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Abstract—The development of 5G enabling technologies brings
new challenges to the design of power amplifiers (PAs). In partic-
ular, there is a strong demand for low-cost, nonlinear PAs which,
however, introduce nonlinear distortions. On the other hand,
contemporary expensive PAs show great power efficiency in their
nonlinear region. Inspired by this trade-off between nonlinearity
distortions and efficiency, finding an optimal operating point is
highly desirable. Hence, it is first necessary to fully understand
how and how much the performance of multiple-input multiple-
output (MIMO) systems deteriorates with PA nonlinearities. In
this paper, we first reduce the ergodic achievable rate (EAR)
optimization from a power allocation to a power control problem
with only one optimization variable, i.e. total input power. Then,
we develop a closed-form expression for the EAR, where this
variable is fixed. Since this expression is intractable for further
analysis, two simple lower bounds and one upper bound are
proposed. These bounds enable us to find the best input power
and approach the channel capacity. Finally, our simulation
results evaluate the EAR of MIMO channels in the presence
of nonlinearities. An important observation is that the MIMO
performance can be significantly degraded if we utilize the whole
power budget.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless commu-
nication systems have been well investigated over the last
two decades thanks to their ability to enhance the spectral
efficiency and reliability [1], [2]. It is also well known that in
a MIMO system, power is mainly consumed by the last parts of
the transmitter chain, and in particular by the power amplifiers
(PAs). Most contemporary MIMO systems deploy expensive,
linear PAs although these components are intimately limited in
terms of power efficiency. Yet, with the current strive towards
network densification (i.e. the massive MIMO paradigm [3]),
future systems are anticipated to deploy inexpensive, nonlinear
PAs of high power efficiency.

In this context, only a few publications have studied the
impact of nonlinear PAs on the MIMO capacity. For instance,
[4] and [5] considered a precise power consumption model
of PAs, and then introduced a low complexity algorithm to
maximize the sum rate of multiple-input single-output systems.
They also extended their beamforming method to the case of
parallel MIMO by utilizing a dynamic programming language
algorithm. Although the presented model is relatively precise,
it does not go beyond the linear region where we can enjoy
higher power efficiency. In [6], the authors considered the

impact of PA nonlinearities on channel estimation and then
proposed a quantized method to optimize the bit-error-rate and
mutual information. Moreover, they proposed a constellation-
based compensation method for high-power amplifier nonlin-
earities in [7]. There are also some other research efforts like
[8]–[13], which have dealt with PA nonlinearities in wireless
communications, but they either do not focus on MIMO
systems or do not evaluate EAR.

Motivated by the above discussion, this paper focuses on
studying the performance of a MIMO system deploying non-
linear PAs. In particular, we start our analysis by optimizing
the ergodic achievable rate (EAR) over the input power
matrix. Then, we simplify this power allocation problem to
a power control problem where the only variable is the total
consumed power. Finally, we propose lower and upper bounds
on the EAR, which can be easily optimized by conventional
optimization methods. These analytical results followed by
simulations highlight the fact that using the full power budget
will reduce the EAR to zero, since PAs nonlinearities become
dominant.

Notation: Upper and lower case bold-face letters denote
matrices and vectors, respectively. Also, the symbols (·)T ,
(·)∗, (·)†, Tr(·), and rank(·) indicate transpose, conjugate,
conjugate transpose, trace operator, and matrix rank, respec-
tively. Furthermore, |·| and det(·) both denote the determinant
operator. Finally, E [·] is the expectation operation, and IN
refers to an N ×N identity matrix.

