{k+1} = f(y_k, \ldots, y_{k+1-M}, u_k, \ldots, u_{k+1-M}) + \epsilon_{k+1},
\end{equation}

where u_k and y_k are the system input and output, respectively, ϵ_k is the driven noise, M is the known upper bound of the true system order and $f(\cdot)$ is the unknown function representing the system dynamics.

In recent years identification of system (1) has been an active research topic, estimating not only the nonlinear function $f(\cdot)$ itself (Bai, 2010; Bai, Tempo, & Liu, 2007; Ninness & Henriksen, 2010; Roll, Nazin, & Ljung, 2005; Schon, Wills, & Ninness, 2011; Zhao, Chen, & Zheng, 2010; Zhao, Zheng, & Bai, 2013) but also the system orders (Autinl, Biey, & Haslerl, 1992; Bai, Li, Zhao, & Xu, 2014; He & Asada, 1993; Hong, Mitchell, & Chen, 2008; Rhodes & Morari, 1998; Roll, Lind, & Ljung, 2006). As far as the estimation of the nonlinear function $f(\cdot)$ is of concern, the approaches can roughly be divided into two categories, the parametric approach (Ninness & Henriksen, 2010; Schon et al., 2011; You, accepted for publication; You, Xie, & Song, 2013; Zhou, Duan, & Lin, 2011; Zhou, Zheng, & Duan, 2011) and the nonparametric approach (Bai, 2010; Bai et al., 2007; Roll et al., 2005; Zhao et al., 2010, 2013), according to the description of $f(\cdot)$. In the former, it is usually assumed that $f(\cdot) = f(\cdot, \theta)$ with a known structure of $f(\cdot)$ and an unknown parameter θ, and consequently identification of $f(\cdot)$ is transformed into a parametric optimization problem for θ while in the latter approach, it is often to estimate the values of $f(\cdot)$ at the points of interest referred to as Model on Demand in the literature (see, e.g., Bai, 2010, Bai et al., 2007, Fan & Gijbels, 1996, Ninness & Henriksen, 2010, Roll et al., 2005, Zhao et al., 2010). The direct weight optimization (Roll et al., 2005), the local linear estimator (Bai, 2010) and its recursive version (Zhao et al., 2013), the stochastic approximation algorithm (Zhao et al., 2010) all belong to this class. Notice that most of the nonparametric identification algorithms are the weighted local average algorithms in a certain sense, and in order to derive the reliable estimates it requires to obtain the adequate measurements around the given points. In some applications, a global description of an unknown nonlinear system is too complicated both in structure and in dimension. This makes identification unreliable and the obtained model practically useless. Typical examples can be easily found in the fields of biology, atmospheric, geophysics, economy, engineering, communication, etc. An efficient and practical way is to split the task into a number of manageable pieces either in structure/dimension or in both. This is
the idea of local modeling including local polynomial modeling, a hot topic in statistics. This paper studies the problem of the order of the local modeling.

Over the last few decades considerable progress has been made on the order estimation as well as variable selection of linear stochastic systems. For example, the Akaike’s information criterion (AIC) (Akaike, 1974), Bayesian information criterion (BIC) and their generalizations (Chen & Guo, 1991), the recursive algorithms (Chen & Zhao, 2010), the so-called LASSO (Zou, 2006), are a few among many others. But these approaches are not applicable to system (1) due to its nonparametric and nonlinear description. The order estimation for nonlinear systems has also been studied in recent years, e.g., Autilin et al. (1992), Bomberger and Seborg (1998), He and Asada (1993), Kennel, Brown, and Abarbanel (1992), Mao and Billings (2006), Peduzzi (1980), Rhodes and Morari (1998) and Roll et al. (2006). In Autilin et al. (1992) an approach to estimate the local information criterion, for simplicity of reference, named as LIC, is proposed for the local nonlinear function \(f \), due to its nonparametric and nonlinear description. The order estimation of system (1) is to define the local order of \(f \), how to define and estimate the local order of \(f \) at the given \(x(2M) \) based on the observations \(\{y_k, u_k\}_{k \geq 1} \). A direct approach is to define the local order of \(f \) at \(x(2M) \) as the number of variables that contribute to the function value \(f(x(2M)) \). However, if the system order is defined in such a manner, it is difficult to choose the qualitative information based on which the algorithms estimating the local order can be designed, since \(f \) is nonlinear and nonparametric. On the other hand, it is clear that the function \(f(x) \) can be well approximated by a local linear model if \(x \) is close to \(x(2M) \), i.e.,

\[
\n(2M) = \mathcal{O}(\|x(2M) - x(2M)\|) + o(\|x(2M) - x(2M)\|) \quad (8)
\]

\[
\forall \|x(2M) - x(2M)\| \leq \varepsilon \quad \text{for small enough } \varepsilon > 0. \quad \text{Denote the gradient of } f(\cdot) \text{ at } x(2M) \text{ by}
\]

\[
\n(2M) = \begin{bmatrix}
\frac{\partial f}{\partial x_{1}^2} & \cdots & \frac{\partial f}{\partial x_{M}^2} & \cdots & \frac{\partial f}{\partial x_{2M}^2}
\end{bmatrix} \quad (9)
\]

\[
\text{if it exists. It is clear that if } f(x(2M)) \text{ depends only on } (p_0 + q_0) \text{ variables, i.e.,}
\]

\[
\text{if } f(x(2M)) = f(x_1^*, \ldots, x_{2M}^*)
\]

\[
\quad = f(x_1^*, \ldots, x_{p_0}^*) x^T(M - p_0),
\]

\[
\quad x_{M+1}^* \cdots x_{M+q_0}^* x^T(M - q_0)
\]

The set two examples demonstrate a need for the local order estimation at points of interest. To the authors’ knowledge, there has not much been done on this topic, though in Bai et al. (2014) a forward/backward approach was proposed. The numerical simulations seem to suggest that the forward/backward approach works well in terms of variable selection, but determination of the system order and its theoretical study remain open.

The contribution of the paper is as follows. First, a kernel-based local information criterion, for simplicity of reference, named as the local information criterion (LIC), is proposed for the local order estimation of system (1). Under moderate conditions, the estimates generated from LIC converge almost surely to the true local orders of system (1) at the points of interest. Second, a modification of LIC and a simple procedure of searching the minimum of LIC are suggested, and the strong consistency of the estimates is established as well.

The rest of the paper is arranged as follows. The LIC and the strong consistency of the estimates are given in Section 2. A modification of LIC is discussed in Section 3. Two simulation examples are given in Section 4 and some concluding remarks are addressed in Section 5. Some technical proofs are placed in the Appendix.

Notations. Let \((\Omega, \mathcal{F}, \mathbb{P})\) be the basic probability space. Let \(\mathcal{B}(\mathbb{R}^m)\) denote the Borel \(\sigma\)-algebra on \(\mathbb{R}^m\). For a vector \(x(m) = [x_1 \cdots x_m]^T \in \mathbb{R}^m\), denote its Euclidean norm by \(\|x(m)\|\) and its sub-vector by \(x(i : j) \equiv [x_i \cdots x_j]^T \in \mathbb{R}^{j-i+1}\). Denote by \(\|\nu(\cdot)\|\) the total variation norm of a signed measure \(\nu(\cdot)\). For two positive sequences \(a_n, b_n\), let \(a_n \sim b_n\) if \(a_n \leq c_1 b_n, \forall N \geq 1, \forall N \geq 1\), for some positive constants \(c_1\) and \(c_2\). Denote by \(\|\nu(\cdot)\|\) the gradient of the function \(f(\cdot)\) if it exists.

2. Local order estimation

2.1. Local information criterion for order estimation

We further introduce the following notations. Notice that the nonlinear function \(f(\cdot)\) in (1) is defined on \(\mathbb{R}^{2M}\). The regressor and the point of interest in \(\mathbb{R}^{2M}\) are denoted by \(\phi_k(M, M)\) and \(x^\ast(2M)\), respectively.

\[
\phi_k(M, M) = [y_k \cdots y_{k+M-1-M}]^T u_k \cdots u_{k+M-1-M}^T, \quad (4)
\]

\[
x^\ast(2M) = [x_1^\ast, \ldots, x_{2M}^\ast]^T. \quad (5)
\]

Similar to (4), for any fixed \(1 \leq p \leq M\) and \(1 \leq q \leq M\) let us define

\[
\phi_k(p, q) = [y_k \cdots y_{k+p-1-p}]^T u_k \cdots u_{k+q-1-q}^T. \quad (6)
\]

\[
x^\ast(p, q) = [x_1^\ast, \ldots, x_p^\ast, x_{p+1}^\ast, \ldots, x_{M+p+1}^\ast]^T. \quad (7)
\]

From the examples given in the introduction, it is seen that the orders of nonlinear systems may be varying from point to point. This is a different picture from linear systems. The question is how to define and estimate the local order of \(f(\cdot)\) at the given \(x(2M)\) based on the observations \(\{y_k, u_k\}_{k \geq 1}\). A direct approach is to define the local order of \(f(\cdot)\) at \(x(2M)\) as the number of variables that contribute to the function value \(f(x(2M))\). However, if the system order is defined in such a manner, it is difficult to choose the qualitative information based on which the algorithms estimating the local order can be designed, since \(f(\cdot)\) is nonlinear and nonparametric. On the other hand, it is clear that the function \(f(x)\) can be well approximated by a local linear model if \(x\) is close to \(x(2M)\), i.e.,
∀ x(M − p0) ∈ R^M−p0 and ∀ x(M − q0) ∈ R^M−q0, then \(\frac{∂f}{∂x} = 0 \) for

\[iv(x^*2(M)) = \left[\frac{∂f}{∂x_1} \cdots \frac{∂f}{∂x_{M-p0}} \right]_{-p0}^{M-p0} \cdot 0 \cdots 0 M−p0 \]

From (8) and (10) it is seen that if we can find a local linear model of \(f(\cdot) \) at \(x^*2(M) \), then we can estimate the local order by determining the biggest \(p \) and \(q \) such that \(\frac{∂f}{∂x_p} \neq 0 \), \(1 \leq p \leq M \) and \(\frac{∂f}{∂x_{M+q}} \neq 0 \), \(1 \leq q \leq M \).

