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Abstract—Since the human face preserves the richest informa-
tion for recognizing individuals, face recognition has been widely
investigated and achieved great success in various applications
in the past decades. However, face spoofing attacks (e.g. face
video replay attack) remain a threat to modern face recognition
systems.Though many effective methods have been proposed for
anti-spoofing, we find that the performance of many existing
methods is degraded by illuminations. It motivates us to de-
velop illumination-invariant methods for anti-spoofing. In this
paper, we propose a two stream convolutional neural network
(TSCNN) which works on two complementary space: RGB space
(original imaging space) and multi-scale retinex (MSR) space
(illumination-invariant space). Specifically, RGB space contains
the detailed facial textures yet is sensitive to illumination; MSR
is invariant to illumination yet contains less detailed facial
information. In addition, MSR images can effectively capture
the high-frequency information, which is discriminative for face
spoofing detection. Images from two spaces are fed to the
TSCNN to learn the discriminative features for anti-spoofing. To
effectively fuse the features from two sources (RGB and MSR), we
propose an attention-based fusion method, which can effectively
capture the complementarity of two features. We evaluate the
proposed framework on various databases, i.e. CASIA-FASD,
REPLAY-ATTACK and OULU, and achieve very competitive
performance. To further verify the generalization capacity of the
proposed strategies, we conduct cross-database experiments, and
the results show the great effectiveness of our method.

Index Terms—Face spoofing, multi-scale retinex, deep learning,
attention model, feature fusion.

I. INTRODUCTION

OMPARED with traditional authentication approaches

including password, verification code and secret ques-
tion, biometrics authentication is more user-friendly. Since
the human face preserves rich information for recognizing
individuals, face becomes the most popular biometric cue with
the excellent performance of identity recognition. Currently,
person identification can easily use the face images captured
from a distance without physical contact with the camera on
the mobile devices, e.g. mobile phone.

As the application of face recognition system becomes more
and more popular with the widespread of the Mobile phone,
their weaknesses of security become increasingly conspicuous.
For example, owing to the popularity of social network, it is
quite easy to access a person’s face image on the Internet to
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attack a face recognition system. Hence, a deep attention for
face spoofing detection has been drawn and it has motivated
great quantity of studies in the past few years.

In general, there are mainly four types of face spoofing
attacks: photo attack, masking attack, video replay attack and
3D attack. Due to the high cost of the masking attack and
3D attack, therefore, the photo attack and video reply attack
are the two most common attacks. Photo and video replay
attacks can be launched with still face images and videos of
the user in front of the camera, which are actually recaptured
from the real ones. Obviously, the recaptured image is of
lower quality compared with the real one in the same capture
conditions. The lower quality of attacks can result from: lack
of high frequency information [1]-[5], image banding or moire
effects [6], [7], video noise signatures, etc. Clearly, these
image quality degradation factors can work as the useful cues
to distinguish the real faces and the fake ones.

Face spoofing detection, which is also called face liveness
detection, has been designed to counter different types of
spoofing attacks. Face spoofing detection usually works as a
preprocessing step of the face recognition systems to judge
whether the face image is acquired from a real person or a
printed photo (replay video). Therefore, face spoofing detec-
tion is actually a binary classification problem.

To counter the face spoofing attacks, there are mainly
four solutions available in the research literature: (1) micro-
texture based methods, (2) image quality based methods, (3)
motion based methods, and (4) reflectance based methods.
For (1), local micro-texture features are demonstrated as a
useful cue when attacked by photo and video. Researchers start
the texture-based methods by feeding hand-crafted features
extracted from facial texture to classifiers [8]-[12]. With the
development of deep learning, CNN [13]-[15] is utilized to
learn discriminative features for face spoofing detection. For
(2), the low imaging quality of the fake images offers the
useful clues [1]-[7], e.g. the loss to high frequency infor-
mation, these clues have successfully been used for spoofing
detection. For (3), motion-based methods mainly contain:
physiological reaction based [16]-[18] and physical movement
based [19], [20]. Motion-based methods may become less
effective when conducted by video replay which can present
the facial motions. For (4), reflectance of the face image is
another widely used cue for liveness detection because the
lighting reflectance from real face (3D) and attacking (mostly
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Fig. 1. Motivation of the fusion of RGB (Col 1) and MSR (Col 3) images. The
individual feature scores of RGB (Col 2) and MSR (Col 4) and fused scores
(Col 5) are shown. The fused scores are improved compared with individual
scores.