II. SIGNAL AND SYSTEM MODELS

The traditional model of flat-fading point-to-point MIMO
channels with Nt transmit antennas and Nr receive antennas
is

y = Hs + w (1)

where s = [s1, s2, . . . , sNt ]
T ∈ CNt×1 presents the complex

Gaussian distributed transmitted signal with zero mean and
covariance matrix Ks = E[ss†]. The received signal is denoted
by y ∈ CNr×1, while the Nr-dimensional vector w models
the additive circularly symmetric complex Gaussian noise
w ∼ CN (0, N0INr ). Throughout this paper, we assume that
the propagation channel coefficients are independently circular
symmetric complex Gaussian variable with unit variance.
Additionally, H ∈ CNr×Nt is assumed to be known to the



receiver, but not at the transmitter; however, its statistical
characteristics are available at the transmitter. Note that the
channel matrix H is normalized so that N0 contains both noise
variance and pathloss.

Unfortunately, the above canonical model falls short of
describing the nonlinear behavior of PAs and its impact on the
end-to-end performance. To this end, in the following we ex-
tend the model of (1) to account for these nonlinearities. Note
that our analysis remains agnostic to any type of nonlinearity
that may be induced by mixers, filters and D/A converters.

In order to incorporate the impact of transceiver impair-
ments, we first need to explain the input/output relation of
the power amplifier. In general, for a complex baseband input
signal represented as uin(t) = A(t)ejφ(t), the signal at the
output of a PA with amplitude gain gA(A(t)) and phase gain
gφ(A(t)) is

uout(t) = g(uin(t)) = gA(A(t))ej(φ(t)+jgφ(A(t))). (2)

There are various types of PA models for the amplitude and
phase gains, such as ideal clipping, traveling wave tube, and
solid-state amplifier model [14]. Fortunately, all the models
can be encompassed under the umbrella of a polynomial PA
model. For the sake of simplicity, we hereafter assume that all
PAs have the same nonlinear conversion functions which are
known at the transceivers [6], [7]. In general, a polynomial PA
model can be easily determined by the following curve fitting
of degree N :

gA(Ai) =

N−1∑
n=0

βn+1A
n+1
i (3)

where Ai is the voltage of the input signal in the i-th PA,
i = 1, 2, . . . , Nt. Hereafter, we also consider memoryless PAs
and ignore the phase distortion [12].1 Thus, the coefficients,
βn+1 for n = 0, 1, . . . , N − 1, are real constant numbers. By
this preamble and regarding the Bussgang’s theorem [15], the
i-th PA output can be expressed in the form of

si = αixi + di i = 1, 2, . . . , Nt (4)

where di represents the distortion noise which is uncorrelated
of the input signal, xi. Note that, di is a zero-mean (not
necessarily Gaussian) distribution with power density σ2

di
.

Since the input signal has a complex Gaussian distribution,
its magnitude (Ai) follows a Rayleigh probability density
function, such that

P(Ai) =
Ai
σ2
i

exp

(
− A2

i

2σ2
i

)
(5)

where E [x∗i xi] = 2σ2
i . Furthermore, in (4), si stands for

the amplifier output which will be emitted from the transmit

1This assumption is widespread in the literature especially for solid state
PAs. In other words, memory leads to delay and consequently phase distortion.
Therefore, we can ignore the phase distortion in these PAs as they are
memoryless.

antennas, and αi is a constant affected by the PA gain function
and its input power. In general, it can be shown that [13]

αi =
E [xi

∗si]

E [xi∗xi]
(6)

σ2
di = E [si

∗si]− α2
iE [xi

∗xi] (7)

where we use the fact that E [x∗i di] = 0. Subsequently, these
parameters can be easily expressed as

αi =
1

2σ2
i

∫ ∞
0

AigA(Ai)P (Ai)dAi (8)

σ2
di =

∫ ∞
0

g2
A(Ai)P (Ai) dAi

− 1

2σ2
i

(∫ ∞
0

AigA (Ai)P (Ai) dAi

)2

. (9)

Accordingly, it can be shown that the Bussgang’s parameters
for the polynomial model, can be obtained as [13]

αi =

N−1∑
n=0

βn+12n/2σni Γ
(

2 +
n

2

)
(10)

σ2
di =

2N∑
n=2

(
γn2n/2σni Γ

(
1 +

n

2

))

−2σ2
i

(
N−1∑
n=0

βn+12n/2σni Γ
(

2 +
n

2

))2

(11)

where Γ(.) is the Gamma function [16, Eq. (8.310.1)], and γn
can be defined as follows

γn =

n−1∑
k=1

β̆kβ̆
∗
n−k (12)

and

β̆k
∆
=

{
βk, 1 ≤ k ≤ N
0, otherwise.