To this end, we further impose the following assumptions.

A1 The finite upper bound \(M \) for orders \((p, q) \) is known;

A2 If \(|x| \leq c_1 \|x\| + c_2 \), \(x \in R^M \) for some positive constants \(c_1, c_2 \) and \(f(\cdot) \) is twice differentiable at \(x^*2(M) \). Further, \(\frac{∂f}{∂x_p} \neq 0 \) and \(\frac{∂f}{∂x_{M+q}} \neq 0 \) for some \(p = 1, \ldots, M \) and \(q = 1, \ldots, M \).

Definition 1. The local order of \(f(\cdot) \) at \(x^*2(M) \) is defined as \((s_0, t_0)\), where

\[s_0 = \max \left\{ p = 1, \ldots, M \mid \frac{∂f}{∂x_p} \neq 0 \right\} \]

\[t_0 = \max \left\{ q = 1, \ldots, M \mid \frac{∂f}{∂x_{M+q}} \neq 0 \right\} \]

It is natural to ask why \((s_0, t_0)\) rather than \((p_0, q_0)\) given in (9) is defined as the local order of \(f(\cdot) \) at \(x^*2(M) \)? Do we need to take the second order derivatives into consideration? By the Taylor expansion, we know that a local linear estimator approximates \(f(\cdot) \) at \(x^*2(M) \) well if \(x(2M) \in R^M \) is close to \(x^*2(M) \) and the second order terms can be neglected. In this regard, it is reasonable to find the local order of \(f(\cdot) \) at \(x^*2(M) \) from its local linear approximations. On the other hand, it is clear that if \(\frac{∂f}{∂x^*_p} \neq 0 \) and \(\frac{∂f}{∂x^*_q} \neq 0 \), then \((s_0, t_0) = (p_0, q_0)\). But sometimes, the local order given by **Definition 1** is smaller than \((p_0, q_0)\). We provide two examples to illustrate **Definition 1**.

Example: (iii): For the linear system \(y_{k+1} = a_1y_k + \cdots + a_{p_0}y_{k−p_0} + b_0u_k + \cdots + b_{q_0}u_{k−q_0} + e_{k+1} \) with \(a_{p_0} \neq 0, b_{q_0} \neq 0 \) we have \(f'(x^*2(M)) = a_1x_1 + \cdots + a_{p_0}x_{p_0} + b_0x_1 + \cdots + b_{q_0}x_{q_0} \). It is clear that \(\frac{∂f}{∂x_p} \neq 0, \frac{∂f}{∂x_q} \neq 0 \), and \(\frac{∂f}{∂x_{M+q}} = 0 \), \(i = p_0 + 1, \ldots, M \) and \(q_0 + 1, \ldots, 2M \). Thus for this example the system order \((s_0, t_0)\) derived by **Definition 1** equals \((p_0, q_0)\), which is consistent with the linear system theory.

Example: (iv): For the nonlinear system \(y_{k+1} = dy_{k−1} + bu_ku_{k−1} + e_{k+1} \) with \(d \neq 0 \), \(b \neq 0 \), we have \(f'(x(4)) = f'(x(4)) + 0 \), \(x_1 = 0, x_2 = 0 \), \(x_3 = 0 \), \(x_4 = 0 \). At the fixed point \(x^*(4) = \{ 0 \ 1 \ 0 \ 1 \} \in R^4 \), it is clear that \(f'(x^*(4)) = 0 \). If the Taylor expansion \(f'(x(4)) = f'(x(4)) + 0 \), \(x_1 = 0 \), \(x_2 = 0 \), \(x_3 = 0 \), \(x_4 = 0 \) for all \(x(4) \) close to \(x^*(4) \). This implies that the local order at the given point should be \((s_0, t_0) = (1, 1)\).

Based on the above discussion the key step of our approach to estimate the local order is to find the local linear model of \(f(\cdot) \) at \(x^*2(M) \). In Bai (2010) and Zhao et al. (2013), the kernel function-based local linear estimator (LLE) and its recursive version (RLLE) are considered, which estimate the values of the nonlinear function at fixed points together with their gradients. Let us first reformulate the RLLE introduced in Zhao et al. (2013), on which the order estimation algorithm is essentially based. Notice that the RLLE in Zhao et al. (2013) is with known system orders, but here the orders \((p, q)\) in the algorithm may vary in the set \((p, q) : 1 \leq p \leq M, 1 \leq q \leq M \).

With the given order \((p, q)\) and measurements \((u_k, y_{k+1})\), the RLLE estimate of \(f(\cdot) \) at time \(N + 1 \) is given by

\[\theta_{N+1}(p, q) = \left[\theta_{N+1}(p, q) \right] \]

\[\left. \begin{array}{c}
\{ \frac{∂f}{∂x_{M+q}} M−q0 \\
\frac{∂f}{∂x_p} M−p0
\end{array} \right\}_0^T
\]

(10)

where the kernel function \(w_k(x^*2(M)) \) is given by

\[w_k(x^*2(M)) = \frac{1}{b_k} w_k \left(\frac{1}{b_k} \right) \left(\frac{x^*2(M)}{M−2(M)} \right) \].

Notice that \(θ_{N+1}(p, q) = [θ_{N+1}(p, q) θ^T_{1,N+1}(p, q)] \). With the given order \((p, q)\), \(θ_{N+1}(p, q) \) serves as the estimate for \(f(x^*(M, M)) \) while \(θ_{1,N+1}(p, q) \) for \(v_f(x^*(M, M)) \).

Set

\[X_k(p, q) = \left\{ \frac{1}{N} \right\} \]

By simple algebra, RLLE in (11) can be expressed by

\[\theta_{N+1}(p, q) = \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T \right)^{-1} \times \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q) \right) \].

(14)

if the matrices \(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T, N \geq 1 \) are nonsingular. Notice that by the matrix inverse lemma, \(θ_{N+1}(p, q) \) given by (14) can be computed in a recursive way.

Remark 1. A widely used kernel is the Gaussian pdf, and in this case we have

\[w_k(x^*(2M)) = \frac{1}{(2π)^{M} b_k 2^{M} \exp \left[\frac{1}{2} \sum_{j=1}^{M} \left(\frac{y_{k+1}−x^j(2M)}{b_k} \right)^2 \right] \].

Other important kernels include the rectangle kernel, triangle kernel, Epanechnikov kernel, etc.

Remark 2. From the above example we see that the kernel function plays the role like a weight: The regressors \(ϕ_k(M, M) \) close to \(x^*(M, M) \) are taken into considerably higher account in comparison with those far away from \(x^*(M, M) \), because the kernel \(w_k(x^*(2M)) \) rapidly vanishes as the regressors deviate from \(x^*(M, M) \). As for the sequence \(\{b_k\}_{k=1}^\infty \), it is usually required that \(b_k \rightarrow 0 \) but \(b_k 2^{M} \rightarrow \infty \) as \(N \rightarrow \infty \). Thus, the number of data around \(x^*(2M) \) is increasing, and the estimates \(θ_{N}(p, q) \) and \(θ_{1,N}(p, q) \) generated by (11)–(12) are approaching to \(f(x^*(M, M)) \) and \(v_f(x^*(M, M)) \), respectively, as \(N \rightarrow \infty \), provided the orders \((p, q)\) match the true system orders well.

We introduce the following assumption which is adopted in Zhao et al. (2013) for the convergence analysis of RLLE.

Please cite this article in press as: Zhao, W., et al., Kernel-based local order estimation of nonlinear nonparametric systems. Automatica (2014), http://dx.doi.org/10.1016/j.automatica.2014.10.069
(A3) Select $b_k = 1/k^4$ for some $\delta \in (0, 1/(2(2M + 1)))$; $w(\cdot)$ is chosen as a symmetric probability density function (pdf) with $w(x) = 0 (\cdot)^{\rho(1)}$ for some $0 < \rho < 1$ as $\|x\| \to \infty$, and $\int_{S^2} w(x \Delta x^2) \, dx > 0$.

For estimating the local order (s_0, t_0), we introduce the following local information criterion (LIC), $L_{N+1}(p, q)$:

$$L_{N+1}(p, q) \triangleq \sigma_{N+1}(p, q) + a_N \cdot (p + q),$$

where

$$\sigma_{N+1}(p, q) \triangleq \sum_{k=1}^{N} u_k(x^*(2M)) \times (y_k + \theta_0 N, N, p, q - \theta_1 N, N, p, q)^T \times (\phi(p, q) \cdot x^*(p, q))^2,$$

\[\{a_N\}_{N \geq 1} \text{ is a positive sequence tending to infinity as } N \to \infty, \text{ and } \theta_0 N, N, p, q \text{ and } \theta_1 N, N, p, q \text{ are RLLE generated by } (11) \text{ with the given order } (p, q). \]

The order estimate (p_{N+1}, q_{N+1}) of (s_0, t_0) is defined by minimizing $L_{N+1}(p, q)$:

$$(p_{N+1}, q_{N+1}) \triangleq \arg\min_{1 \leq p, q \leq M} L_{N+1}(p, q).$$

Remark 3. Notice that $\partial f / \partial x^*_i = 0$, $i = s_0 + 1, \ldots, M, M + t_0 + 1, \ldots, 2M$. Thus $\theta_0 N, N, p, q = (\theta_0 N, N, p, q - \theta_1 N, N, p, q)^T$ approximates the true value well, then the function $\sigma_{N+1}(p, q)$ decreases as p and q increase but the performance may not change much for $p \geq s_0$ and $q \geq t_0$. On the other hand, $(p + q)$ increases as p and q increases. This indicates that (17) with appropriately chosen $(a_N)_{N \geq 1}$ defines a reasonable estimate for (s_0, t_0).

We list some further conditions used for convergence analysis of the order estimates. Note that (1) is an infinite impulse response nonlinear system, and the second order statistics may not contain adequate information for its identification. So ergodicity and mixing properties are often required, see, e.g., Fan and Gijbels (1996) in statistics literature.

$$(A4) \{E_k\}_{k \geq 0} \text{ is a sequence of independent and identically distributed (i.i.d.) random variables with } E_k = 0, 0 < E|E_k|^2 \gamma < \infty \text{ for some } \gamma \in (0, 2), \phi_k(M, M) \text{ and } \delta_k \text{ are mutually independent for each } k \geq 1.$$ (A5) The sequence $(\phi_k(M, M))_{k \geq 1}$ is geometrically ergodic, i.e., there exists an invariant probability measure $P_k(\cdot)$ on $(\mathbb{R}^M, \mathscr{B}^M)$ and some constants $c_1 > 0$ and $0 < \rho_1 < 1$ such that $\|P_k(\cdot) - P(\cdot)|_{\text{car}} \leq c_1 \rho^k$, where $P_k(\cdot)$ is the marginal distribution of $\phi_k(M, M), P(\cdot)$ is with a bounded pdf, denoted by $f_k(\cdot)$, which is with a continuous second order derivative at $x^*(2M)$.

(2) $\{\phi_k(M, M)\}_{k \geq 1}$ is an α-mixing with mixing coefficients $\{\alpha(k)\}_{k \geq 1}$ satisfying $\alpha(k) \leq c_2 \rho^k$ for some $c_2 > 0$ and $0 < \rho_2 < 1$ and $\|\hat{\phi}_k(M, M)\|_{\infty} \to \infty$ for $k \to 1$, where the constant α is specified in assumption (A2).

(A7) The sequence $(a_N)_{N \geq 1}$ satisfies

$$N^{1-4\delta} / a_N \to 0, \quad a_N / N^{1-2\delta} \to 0, \quad \delta > 0 \text{ is given in (A3).}$$

The conditions (A5) and (A6), in fact, are on the asymptotical independency and stationarity of the sequence $\{\phi_k(M, M)\}_{k \geq 1}$, and they can be guaranteed by assuming stability of the system with input excited in a certain sense as shown in Zhao et al. (2010, 2013). The conditions given in Zhao et al. (2010, 2013) cover a large class of systems, including the ARX system, the Hammerstein systems, and the Wiener system, etc. So for ease of presentation, in this paper we assume that $(\phi_k(M, M))_{k \geq 1}$ is a mixing process with an asymptotically stationary distribution.

The convergence of (17) is considered in the next section.

2.2. Strong consistency of estimates

For any fixed $1 \leq p \leq M$ and $1 \leq q \leq M$, define

$$\forall f(x^*(p, q)) \triangleq \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_p} & \frac{\partial f}{\partial x_{p+1}} & \cdots & \frac{\partial f}{\partial x_{M+q}} \end{bmatrix}^T,$$

and

$$\tilde{\theta}_{1, N+1}(p, q) \triangleq \left[\theta_{1, N+1}(p, q)(1 : p)^T 0 \cdots 0 \right]_{M-p} \left[\theta_{1, N+1}(p, q)(p + 1 : p + q)^T 0 \cdots 0 \right]_{M-q}^T \in \mathbb{R}^{2M}.$$

Denote the maximal and minimal eigenvalues of $\sum_{i=1}^{N} w_i(x^*(2M)) X_i(p, q) X_i(p, q)^T$ by $\lambda_{\text{max}}(N)$ and $\lambda_{\text{min}}(N)$, respectively.

Theorem 1. Under conditions (A1)-(A7), the order estimate (p_N, q_N) given by (17) is strongly consistent,

$$(p_N, q_N) \to_{N \to \infty} (s_0, t_0) \quad \text{a.s.}$$

Proof. See Appendix. \square

2.3. A simple procedure for searching the minimum of LIC

To obtain estimates defined by (17) it is required to calculate M^2 function values of $L_{N+1}(p, q)$ and then to find the minimum among them. In this section we introduce a simple procedure for searching the minimum of (17) for which the computational complexity is $O(M)$.

Define

$$\hat{p}_{N+1} \triangleq \text{argmin}_{1 \leq p \leq M} L_{N+1}(p, M), \quad \hat{q}_{N+1} \triangleq \text{argmin}_{1 \leq q \leq M} L_{N+1}(p, q).$$

where $L_{N+1}(p, q)$ is defined by (15).

Theorem 2. Assume (A1)-(A7) hold. Then

$$\tilde{p}_N \to_{N \to \infty} s_0 \quad \text{a.s.},$$

$$\tilde{q}_N \to_{N \to \infty} t_0 \quad \text{a.s.}$$

Proof. Here we just sketch the proof. The proof is divided into two steps. First, the strong consistency of \hat{p}_N is proved. This can be done by carrying out almost the same discussion as that given in Theorem 1. Second, based on $\tilde{p}_N \approx s_0$ and hence $L_{N+1}(\tilde{p}_{N+1}, q) = L_{N+1}(s_0, q)$ for all N large enough, the convergence of \tilde{q}_N is established via a similar derivation as that for (25). \square
Remark 4. The order estimates can also be defined by
\[\hat{q}_{N+1} = \arg\min_{1 \leq q \leq M} L_{N+1}(M, q), \quad (27) \]
\[\hat{p}_{N+1} = \arg\min_{1 \leq p \leq M} L_{N+1}(p, \hat{q}_{N+1}), \quad (28) \]
which are strongly consistent under (A1)–(A7).

3. Modified LIC

In the last section, based on LIC the strongly consistent estimate for the system order at a fixed point is obtained. We now introduce a modified LIC as follows:
\[\tilde{L}_{N+1}(p, q) \triangleq N \log \sigma_{N+1}(p, q) + a_N \cdot (p + q), \quad (29) \]
where \(\sigma_{N+1}(p, q) \) is given by (16).

The estimate \((\tilde{p}_{N+1}, \tilde{q}_{N+1}) \) for \((s_0, t_0)\) is given by minimizing \(\tilde{L}_{N+1}(p, q) \), i.e.,
\[(\tilde{p}_{N+1}, \tilde{q}_{N+1}) \triangleq \arg\min_{1 \leq p \leq M} \tilde{L}_{N+1}(p, q), \quad (30) \]

Theorem 3. Under conditions (A1)–(A7), the order estimate \((\tilde{p}_{N}, \tilde{q}_{N})\) given by (30) is strongly consistent,
\[(\tilde{p}_{N}, \tilde{q}_{N}) \rightarrow_{N \rightarrow \infty} (s_0, t_0) \quad \text{a.s.} \quad (31) \]
Proof. See Appendix. \(\square \)

Define
\[\tilde{p}_{N+1} \triangleq \arg\min_{1 \leq p \leq M} \tilde{L}_{N+1}(p, M), \quad (32) \]
\[\tilde{q}_{N+1} \triangleq \arg\min_{1 \leq q \leq M} \tilde{L}_{N+1}(\tilde{p}_{N+1}, q), \quad (33) \]
where \(\tilde{L}_{N+1}(p, q) \) is defined by (29).