Now, the impact of PA nonlinearities can be incorporated into
(1) based on the Bussgang’s model (4):

y = H (Λx + d) + w (13)

where Λ = diag {α1, α2, . . . , αNt} and d =
[d1, d2, . . . , dNt ]

T . This equation can be reorganized
as

y = HΛx + (Hd + w)︸ ︷︷ ︸
n

(14)

in which the vector n denotes the aggregated noise at the
receiver with the covariance matrix

Rn = E
[
nn†

]
= HDH† +N0INr (15)

where we define D
∆
= E

[
dd†

]
.

III. ERGODIC ACHIEVABLE RATE ANALYSIS

In this section, we analyze the EAR in the presence of PA
nonlinearities by simplifying the power allocation problem to
a power control problem.



A. Ergodic Achievable Rate
Based on the channel impairment model in Section II, we

are now ready to determine the MIMO achievable rate under
Gaussian signaling for an arbitrary number of antennas. When
Gaussian symbols are transmitted over the MIMO channel, the
capacity (in bits/s) is given by

R = sup
Tr(Q)≤Pt,Q�0

E
[
B log2

(
det
(
INr + R−1

n HΛQΛ†H†
))]
(16)

where B denotes the bandwidth. For the sake of clarity, we
will drop B from our subsequent analytical results, but in
the numerical results section, we do include the impact of
bandwidth. Moreover, Q = E

[
xx†

]
and Tr(Q) ≤ Pt indicates

that the transmitter is constrained to its total power. For the
purpose of simplification we define Tr(Q) =

∑Nt
i=1 2σ2

i
∆
= P ,

and also define the instantaneous MIMO channel correlation
matrix as

W
∆
=

{
HH†, Nr ≤ Nt
H†H, Nr > Nt

(17)

since its eigenvalues, λi, will be often used in our calculations.
Remark 1. In order to reach the ergodic capacity, we need to
assume a propagation channel with the maximum uncertainty
[17]. For channel with known finite energy, the independent
and identically distributed (i.i.d) Gaussian channel provides
the maximum entropy. On the other hand, capacity can be
achieved by jointly Gaussian input signals [1]. Although we
consider the inputs to the PAs to be jointly Gaussian, the
outputs of the PAs are not strictly jointly Gaussian. In light of
this fact, in the remainder of this paper, we will be referring
to (16) as the maximum EAR.
Proposition 1. The EAR is a concave function in its domain
with respect to the covariance matrix Q.

Proof. Note that log(det(·)) is a concave function in the cones
of positive semi-definite matrices [18]. Also R−1n , Λ, and Q
are all positive semi-definite matrices. Thus, the EAR is a
concave function in its domain.

Proposition 2. The maximum EAR is achieved when Q is a
scaled identity matrix, i.e. Q = P

Nt
INt .

Proof. See Appendix I.

It is noteworthy that the PAs nonlinearities are affected by
two factors: (i) PA transition function gA(·), which is assumed
to be the same for all the PAs; and (ii) the input power of
each PA, i.e. 2σ2

i . As a consequence, Proposition 2 simplifies
extensively our analysis as it allocates equal powers to each
PA. In other words, we can conclude that σ1 = σ2 = . . . =

σNt
∆
= σ, then α1 = α2 = . . . = αNt

∆
= α, and σd1 = σd2 =

. . . = σdNt
∆
= σd. Therefore, the power allocation optimization

upon the covariance matrix will be reduced to a power control
over the scalar, i.e. P . Correspondingly, the noise covariance
and EAR are respectively simplified as follows

Rn = σ2
dHH† +N0INr (18)

R= sup
0≤P≤Pt

E
[
log2

∣∣∣∣INr+
Pα2

Nt
(N0INr + σ2

dHH†)−1HH†
∣∣∣∣].
(19)

Note that, in contrast to Telatar’s methodology, our objective
function in (19) is not necessarily a strictly ascending or
descending function of the power P . This is due to the
presence of σ2

d in (19) which also increases with P .