Similar to Theorem 2, the following result holds.

Theorem 4. Assume (A1)–(A7) hold. Then
\[\tilde{p}_{N} \rightarrow_{N \rightarrow \infty} s_0 \quad \text{a.s.} \quad (34) \]
\[\tilde{q}_{N} \rightarrow_{N \rightarrow \infty} t_0 \quad \text{a.s.} \quad (35) \]
Remark 5. The order estimates can also be defined by
\[\tilde{q}_{N+1} \triangleq \arg\min_{1 \leq q \leq M} \tilde{L}_{N+1}(M, q), \quad (36) \]
\[\tilde{p}_{N+1} \triangleq \arg\min_{1 \leq p \leq M} \tilde{L}_{N+1}(p, \tilde{q}_{N+1}), \quad (37) \]
which are strongly consistent under (A1)–(A7).

Remark 6. LIC and its modification considered in this paper look similar to the well known AIC, BIC, and their generalizations. However, AIC, BIC, and others are in a global sense and thus they are inapplicable to the local order estimation. While for LIC the kernel function \(w_k(x^*(2M)) \) plays a bandwidth like role to stress those measurements which are close to the given point and to take their average. The sequence \{\(a_N \)\} in AIC, BIC, and their generalizations can be chosen as \(N^\alpha \) for any \(0 < \alpha < 1 \), or \(\log^{1+\beta} N \) for some \(\beta \geq 0 \), or even a constant (Chen & Guo, 1987, 1991), but here in LIC the choice of \((a_N) \) is more delicate.

4. Discussions and simulations

In the above sections, we have introduced two criteria, i.e., \(L_N(p, q) \) defined by (15) and \(\tilde{L}_N(p, q) \) defined by (29), respectively. Theoretically, any \(a_N \) that meets the requirement in assumption (A7), for example, \(a_N = cN^{1-\delta} \) for any constant \(c > 0 \), guarantees the a.s. convergence of the estimates generated by (15) and (29). However, from the numerical calculation point of view, there exists some difference between \(L_N(p, q) \) and \(\tilde{L}_N(p, q) \).

(i) Let us take \(a_N = cN^{1-\delta} \) for some constant \(c > 0 \) as an example. As required in assumption (A3), the parameter \(\delta \) usually is small and thus even for the integer \(N > 0 \) large enough it still holds that \(N^{1-\delta} \approx N \). On the other hand, since the kernel function \(w_k(x^*(2M)) \) is involved in the residual term, i.e.,
\[\sigma_{N+1}(p, q) \triangleq \sum_{k=1}^{N} w_k(x^*(2M)) \left(y_{k+1} - \theta_{L_N+1}(p, q) \right) - \theta_{L_N+1}(p, q)^T (\tilde{p}_k(p, q) - x^*(p, q)) \]

it often holds that \(\sigma_{N+1}(p, q) = o(N) \) and thus \(a_N(p + q) \) is the dominated term in \(L_N(p, q) \), i.e.,
\[L_N(p, q) = \sigma_{N+1}(p, q) + a_N(p + q) \approx O(N \cdot (p + q)). \]

This indicates that for convergence of the estimates generated from the criterion \(L_N(p, q) \), in order to balance the penalty term \(a_N(p + q) \) it usually requires the number of data be large enough, and thus the convergence rate is slow. To speed up the convergence rate, one may choose, for example, \(a_N = cN^{1-\delta} \) for some \(c > 0 \) small enough to reduce the effect of the penalty term \(a_N(p + q) \) in \(L_N(p, q) \).

(ii) By noticing the first term in \(\tilde{L}_N(p, q) \) defined by (29), it can be found that \(N = o(N \log \sigma_{N+1}(p, q)) \) and thus \(a_N(p + q) \) with \(a_N \) satisfying (A7) is a moderate penalty term in \(\tilde{L}_N(p, q) \). So the convergence rate of estimates generated from \(\tilde{L}_N(p, q) \) should be faster than that of (17).

In the following we present the numerical simulations to verify the theoretical analysis.

Example 1. Consider an FIR system
\[y_{k+1} = f(u_k, u_{k-1}, u_{k-2}) + \varepsilon_{k+1}, \quad (38) \]
\[f(u_k, u_{k-1}, u_{k-2}) = \begin{cases}
 u_k + u_{k-1} + u_{k-2}, & \text{if } u_k > 1, \\
 u_k + u_{k-1}, & \text{if } -1 \leq u_k \leq 1, \\
 u_k, & \text{if } u_k < -1.
\end{cases} \]

where the inputs \(\{u_k\}_{k=1}^{\infty} \) and the noises \(\{\varepsilon_k\}_{k=1}^{\infty} \) are mutually independent i.i.d. Gaussian random variables with distributions \(\mathcal{N}(0, 2^2) \) and \(\mathcal{N}(0, 1^2) \), respectively. It is noticed that the right-hand side of (38) is free of the system output, so \(x^*(2M) \) defined by (5) changes to \(x^*(M) \triangleq [u_1^*, \ldots, u_M^*]^T \) and \(L_{N+1}(p, q) \) and \(\sigma_{N+1}(p, q) \) defined by (15) and (16) correspondingly change to functions \(L_{N+1}(q) \) and \(\sigma_{N+1}(q) \), respectively. Assume the upper bound \(M \) of system orders is 4. Thus, \(x^*(M) = [u_1^*, \ldots, u_M^*]^T \). We choose two points for test, \(x^*(M) = [2 \ 1 \ 1 \ 0]^T \) and \(x^*(M) = [0 \ 0 \ 0 \ 0]^T \). Note that the true local orders are different at the two points.

More than 30 simulations have been performed. Here we only present one of them since the performance of others is almost the same. Tables 1 and 2 show the performance of the proposed estimator with the data set \(\{u_k, y_{k+1}\}_{k=1}^{N} \) for \(N = 1000, 2000, 3000, 4000 \), respectively, where
\[L_N(p, q) = \sigma_{N+1}(q) + 0.005N^{1-\delta} \cdot q, \quad (39) \]
\[\tilde{L}_N(p, q) = N \log \sigma_{N+1}(q) + 0.5N^{1-\delta} \cdot q \quad (40) \]
with \(\delta = 0.05 \).
It can be found that the criterion \(\widehat{L}_{N+1}(q) \) always gives the correct order estimates 3 and 2 for the local orders of the system at \(x_1^*(M) \) and \(x_2^*(M) \), respectively. It can also be found that the convergence rate of estimates generated from \(\widehat{L}_{N+1}(q) \) is faster than that generated from \(L_{N+1}(q) \).

Example 2. Consider a benchmark problem for nonlinear system identification (Bai et al., 2007; Zhao et al., 2013):

\[
\begin{align*}
 x_1(k + 1) &= \left(\frac{x_1(k)}{1 + x_2^2(k)} + 1 \right) \sin x_2(k), \\
 x_2(k + 1) &= x_2(k) \cos x_2(k) + x_1(k) \exp \left(-\frac{x_1^2(k) + x_2^2(k)}{8} \right) + \frac{u_k^2}{1 + u_k^2 + 0.5 \cos(x_1(k) + x_2(k))} + \varepsilon_k,
\end{align*}
\]

where \(u_k \) and \(y_k \) are the system input and output, respectively, \(\varepsilon_k \) is the system noise with the Gaussian distribution \(\varepsilon_k \sim \mathcal{N}(0, \sigma^2) \), \(\sigma = 0.1 \), and \(x_1(k) \) and \(x_2(k) \) are the unmeasured system states.

The NARX system

\[
y_{k+1} = f(y_k, \ldots, y_{k-M}, u_k, \ldots, u_{k-M}) + \varepsilon_{k+1}
\]

is used to approximate the unknown system. Notice that in existing literature (Bai et al., 2007; Zhao et al., 2013), a common choice for the order \(M \) is \(M = 3 \). Here we adopt \(M = 3 \) as the upper bound for the system order.