Corollary 1. The maximum EAR can be rewritten as

R = sup
0≤P≤Pt

E

[
log2 det

(
INt + Z

)]
(20)

where Z is a diagonal Nt × Nt square matrix whose entries
are ζi,i =

(
Pα2λi

Ntσ2
dλi+NtN0

)
.

Proof. See Appendix II.

Proposition 3. Assuming i.i.d Rayleigh fading channels, the
maximum EAR under the proposed PAs nonlinearities model
is

R = sup
0≤P≤Pt

r

ln 2
K

r∑
m=1

r∑
n=1

(−1)n+m det(Ω)Γ(t+ 1)

t+1∑
k=1

(
e1/fEt+2−k

(
1

f

)
− e1/gEt+2−k

(
1

g

))
(21)

where we define q ∆
= max{Nt, Nr}, r

∆
= min{Nt, Nr}, t

∆
=

n+m+ q − r − 2, and K ∆
= [
∏r
i=1(q − i)!

∏r
j=1(r − j)!]−1

is a constant. Moreover, f ∆
=

Pα2+Ntσ
2
d

N0Nt
, g ∆

=
σ2
d

N0
, and also

En(x) = xn−1Γ(1− n, x). Here, Γ(s, x) =
∫∞
x
ts−1e−tdt is

incomplete Gamma function [16, Eq. (8.350.2)]. Finally, Ω is
an (r − 1)× (r − 1) matrix whose (i, j)-th entry is given by

Ω = (φ
(n)(m)
ij + q − r)!r−

1
r−1 (22)

for which,

φ
(n)(m)
ij

∆
=


i+ j − 2, if i ≤ n , and j ≤ m
i+ j, if i ≥ n , and j ≥ m
i+ j − 1, otherwise.

(23)

Proof. Assuming i.i.d. Rayleigh fading channels, W is full-
rank with probability one [19]. Recalling Corollary 1, the
maximum EAR can be expressed as

R = sup
0≤P≤Pt

E

log2

rank(Z)∏
i=1

(1 + ζi,i)


= sup

0≤P≤Pt
E
[
r log2

(
1 +

Pα2λ

Ntσ2
dλ+NtN0

)]
. (24)

Note that W is an r×r random, positive semi-definite matrix
following the complex Wishart distribution. Therefore, it has



real non-negative eigenvalues, and the probability density
function of its unordered eigenvalue, λ, can be found in [20]

Pλ(λ) = K

r∑
m=1

r∑
n=1

(−1)n+mλn+m+q−r−2e−λ det(Ω).

(25)

We can now define a ∆
= Pα2, b ∆

= Ntσ
2
d, c ∆

= N0Nt, and then
proceed along with some integral techniques

R = sup
0≤P≤Pt

∫ ∞
0

r log2

(
1 +

a+ b

c
λ

)
Pλ(λ)dλ

−
∫ ∞

0

r log2

(
1 +

b

c
λ

)
Pλ(λ)dλ. (26)

Then, the final result can be easily obtained following the
methodology of [21].

B. Asymptotic Analysis

The maximum EAR may behave as a non-increasing (non-
monotonic) function in the problem on hand. This is due to
the presence of the nonlinearity distortion power σ2

d in (19),
which also scales with the input power (see (11)). Thus, we
seek to work out the EAR in the asymptotic regime. First, we
obtain the EAR when we use the whole power budget, i.e.
P = Pt → ∞. After some manipulations, it can be shown
that the EAR approaches to a saturation point, according to

lim
σ→∞

α = βN2N−1/2σN−1Γ

(
3 +N

2

)
(27)

lim
σ→∞

σ2
d = γ2N2Nσ2NΓ(1 +N)−Nt2Nβ2

Nσ
2NΓ2

(
3 +N

2

)
(28)

where σ2 = P
2Nt

is the power of input signal (real/imaginary
part). Thus,

Rhigh = lim
P→∞

R

= r log2

(
1 +

β2
NΓ2

(
3+N

2

)
γ2NΓ(1 +N)−Ntβ2

NΓ2
(
3 + n

2

)) .
(29)