First, \(N(=1000) \) samples \(u_k, y_k \) are generated by i.i.d. with the Gaussian distribution \(u_k \sim \mathcal{N}(0, 1) \). The local orders as well as the values of the function \(f(\cdot) \) and its gradients \(cf(\cdot) \) are estimated based on \(u_k, y_k \). Then the input signals \(u_k = \sin \frac{\pi k}{4} + \sin \frac{\pi k}{2} \), \(k = N + 1, \ldots, N + 100 \) are fed into the estimated model to calculate the one-step predicted output. Specifically, the intervals \([-3, 3]\) and \([-2, 2]\) are equally divided into 5 and 4 subintervals, respectively and the domain of interest \(S = \{y_1, y_2, y_3, u_3, u_2, u_1\} \subset \mathbb{R}^6 \) is decomposed into 8000 disjoint small cubes \(S = \bigcup_{i=1}^{8000} S_i \), and from each \(S_i \), a point \(\varphi_i^* \) is randomly chosen, \(i = 1, \ldots, 8000 \). Then with \(\delta = 0.04 \) and \(q_k = N^{-1-3\delta} \), the algorithms (14) and (29) are applied to estimate the local orders denoted by \((p_{Ni}, q_{Ni}) \), and parameters denoted by \(f_{Ni}(\varphi_i^*(p_{Ni}, q_{Ni})) \) and \(\varphi_{Ni}(\varphi_i^*(p_{Ni}, q_{Ni})) \) at each \(\varphi_i^* \), \(i = 1, \ldots, 8000 \), where \(\varphi_i^*(p_{Ni}, q_{Ni}) \) is a \((p_{Ni} + q_{Ni}) \)-vector defined by (7). Then the one-step predictions are given as follows,

\[
\hat{y}_{k+1} = \hat{f}_N(\varphi_i^*(p_{Ni}, q_{Ni})) + \varphi_{Ni}(\varphi_i^*(p_{Ni}, q_{Ni}))^T (\hat{\varphi}_N(p_{Ni}, q_{Ni}) - \varphi_i^*(p_{Ni}, q_{Ni})),
\]

with regressor

\[
\hat{\varphi}_N(p_{Ni}, q_{Ni}) = (\hat{y}_k, \ldots, \hat{y}_{k-p_{Ni}}, u_k, \ldots, u_k-q_{Ni})^T,
\]

if \(\varphi_i^*(3, 3) \in S_i \) for some \(i = 1, \ldots, 8000 \) where \(k = N + 1, \ldots, N + 100 \).

Ten simulations are performed. Figs. 1 and 2 show one of the simulations. In Fig. 1 the solid lines are the actual output \(y_k \), \(k = N + 1, \ldots, N + 100 \), the dotted line is the predicted output generated by (41) and the dashed line is the predicted output generated by (42) without order estimation, i.e.,

\[
\hat{y}_{k+1} = \hat{f}_N(\varphi_i^*(3, 3)) + \varphi_{Ni}(\varphi_i^*(3, 3))^T (\hat{\varphi}_N(3, 3) - \varphi_i^*(3, 3)).
\]

Fig. 2 shows the estimated orders at the 8000 given points. Notice that the blocks at the bottom of the figure represent the 1st to the 100th points while those at the top of the figure represent the 7901st to the 8000th points. The estimated orders are indicated with different depths of color.

To test the performance of algorithm, the following quality of fit (QOF) is calculated

\[
1 - \frac{\sum_{k=N+1}^{N+100} (y_k - \hat{y}_k)^2}{\sum_{k=N+1}^{N+100} (y_k - \bar{y}_N)^2} \times 100\%	ext{,}
\]

where \(\bar{y}_N \) is the predicted output.

Table 3 shows the average of QOF of the ten simulations and the standard deviation. From Figs. 1 and 2 and Table 3 we find that
Table 3
Average of QOF in 10 simulations.

<table>
<thead>
<tr>
<th></th>
<th>QOF with order estimation</th>
<th>QOF without order estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>70.36%</td>
<td>71.55%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0516</td>
<td>0.0423</td>
</tr>
</tbody>
</table>

1. Theoretically, the order estimation algorithm requires to compute the local order at each point of interest. For some special systems, for example, the piecewise-defined systems, the number of data points needed can be significantly reduced. In this case, by implementing the proposed algorithms, fewer local orders have to be estimated and better models of the system can be obtained.

2. LIC is based on the recursive locally linear estimator introduced in Zhao et al. (2013). We can also use its nonrecursive version investigated in Bai (2010) to construct LIC and to carry out corresponding convergence analysis.

3. The results in the paper can easily be extended to the case $1 \leq s_0 \leq M_1$ and $1 \leq t_0 \leq M_2$ for some known but different M_1 and M_2. For future research, it is of interest to remove the upper bound assumption on the true system orders.

4. The order estimation algorithms in the paper are nonrecursive, i.e., for each $N \geq 1$ we need to calculate the function $L_{N+1}(p, q)$, $1 \leq p \leq M$, $1 \leq q \leq M$ and then to find the minimum to serve as the estimate. It is interesting to consider the recursive way to obtain the order estimates.

5. The closed-loop order estimation of NARX systems also deserves further research.

5. Concluding remarks

In the paper LIC is suggested for the local order estimation of NARX systems and the consistency of the estimates is established. Some important issues connected with LIC are summarized as follows.

1. Theoretically, the order estimation algorithm requires to compute the local order at each point of interest. For some special systems, for example, the piecewise-defined systems, the number of data points needed can be significantly reduced. In this case, by implementing the proposed algorithms, fewer local orders have to be estimated and better models of the system can be obtained.

2. LIC is based on the recursive locally linear estimator introduced in Zhao et al. (2013). We can also use its nonrecursive version investigated in Bai (2010) to construct LIC and to carry out corresponding convergence analysis.

3. The results in the paper can easily be extended to the case $1 \leq s_0 \leq M_1$ and $1 \leq t_0 \leq M_2$ for some known but different M_1 and M_2. For future research, it is of interest to remove the upper bound assumption on the true system orders.

4. The order estimation algorithms in the paper are nonrecursive, i.e., for each $N \geq 1$ we need to calculate the function $L_{N+1}(p, q)$, $1 \leq p \leq M$, $1 \leq q \leq M$ and then to find the minimum to serve as the estimate. It is interesting to consider the recursive way to obtain the order estimates.

5. The closed-loop order estimation of NARX systems also deserves further research.

Acknowledgments

Wenxiao Zhao would like to thank Miss Jinlong Lei for her help in numerical simulation. The research of Wenxiao Zhao was supported by the National Key Basic Research Program of China (973 program) under Grant No. 2014CB845301 and the National Natural Science Foundation (NSF) of China under Grants No. 61104052, 61273193, 61227902, and 61134013. The research of Han-Fu Chen was supported by the 973 program of China under Grant No. 2014CB845301 and the NSF of China under Grants No. 61273193, 61120106011, and 61134013. The research of Er-Wei Bai was supported in part by NSF CNS-1329057 and DOE DE-FG52-09NA29364. The research of Kang Li was supported by EPSRC project under EP/L001063/1.

Appendix

Lemma 1. Assume that (A1)–(A7) hold. Then the following estimates take place:

\[
\frac{1}{N} \sum_{k=1}^{N} w_k(x^*(2M)) \left(f(\varphi_k(M, M)) - f(x^*(2M)) \right) = \frac{1}{2(1-2\delta)b_N^2} \int_{x \in \mathbb{R}^M} w(x) x^T \frac{\partial^2 f}{\partial x^T(2M)^2} x dx \cdot f(x^*(2M)) + o(b_N^2) + o \left(\frac{1}{N^{1-\gamma} b_N^M} \right) \quad \text{a.s.} \quad (44)
\]

\[
\frac{1}{N} \sum_{k=1}^{N} w_k(x^*(2M)) \left(\varphi_k(M, M) - x^*(2M) \right) = \frac{f(\varphi_k(M, M)) - f(x^*(2M))}{N}\]

Please cite this article in press as: Zhao, W., et al., Kernel-based local order estimation of nonlinear nonparametric systems. Automatica (2014), http://dx.doi.org/10.1016/j.automatica.2014.10.069
\[
- \mathbf{N}^T (\mathbf{x}^*(2M))^T (\mathbf{y}(\mathbf{M}, M) - \mathbf{x}^*(2M)) \]
\[
= \frac{1}{2(1 - 3\epsilon)} b_k^2 \int_{\mathbb{R}^{2M}} w(x)x^2 \cdot \mathbf{N}^T (\mathbf{x}^*(2M))^T dx + o(b_k^2) + o\left(1/\left(N^{\frac{3}{2}} + b_k^2 N^{-1}\right)\right) \quad \text{a.s.} \quad (45)
\]
\[
\sum_{k=1}^{N-1} w_k(\mathbf{x}^*(2M))\xi_{k+1} = O\left(N^{\frac{3}{2}} + M\epsilon\right), \quad \text{a.s.} \quad (46)
\]
\[
\sum_{k=1}^{N-1} w_k(\mathbf{x}^*(2M))(\mathbf{y}(\mathbf{M}, M) - \mathbf{x}^*(2M)) \xi_{k+1} = O\left(N^{\frac{3}{2}} + (M-1)\epsilon\right), \quad \text{a.s.} \quad (47)
\]
for any \(\epsilon > 0\),
\[
\frac{1}{N} \sum_{k=1}^{N} w_k(\mathbf{x}^*(2M)) \xi_{k+1} = 0 \quad \text{a.s.} \quad (48)
\]
for any measurable function \(\mathbf{g}(x)\) being continuous at \(\mathbf{x}^*(2M)\) and \(|\mathbf{g}(x)| \leq c_1 |x|^2 + c_2\), \(x \in \mathbb{R}^{2M}\) for some positive \(c_1, c_2\) and \(t\), and
\[
\mathbf{E} \mathbf{w}_k^T(\mathbf{x}^*(2M)) = O\left(\frac{1}{b_k^{2\alpha}}\right). \quad (49)
\]
for any fixed \(\alpha > 0\).