The high-power asymptote in (29) reveals that increasing the
input power with no bound, leads to a saturated value for the
EAR. This observation is in sharp contrast with the classical
MIMO results [1], [2], which however, consider perfect linear
PAs.2 At the other extreme, we find a closed-form expression
for the EAR in the low SNR regime where P → 0. In this
case, we use the approximation ln(1 + u) ∼ u for small u to
get

Rlow = lim
P→0

R = sup
0≤P≤Pt

β2
1

(log2 e)P

N0Nt
E
[
Tr(W)

]
= β2

1

(log2 e)PNr
N0

. (30)

2Interestingly, our result is in line with [22] which used a Gaussian model
for the hardware residual distortions.

The result in (30) is consistent with some classical MIMO
results where PAs are assumed to be perfectly linear [19].
This is due to the fact that in the low SNR regime, PAs are
still operating in their linear regime.

C. Bounds

In the previous subsections, we have reduced the problem
from a power allocation optimization to a power control based
on only one variable, P . However, (21) and (24) are inherently
complicated formulas. Motivated by this, we confine the
results between an upper and two lower bounds such that
Rlower ≤ R ≤ Rupper. We start with the upper bound using
Jensen’s inequality for the concave function log2 (1 + x) in
(a) and for the concave function 1

1+ 1
x

in (b):

R = sup
0≤P≤Pt

E
[
r log2

(
1 +

Pα2λ

Ntσ2
dλ+NtN0

)]
(a)

≤ sup
0≤P≤Pt

r log2

(
1 + E

[
Pα2λ

Ntσ2
dλ+NtN0

])

(b)

≤ sup
0≤P≤Pt

r log2

1 +
Pα2

Ntσ2
d

(
1 + N0

σ2
dE
[
λ
])


= sup

0≤P≤Pt
r log2

(
1 +

Pα2q

Ntσ2
dq +NtN0

)
∆
=Rupper. (31)

The EAR can also be lower bounded by recalling E
[
log2(1 +

ρ(λ))
]
≥ log2

(
1 + expE

[
ln ρ(λ)

])
in (c), to get

R = sup
0≤P≤Pt

E
[
r log2

(
1 +

Pα2λ

Ntσ2
dλ+NtN0

)]
(c)

≥ sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
E

[
ln

(
λ

λ+ N0

σ2
d

)]))

≥ sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
E
[

ln (λ)
]

− ln

(
E
[
λ
]

+
N0

σ2
d

)))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2 exp(E [ln(λ)])

Ntσ2
dq +NtN0

)
∆
=Rlower1. (32)

It is known that E
[

ln (det (W))
]

=
∑r−1
l=0 ψ (q − l), where

ψ(.) represents the Euler digamma function [23]. Hence, we
can represent E [ln (λ)] in the following way

E
[

ln (λ)
]

=
1

r
E

[
r∑
i=1

ln(λi)

]
=

1

r
E
[

ln (det (W))
]

=
1

r

r−1∑
l=0

ψ (q − l) . (33)



sup
0≤P≤Pt

r log2

1 +
Pα2 exp

(
1
r

∑r−1
l=0 ψ (q − l)

)
Ntσ2

dq +NtN0

 ≤ R ≤ sup
0≤P≤Pt

r log2

(
1 +

Pα2q

Ntσ2
dq +NtN0

)
. (34)
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Aos = 1, v = 1, N0 = 1, B = 1 MHz)

To sum up, the EAR can be bounded by (34), shown at the
top of this page.

Hereafter, we also use another lower bound, named second
lower bound, that can be especially useful when the number of
receive antennas is much higher than the number of transmit
antennas.3 We follow the same approach to prove this bound.

R ≥ sup
0≤P≤Pt

E

[
r log2

(
1 + exp

(
ln

(
Pα2

Ntσ2
d

λ

λ+ N0

σ2
d

)))]

≥ sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
E

[
ln

(
λ

λ+ N0

σ2
d

)]))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
ln

(
1

1 + N0

σ2
d
E
[

1
λ

])))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d +NtN0

1
Nr−Nt

)
= Rlower2 (35)

where we have used the central Wishart matrix properties

E
[
Tr

(
W−1

)]
=

Nt
Nr −Nt

Nr ≥ Nt + 1. (36)

3According to (36), the second lower bounds becomes loose whenever the
numbers of transmit and receive antennas are close to each other. However,
we can introduce a new lower bound like Rlower = max{Rlower1, Rlower2}
to always guarantee a tight lower bound.
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IV. SIMULATION RESULTS

In this section, we present simulation results illustrating the
EAR of MIMO systems in the presence of PA nonlinearities
by generating 104 Monte-Carlo realizations of the flat fading
matrix H. Herein, we choose the solid state PAs, whose
AM/AM and AM/PM functions are specified by [24]

gA(A) =
A[

1 +
(

A
Aos

)2v
] 1

2v

(37)

gφ(A) = 0 (38)

where Aos denotes the output saturation voltage and v sets the
smoothness of transition from the linear region to the satura-
tion part. In particular, for large v this model approaches the
ideal clipping PA model which is commonly used to represent
the hard clipping effect [6]. Furthermore, we approximate the
solid state model with a polynomial of degree 9, and ignore the
even orders since they contribute with the out-band distortion
[14]. Figure 1 depicts the role of the Bussgang’s parameters on
the EAR. Although, the linearity coefficient (α), is dominant
in the low-power regime, distortion (σd) dominates in the
higher input power. By this observation, a non-monotonic
behavior of EAR function is anticipated.

The performance of MIMO system under PA nonlinearities
model for different transceiver antennas is shown in Fig. 2
and 3, respectively. It can be easily observed that an increase
in the number of transmit antennas pushes the maximum of
the EAR into higher input powers. On the other hand, when
we increase the number of antennas on the receiver side, the
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Fig. 3. Role of receiver antennas on ergodic achievable rate (Nr = 4, Aos =
1, v = 1, N0 = 1, B = 20 MHz)

maximum point is obtained in the lower input power. It is
best suitable to justify this behavior by the fact that PAs, as
a major source of nonlinearities, only exist in the transmitter
side. So, as a practical result, we are interested in utilizing
more antennas in the receiver side to capture the maximum
EAR by a lower input power. Finally, Fig. 4 illustrates how
tight the suggested bounds are. These bounds seem to be a
very good approximation of the EAR for any total input power.
However, approximating the best total input power that leads
to the maximum EAR is more important. Figure 4 confirms
that the best power of lower/upper bounds leads to an EAR
which is very close to the actual maximum EAR.

V. CONCLUDING REMARKS

Working with inexpensive nonlinear PAs seems to be a
viable solution for the next generation of wireless systems.
This nonlinear behavior distorts the transmitted signal and can
effectively reduce the achievable rate in any communication
system. This performance degradation becomes substantial
when the power fed into the PAs is high. On the other hand,
PAs offer their best efficiency in their nonlinear regime. Moti-
vated by the above fundamental tradeoff, we have analytically
quantified the impact of PAs nonlinearities on the achievable
rate of MIMO systems. Our analysis derived closed-form exact
expressions along with tractable asymptotic approximations.
Our future work will include the determination of optimal
operating points to achieve a predetermined rate constraint.