Proof. The results similar to (44)-(48) are in Zhao et al., 2013 where the exact orders of the NARX system are not required and only their upper bounds are assumed to be available. Here we consider (49). By the definition of \(w_k(\mathbf{x}^*(2M))\), we have
\[
\mathbf{E} \mathbf{w}_k^T(\mathbf{x}^*(2M)) = \int_{\mathbb{R}^{2M}} \frac{1}{b_k^{2\alpha}} w^\alpha \left(\frac{1}{b_k} (x - \mathbf{x}^*(2M))\right) \mathbf{P}_k(dx),
\]
\[
= I_{1,k} + I_{2,k}, \quad (50)
\]
where
\[
I_{1,k} = \int_{\mathbb{R}^{2M}} \frac{1}{b_k^{2\alpha}} w^\alpha \left(\frac{1}{b_k} (x - \mathbf{x}^*(2M))\right) \mathbf{f}_{\mathbf{N}}(x) dx,
\]
\[
I_{2,k} = \int_{\mathbb{R}^{2M}} \frac{1}{b_k^{2\alpha}} w^\alpha \left(\frac{1}{b_k} (x - \mathbf{x}^*(2M))\right) \cdot \left(\mathbf{P}_k(dx) - \mathbf{P}_0(dx)\right).
\]
By denoting \(s = (x - \mathbf{x}^*(2M))/b_k\) and then changing coordinates in (51), it follows that \(I_{1,k} = O\left(1/b_k^{2\alpha}\right)\). By the geometrical ergodicity of \(\mathbf{y}(\mathbf{M}, M)\), it follows that \(I_{2,k} = O\left(\rho^k/b_k^{2\alpha}\right)\) for some \(0 < \rho < 1\). Combining (51) and (52) leads to (49). □

Lemma 2 (Zhao et al., 2013). Assume that (A1)-(A7) hold. Then
\[
\sum_{k=1}^{N} w_k(\mathbf{x}^*(2M))\mathbf{X}_k(\mathbf{M}, M)\mathbf{X}_k(\mathbf{M}, M)^T
\]
\[
= N \begin{bmatrix} 1 & 0 \\ 0 & N^{-\frac{3}{2}} I \end{bmatrix} A_N \begin{bmatrix} 1 & 0 \\ 0 & N^{-\frac{3}{2}} I \end{bmatrix}^T. \quad (53)
\]
and
\[
A_N \rightarrow \mathbf{f}_{\mathbf{N}}(\mathbf{x}^*(2M)) \begin{bmatrix} 1 & 0 \\ 0 & 1 - 2\epsilon \end{bmatrix} \int_{\mathbb{R}^{2M}} w(x)x^2 dx \quad > 0 \quad \text{a.s.} \quad (54)
\]
where \(I \in \mathbb{R}^{2M \times 2M}\) and \(A_N = \begin{bmatrix} A_N(1, 1) & A_N(1, 2) \\ A_N(2, 1) & A_N(2, 2) \end{bmatrix}\) with elements \(A_N(1, 1), A_N(1, 2), A_N(2, 1), \text{ and } A_N(2, 2)\) defined as follows:
\[
A_N(1, 1) = \frac{1}{N} \sum_{k=1}^{N} w_k(\mathbf{x}^*(2M)), \quad A_N(2, 1) = A_N(1, 2)^T
\]
\[
A_N(1, 2) = \frac{1}{N^{1-\epsilon}} \sum_{k=1}^{N} w_k(\mathbf{x}^*(2M))(\mathbf{y}(\mathbf{M}, M) - \mathbf{x}^*(2M))^T,
\]
\[
A_N(2, 2) = \frac{1}{N^{1-2\epsilon}} \sum_{k=1}^{N} w_k(\mathbf{x}^*(2M))(\mathbf{y}(\mathbf{M}, M) - \mathbf{x}^*(2M)) \cdot (\mathbf{y}(\mathbf{M}, M) - \mathbf{x}^*(2M))^T.
\]
At given \(\mathbf{x}^*(2M)\), define
\[
\xi_{k+1} \triangleq f(\mathbf{y}(\mathbf{M}, M)) - f(\mathbf{x}^*(2M)) - \mathbf{N}^T (\mathbf{x}^*(2M))^T (\mathbf{x}^*(2M) - \mathbf{x}^*(2M)) + \xi_{k+1}. \quad (55)
\]

Lemma 3. Assume (A1) holds. Then the function \(\sigma_{N\epsilon+1}(p, q)\) defined by (16) with any \(1 \leq p \leq M\) and \(1 \leq q \leq M\) takes the following expression:
\[
\sigma_{N\epsilon+1}(p, q) = \tilde{\theta}_{N\epsilon+1}(p, q)^T \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\mathbf{X}_i(\mathbf{M}, M)
\]
\[
\times \mathbf{X}_i(\mathbf{M}, M)^T \tilde{\theta}_{N\epsilon+1}(p, q)
\]
\[
+ 2\tilde{\theta}_{N\epsilon+1}(p, q)^T \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\mathbf{X}_i(\mathbf{M}, M)\xi_{i+1}
\]
\[
+ \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\xi_{i+1}^2. \quad (56)
\]
where \(\xi_{i+1}\) is defined in (55). Further, if (A1)-(A7) hold and if \(p \geq s_0\) and \(q \geq t_0\), then
\[
\sigma_{N\epsilon+1}(p, q) = -\left(\sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\mathbf{X}_i(\mathbf{p}, q)\xi_{i+1}\right)^T
\]
\[
\cdot \left(\sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\mathbf{X}_i(\mathbf{p}, q)\xi_{i+1}\right)^{-1}
\]
\[
\cdot \left(\sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\mathbf{X}_i(\mathbf{p}, q)\xi_{i+1}\right)
\]
\[
+ \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M))\xi_{i+1}^2. \quad (57)
\]

Proof. By the definition of \(\sigma_{N\epsilon+1}(p, q)\) we have that
\[
\sigma_{N\epsilon+1}(p, q) = \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M)) \left(\mathbf{y}_{i+1} - \mathbf{y}_{N\epsilon+1}(\mathbf{p}, q)\right)^T
\]
\[
- \mathbf{y}_{N\epsilon+1}(p, q)^T (\mathbf{y}_i(p, q) - \mathbf{x}^*(p, q))^2
\]
\[
= \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M)) \left(\mathbf{y}_i(p, q) - \mathbf{x}^*(p, q)^2
\]
\[
- \mathbf{y}_{N\epsilon+1}(p, q)^T (\mathbf{y}_i(p, q) - \mathbf{x}^*(p, q))^2
\]
\[
= \sum_{i=1}^{N} w_i(\mathbf{x}^*(2M)) \left(\mathbf{y}_i(p, q) - \mathbf{x}^*(p, q)^2
\]

Please cite this article in press as: Zhao, W., et al., Kernel-based local order estimation of nonlinear nonparametric systems. Automatica (2014), http://dx.doi.org/10.1016/j.automatica.2014.10.069
\[+ \nabla f(x^*(2M))^T (\phi_i(M, M) - x^*(2M)) \\
- \theta_{0,N+1}(p, q) - \tilde{\theta}_{1,N+1}(p, q)^T (\phi_i(M, M) - x^*(2M)) \\
+ f(\phi_i(M, M) - f(x^*(2M))) \\
- \nabla f(x^*(2M))^T (\phi_i(M, M) - x^*(2M)) + \varepsilon_{i+1} + 1) \times \\
\sum_{i=1}^{N} w_i(x^*(2M))(\tilde{\theta}_{i+1}(p, q))^T X_i(M, M) + \xi_{i+1} + 1)^2. \quad (58) \]

where \(\xi_{i+1} \) is defined by (55) and \(\tilde{\theta}_{i+1}(p, q) \) is given by (21). From (58) we then obtain (56).