APPENDIX I
PROOF OF PROPOSITION 2

The optimality of this result is an advanced consequence of
[22, Corollary 1] or following Telatar’s methodology in [1]. A
standard Gaussian random matrix, H, is a bi-unitarily invariant
matrix. It means that the joint distribution of its entries equals
that of UHV† for any unitary matrices U and V independent
of H. Now, by following Telatar’s approach, we can limit our
attention only to a diagonal D, and diagonal ΛQΛ† in (15),
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Fig. 4. Lower and upper bounds for the ergodic achievable rate of MIMO
systems under PA nonlinearity assumption (Nt = 3, Nr = 4, Aos = 1,
v = 1, N0 = 1, B = 20 MHz)

(16). According to the definition Λ is diagonal, hence, we
simply conclude that Q must be diagonal as well.

Assume that Q̂ is the best power allocation, and also Πi

i = 1, 2, ..., Nt!, is a permutation matrix which has exactly
one “1” in each row and each column and zeros elsewhere.
Since Q̂ is a diagonal matrix which satisfies Tr(Q̂) ≤ Pt and
Q̂ � 0, it can be easily derived that Q̃ = 1

Nt!

∑Nt!
i=1 ΠiQ̂Π†i

satisfies both constraints as well. Now given the following
function

Ψ(Q)
∆
= E

[
log2

∣∣∣INr + (HDH†+N0INr )
−1HΛQΛ†H†

∣∣∣]
(39)

we can demonstrate that Ψ(Q̃) ≥ Ψ(Q̂). By starting from the
left hand side, and by taking into account the concavity of the
function Ψ in (d) below, we get

Ψ(Q̃) =Ψ

(
1

Nt!

Nt!∑
i=1

ΠiQ̂Π†i

)
(d)

≥ 1

Nt!

Nt!∑
i=1

Ψ

(
ΠiQ̂Π†i

)

=
1

Nt!

Nt!∑
i=1

E

[
log2

∣∣∣∣∣INr+
(

H

(
ΠiDΠ†i

)
H†+N0INr

)−1

(
H

(
ΠiΛΠ†i

)(
ΠiQ̂Π†i

)(
ΠiΛ

†Π†i

)
H†

)∣∣∣∣∣
]
.

(40)

Note that any permutation on the input covariance matrix,
leads to a same permutation on the matrices D and Λ as we
have already done in (40). Considering the fact that ΠΠ† = I,



the last equation is simplified to

Ψ(Q̃) ≥ 1

Nt!

Nt!∑
i=1

E
[

log2

∣∣∣INr +
(
HDH† +N0INr

)−1

HΛQ̂Λ†H†
∣∣∣] = Ψ(Q̂). (41)

As we assumed Q̂ is the best power allocation, so Ψ(Q̃) ≥
Ψ(Q̂) would be valid only by equality. In other words, Q̃ is
the best power allocation which can be written in terms of
following matrix transformation

Q̃ =
1

Nt!

Nt!∑
i=1

ΠiQ̂Π†i =
1

Nt
Tr{Q̂}INt

∆
=

P

Nt
INt (42)

which is indeed a scaled identity matrix. It is obvious that P
can be interpreted as the total input power.

APPENDIX II
PROOF OF COROLLARY 1

Let H = UΣV† be a singular value decomposition of the
Rayleigh fading channel. Applying this singular value decom-
position, and using the fact that det(I+AB) = det(I+BA)
we derive a simpler closed-form expression for the maximum
EAR

R = sup
0≤P≤Pt

E
[
log2

∣∣∣∣INr +
Pα2

Nt
(N0INr + σ2

dHH†)−1HH†
∣∣∣∣]

= sup
0≤P≤Pt

E
[
log2

∣∣∣∣INr+
Pα2

Nt
(N0INr + σ2

dUΣU†)−1UΣU†
∣∣∣∣]

= sup
0≤P≤Pt

E
[
log2

∣∣∣∣INr+Pα2

Nt
(U(N0INr+σ

2
dΣ)U†)−1UΣU†

∣∣∣∣]
= sup

0≤P≤Pt
E
[
log2

∣∣∣∣INt +
Pα2

Nt

(
N0INr + σ2

dΣ
)−1

Σ

∣∣∣∣]
= sup

0≤P≤Pt
E [log2 |INt + Z|] . (43)
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