We now consider the case \(p \geq s_0 \) and \(q \geq t_0 \). By Lemma 2, the matrices \(\sum_{k=1}^{N} w_k(x^*(2M))X_k(M, M)X_k(M, M)^T \) are nonsingular for all \(N \) large enough. This ensures \(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T > 0 \), for \(1 \leq p \leq M, 1 \leq q \leq M \) and all \(N \) large enough by noticing the definition of \(X_k(p, q) \). Without losing generality, we assume that these matrices are positive definite for \(N \geq 1 \). Then the formula (14) takes place. From (14) and by noticing \(p \geq s_0 \) and \(q \geq t_0 \) we have

\[\theta_{i+1}(p, q) = \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T \right)^{-1} \]
\[\times \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)y_{k+1} \right) \]
\[= \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T \right)^{-1} \]
\[\cdot \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q) \left(f(x^*(2M)) \right) \right. \\
\left. + \nabla f(x^*(p, q))^T (\phi_i(p, q) - x^*(p, q)) \right. \\
\left. + f(\phi_i(M, M) - f(x^*(2M)) \right. \\
\left. - \nabla f(x^*(p, q))^T (\phi_i(p, q) - x^*(p, q)) + \varepsilon_{i+1} \right). \quad (59) \]

which, by noticing the definition of \(\varepsilon_{i+1} \) given by (55), implies

\[\left[f(x^*(2M)) \nabla f(x^*(p, q))^T \right] - \theta_{i+1}(p, q) \]
\[= - \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T \right)^{-1} \]
\[\cdot \left(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q) \varepsilon_{k+1} \right). \quad (60) \]

Noticing (21) we find that

\[\left[f(x^*(2M)) \nabla f(x^*(p, q))^T \right] - \theta_{i+1}(p, q)^T X_k(p, q) \]
\[= \tilde{\theta}_{i+1}(p, q)^T X_k(M, M), \quad (61) \]

which combining with (56) and (60) yields (57). \(\square \)

Proof of Theorem 1. The proof is motivated by Chen and Guo (1987) for the order estimation of linear systems. Here we present it in detail in a nonlinear and nonparametric description. By Lemma 2, we may assume \(\sum_{k=1}^{N} w_k(x^*(2M))X_k(p, q)X_k(p, q)^T > 0 \), for \(1 \leq p \leq M, 1 \leq q \leq M \) and all \(N \geq 1 \).

Because all \(p, q, s_0, t_0 \) are positive integers between 1 and \(M \), for (22) it suffices to show that any limit point of \((p_n, q_n)_{N \geq 1} \) coincides with \((s_0, t_0) \). Assume that \((p', q') \) is a limit point of \((p_n, q_n)_{N \geq 1} \), i.e., there exists a subsequence of \((p_n, q_n)_{N \geq 1} \) denoted by \((p_{n_k}, q_{n_k})_{k \geq 1} \), such that \((p_{n_k}, q_{n_k}) \rightarrow (p', q') \) as \(k \rightarrow \infty \). Since \((p_{n_k}, q_{n_k})_{k \geq 1} \) and \((p', q') \) are nonnegative integers, there exists \(K > 0 \) such that

\[(p_{n_k}, q_{n_k}) = (p', q'), \quad \forall k \geq K. \quad (62) \]

For (22) we need to prove the impossibility of the following cases:

\(i) \ p' < s_0; \ ii) \ q' < t_0; \ iii) \ p' + q' > s_0 + t_0. \)

We first consider case (i). By Lemmas 1 and 2, it follows that

\[\lambda^{M,M}(N) \sim N, \quad \lambda^{M,M}_{\min}(N) \sim N^{1-\beta}. \quad (63) \]

Define

\[M_{N+1} \equiv \tilde{\theta}_{N+1}(p', q')^T \]
\[\cdot \sum_{k=1}^{N} w_k(x^*(2M))X_k(M, M)X_k(M, M)^T \tilde{\theta}_{N+1}(p', q') \]
\[+ 2\tilde{\theta}_{N+1}(p', q')^T \sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)\xi_{i+1}, \quad (64) \]

and

\[\alpha_{N+1} \equiv \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \right)^{-1} \]
\[\cdot \tilde{\theta}_{N+1}(p', q'). \quad (65) \]

From Lemma 3, for all \(k \geq K \) it follows that

\[\alpha_{N+1}(p', q') = M_{N+1} + \sum_{i=1}^{N} w_i(x^*(2M))\xi_{i+1}. \quad (66) \]

By the definition of \(\tilde{\theta}_{N+1}(p', q') \) and noticing \(p' < s_0 \), we know that

\[\| \tilde{\theta}_{N+1}(p', q') \|^2 \geq \left(\frac{\partial f}{\partial x^{t_0}} \right)^2 \geq \frac{\partial f}{\partial x^{t_0}} \quad (67) \]

and the following equality takes place:

\[M_{N+1} = \alpha_{N+1}^T \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \right)^{-1} \]
\[+ 2\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \tilde{\theta}_{N+1}(p', q') \]
\[\cdot \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)\xi_{i+1} \right) \]
\[= \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \right)^{-1} \alpha_{N+1}. \quad (68) \]

For RLLE, we have

\[\left[\begin{array}{c}
\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \\
\cdot \sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)\xi_{i+1}
\end{array} \right] \\
= \left[\begin{array}{cc}
N & 0 \\
0 & I
\end{array} \right] \left[\begin{array}{c}
A_{2}(1, 1) \\
A_{2}(1, 2)
\end{array} \right]^{-1} \left[\begin{array}{c}
B_{2}(1) \\
B_{2}(2)
\end{array} \right], \quad (69) \]
where $A_{ij}(i, j)$, $i, j = 1, 2$ are defined in Lemma 2 and

\[B_N(1) = \frac{1}{N^{1-t}} \sum_{k=1}^{N} \int_{\mathcal{M}} w_k(x^*(2M)) \cdot \left(f(\varphi_k(M, M)) - f(x^*(2M)) \right) \]
\[- \left(f(x^*(2M))^T(\varphi_k(M, M) - x^*(2M)) \right) + \varepsilon_k + 1 \]
\[B_N(2) = \frac{1}{N^{1-2\alpha}} \sum_{k=1}^{N} \int_{\mathcal{M}} w_k(x^*(2M)) \cdot (\varphi_k(M, M) - x^*(2M)) \cdot \left(f(\varphi_k(M, M)) - f(x^*(2M)) \right) \]
\[- \left(f(x^*(2M))^T(\varphi_k(M, M) - x^*(2M)) \right) + \varepsilon_k + 1. \]

By Lemmas 1 and 2, it follows that

\[\begin{pmatrix} A_N(1, 1) & A_N(1, 2) \\ A_N(2, 1) & A_N(2, 2) \end{pmatrix} \xrightarrow{N \to \infty} f_0(x^*(2M)) \]
\[\cdot \int_{\mathcal{M}} w(x)xx^Tdx > 0 \quad \text{a.s.} \quad (70) \]

and

\[\begin{pmatrix} B_N(1) \\ B_N(2) \end{pmatrix} \xrightarrow{N \to \infty} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{a.s.} \quad (71) \]

Then by (69), (70), and (71), we have

\[\left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \right) \]
\[\cdot \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)\xi_{i+1} \right) = o(1), \quad (72) \]

and by noticing (67),

\[M_{N_{k+1}^+} = \alpha_{N_{k+1}^+} \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)X_i(M, M)^T \right)^{-1} \]
\[\cdot \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(M, M)\xi_{i+1} \right) \]

\[\geq \frac{1}{2} \min_{(M, M)} (N_k) \left(\frac{\partial f}{\partial x_{0}^*} \right)^2, \quad (73) \]

from which and (66) we have

\[\sigma_{N_{k+1}}(p', q') \geq \frac{1}{2} \min_{(M, M)} (N_k) \left(\frac{\partial f}{\partial x_{0}^*} \right)^2 \]
\[+ \sum_{i=1}^{N} w_i(x^*(2M))\varepsilon_{i+1}^2. \quad (74) \]

Now we consider $\sigma_{N_{k+1}}(s_0, t_0)$. By Lemma 3, it holds that

\[\sigma_{N_{k+1}}(s_0, t_0) = - \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(s_0, t_0)\xi_{i+1} \right) \]
\[\cdot \left(\sum_{i=1}^{N} w_i(x^*(2M))X_i(s_0, t_0)X_i(s_0, t_0)^T \right)^{-1} \]

and

\[\leq \sum_{i=1}^{N} w_i(x^*(2M))^2 \xi_{i+1}^2. \]

By the definition of ξ_k given by (55), we have

\[\sum_{i=1}^{N} w_i(x^*(2M))^2 \xi_{i+1}^2 \leq 2 \sum_{i=1}^{N} w_i(x^*(2M)) \left(f(\varphi_i(M, M)) - f(x^*(2M)) \right) \]
\[- \left(f(x^*(2M))^T(\varphi_i(M, M) - x^*(2M)) \right)^2 \]
\[+ 2 \sum_{i=1}^{N} w_i(x^*(2M))\varepsilon_{i+1}^2. \quad (76) \]

By Lemma 1, it follows that

\[\sum_{i=1}^{N} w_i(x^*(2M)) \left(f(\varphi_i(M, M)) - f(x^*(2M)) \right) \]
\[- \left(f(x^*(2M))^T(\varphi_i(M, M) - x^*(2M)) \right)^2 = 0(N_k), \quad (77) \]

and

\[\sum_{i=1}^{N} w_i(x^*(2M))E\varepsilon_{i+1}^2 = O(N_k). \quad (78) \]

We now prove that

\[\sum_{k=1}^{\infty} \frac{1}{k} w_k(x^*(2M)) (\xi_{k+1}^2 - E\xi_{k+1}^2) < \infty, \quad \text{a.s.} \quad (79) \]

For this by noticing (A4) it suffices to show that

\[\sum_{k=1}^{\infty} \frac{1}{k^{2+n}} Ew_k^{2+n}(x^*(2M)) < \infty. \quad (80) \]

By Lemma 1, we have

\[\sum_{k=1}^{\infty} \frac{1}{k^{2+n}} Ew_k^{2+n}(x^*(2M)) = O \left(\sum_{k=1}^{\infty} \frac{1}{k^{n}} \right) \]
\[= O(1), \quad (81) \]

since $\delta \in \left(0, \frac{1}{2(2M+1)} \right]$ and hence $0 < \delta = 1/2$. The estimate (81) implies (80) and hence (79).

Combining (75), (77), (78), and (79), we have

\[\sigma_{N_{k+1}}(s_0, t_0) \leq \sum_{i=1}^{N} w_i(x^*(2M))^2 \xi_{i+1}^2 = O(N_k). \quad (82) \]
By (63), (74), and (75) and paying attention to (A7) we have the following

\[
0 \geq L_{N_{k}+1}(p', q') - L_{N_{k}+1}(s_{0}, t_{0}) = \sigma_{N_{k}+1}(p', q') - \sigma_{N_{k}+1}(s_{0}, t_{0}) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) \\
\geq \lambda_{\text{min}}^{(M,M)}(N_{k}) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = \lambda_{\text{min}}^{(M,M)}(N_{k}) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = \lambda_{\text{min}}^{(M,M)}(N_{k}) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) \xrightarrow{k \to \infty} \infty, \quad (83)
\]

where \(c > 0 \) may depend on sample paths. The contradiction ensures that \(p' \geq s_{0} \). Similarly, we can prove that \(q' \geq t_{0} \).

Finally, we consider the case (iii); \(p' + q' > s_{0} + t_{0} \). Since we have established \(p' \geq s_{0} \) and \(q' \geq t_{0} \), by Lemma 3, it follows that

\[
\sigma_{N_{k}+1}(p', q') = -\left(\sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))X_{i}(p', q')\xi_{i+1} \right)^{T} \\
\cdot \left(\sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))X_{i}(p', q')X_{i}(p', q')^{T} \right)^{-1} \\
\cdot \left(\sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))X_{i}(p', q')\xi_{i+1} \right) + \sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))\xi_{i+1}^{2} \quad (84)
\]

By Lemmas 1 and 2, we have

\[
\left(\sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))X_{i}(p', q')\xi_{i+1} \right)^{T} \\
\cdot \left(\sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))X_{i}(p', q')X_{i}(p', q')^{T} \right)^{-1} \\
\cdot \left(\sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))X_{i}(p', q')\xi_{i+1} \right) + \sum_{i=1}^{N_{k}} w_{i}(\mathbf{x}^{*}(2M))\xi_{i+1}^{2} = O(\lambda_{k}^{1/4d}k),
\]

where \(\mathbf{1} \in \mathbb{R}^{p'q'} \) and \(\xi \in \mathbb{R}^{p'q'1 \times (p'q')}. \)

From (75), (84), and (85) we have

\[
0 \geq L_{N_{k}+1}(p', q') - L_{N_{k}+1}(s_{0}, t_{0}) = \sigma_{N_{k}+1}(p', q') - \sigma_{N_{k}+1}(s_{0}, t_{0}) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = -c\lambda_{k}^{1/4d} + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = a_{N_{k}}(p' + q' - s_{0} - t_{0} \xrightarrow{k \to \infty} \infty, \quad (86)
\]

where the limit takes place by noticing (A7) and \(p' + q' > s_{0} + t_{0} \). The obtained contradiction indicates that \(p' = s_{0} \) and \(q' = t_{0} \). This completes the proof. □

Proof of Theorem 3. We only sketch the proof.

It suffices to show that any limit point of \((\bar{p}_{N_{k}}, \bar{q}_{N_{k}})_{N_{k} \geq 1} \) coincides with \((s_{0}, t_{0}) \). Assume that \((p', q') \) is a limit point of

\[
(p_{N_{k}}, q_{N_{k}})_{N_{k} \geq 1}, \quad (87)
\]

where \(\lambda_{k} \geq K \).

For (31) we need to prove the impossibility of the following cases: (i) \(p' < s_{0} \); (ii) \(q' < t_{0} \); (iii) \(p' + q' > s_{0} + t_{0} \).

We first consider the case (i). By (63), (74), and (82) we have

\[
0 \geq L_{N_{k}+1}(p', q') - L_{N_{k}+1}(s_{0}, t_{0}) = N_{k} \log \left(1 + \frac{\sigma_{N_{k}+1}(p', q') - \sigma_{N_{k}+1}(s_{0}, t_{0})}{\sigma_{N_{k}+1}(s_{0}, t_{0})} \right) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = N_{k} \frac{\lambda_{k}}{\lambda_{\text{min}}^{(M,M)}(N_{k})} + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = \lambda_{\text{min}}^{(M,M)}(N_{k}) \left(c + o(1) + \frac{a_{N_{k}}}{\lambda_{\text{min}}^{(M,M)}(N_{k})}(p' + q' - s_{0} - t_{0}) \xrightarrow{k \to \infty} \infty, \quad (88)
\]

where \(c > 0 \) may depend on sample paths. The obtained contradiction ensures that \(p' \geq s_{0} \). Similarly, we can prove that \(q' \geq t_{0} \).

Finally, we consider the case (ii). From (82), (84), and (85) we have

\[
0 \geq L_{N_{k}+1}(p', q') - L_{N_{k}+1}(s_{0}, t_{0}) = N_{k} \log \left(1 + \frac{\sigma_{N_{k}+1}(p', q') - \sigma_{N_{k}+1}(s_{0}, t_{0})}{\sigma_{N_{k}+1}(s_{0}, t_{0})} \right) + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = N_{k} \frac{\lambda_{k}}{\lambda_{\text{min}}^{(M,M)}(N_{k})} + a_{N_{k}}(p' + q' - s_{0} - t_{0}) = \frac{\lambda_{\text{min}}^{(M,M)}(N_{k})}{N_{k}} \left(c + o(1) + \frac{a_{N_{k}}}{\lambda_{\text{min}}^{(M,M)}(N_{k})}(p' + q' - s_{0} - t_{0}) \xrightarrow{k \to \infty} \infty, \quad (89)
\]

where \(c > 0 \) may depend on sample paths. Thus the case \(p' + q' > s_{0} + t_{0} \) is impossible, which in turn guarantees that (31) takes place. □

References

Wenxiao Zhao earned his B.Sc. degree from the Department of Mathematics, Shandong University, China in 2003 and a Ph.D. degree from the Institute of Systems Science, AMSS, the Chinese Academy of Sciences (CAS) in 2008. After this he was a postdoctoral student at the Department of Automation, Tsinghua University. During this period he visited the University of Western Sydney, Australia. Dr. Zhao then joined the Institute of Systems of Sciences, CAS in 2010. He now is with the Key Laboratory of Systems and Control, CAS as an associate professor. His research interests are in system identification, adaptive control, and system biology. He serves as the general secretary of the IEEE Control Systems Beijing Chapter and an associate editor of the Journal of Systems Science and Mathematical Sciences.

Hao-Fu Chen graduated from the Leningrad (St. Petersburg) State University, Russia.

He is a Professor of the Key Laboratory of Systems and Control of the Chinese Academy of Sciences (CAS). His research interests are mainly in stochastic systems, including system identification, adaptive control, and stochastic approximation and its applications to systems, control, and signal processing. He authored and coauthored more than 200 journal papers and eight books. He served as an IFAC Council Member (2002–2005), President of the Chinese Association of Automation (1993–2002), and a Permanent member of the Council of the Chinese Mathematics Society (1991–1999). He is an IEEE Fellow, IFAC Fellow, a Member of TWAS, and a Member of CAS.

Er-Wei Bai was educated in Fudan University, Shanghai Jiaotong University, both in Shanghai, China, and the University of California at Berkeley.

Dr. Bai is Professor and Chair of Electrical and Computer Engineering Department, and Professor of Radiology at the University of Iowa where he teaches and conducts research in identification, control, signal processing and their applications in engineering and life science. He also holds the rank of World Class Research Professor, Queen’s University, Belfast, UK. Dr. Bai is an IEEE Fellow and a recipient of the President’s Award for Teaching Excellence and the Board of Regents Award for Faculty Excellence.

Kang Li received the B.Sc. degree from Xiangtan University, Hunan, China, in 1989, the M.Sc. degree from the Harbin Institute of Technology, Harbin, China, in 1992, and the Ph.D. degree from Shanghai Jiaotong University, Shanghai, China, in 1995. He is currently a Professor of Intelligent Systems and Control with the School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, UK.

His research interests include nonlinear system modeling, identification, and control, and bio-inspired computational intelligence, with recent applications on power systems and renewable energy, electric vehicles, and polymer processing.