2D, such as photo and replay attacks) face is very different
(1], [21], [22].

In this work, we propose a novel deep learning based micro-
texture based (MTB) method. The existing MTB methods
usually process and analyze the input images in original
RGB color space. However, the RGB images are sensitive to
illuminations. The RGB based MTB methods can potentially
reduce their performance in the presence of illuminations. This
motivates us to develop a illumination-robust MTB method.
Therefore, we proposed a two-stream convolutional neural
network (TSCNN) which is trained on two complementary
space: RGB space (original space) and multi-scale retinex
(MSR) [23] space (illumination-invariant space).

First, both RGB and MSR images contain discriminative
information: RGB images can be used to train end-to-end
discriminative CNNs for spoofing detection; MSR can capture
high frequency information, and this information is verified
particularly effective for spoofing detection. Second, RGB and
MSR images are complementary: RGB space contains the
detailed facial information yet is sensitive to illumination;
MSR is invariant to illumination yet contains less detailed
facial information. In the framework of TSCNN, the RGB and
MSR images are fed to two CNNs (two branches of TSCNN)
separately and generate two features which are discriminative
for anti-spoofing. To effectively fuse these two features, we
propose a learning-based fusion method inspired by attention
mechanism [24] detailed in Section III-C. Apart from the
commonly used fusion methods, e.g. feature averaging fusion,
our attention-based fusion can adaptively weight features to
achieve promising performance of fused features. Fig.1 shows
the complementarity of RGB and MSR and the importance of
the feature fusion. Our contributions can be summarized as:

o We propose a two-stream CNN (TSCNN) which accepts
two complementary information (RGB and MSR images)
as input. To our knowledge, we are the first to investigate
the fusion of these two discriminative clues (RGB and
MSR) for face anti-spoofing.

o To adaptively and effectively fuse two features gener-
ated by TSCNN, we proposed an attention-based fusion
method. The proposed fusion method can make the
TSCNN generalize well to images under various lighting
conditions.

o We conduct extensive evaluations on three popular anti-
spoofing databases: CASIA-FASD, REPLAY-ATTACK
and OULU. The results show the effectiveness of the
proposed strategies. In addition, we run cross-database
experiments with very competitive results, showing the
great generalization capacity of the proposed method.

II. RELATED WORKS
A. Face Spoofing Detection

In these years, various methods have been proposed for
face spoofing detection. In this section, we briefly review the
existing anti-spoofing methods.

Texture Based Methods Texture based methods focus on
exploring different texture-based features for face spoofing
detection. The features can be simply classified as: hand-
crafted features and deep learning based features.

We first introduce hand-crafted feature based method. Based
on the idea that specific frequency bands preserve most texture
information of real faces, the work in [3] employed various
difference-of-Gaussian filters to select a favorable frequency
band for detection. Texture features used in face detection
and face recognition tasks can be migrate to face spoofing
detection and perform quite well.

Apart from hand-crafted features, deep learning, in particu-
lar, CNN based features achieved great success in recent years.
In this category, the CNN learns the discriminative features for
liveness detection. The large amount of training data guides
the CNN to learn an effective feature. [25] extracts the local
texture features and depth features from the face images and
fuses them for face spoofing detection. Furthermore, a LSTM-
CNN architecture [26] was proposed to fuse the predictions
of the multiple frames of a video, which was proved to be
effective for video face spoofing detection.

Image Quality Based Methods Methods in this category
are motivated by the fact that the photo and replay video are
likely to have an image quality degradation in the recapture
process. In [1], the method exploits to analyze the attack
photos in 2D Fourier spectra, showing interesting results.
However, the performance might drop for higher-quality image
data. Moreover, in [5], an image quality based method was
proposed by applying chromatic moment feature, specular
reflection feature, blurriness feature and color diversity feature.

Motion Based Methods This type of methods aim to select
the physiological reaction motions such as eye blinking, lips
movements and the head motions to distinguish the real
face from the fake one. In [20], different movements in the
facial parts were extracted as features for this task. Though
physiological sign based methods have shown satisfactory
performance to counter printed photo attacks with the user
cooperation, they may become less effective for video replay
attack. However, [27] advances a method for facial anti-
spoofing by applying dynamic mode decomposition (DMD),
which can conveniently represent the temporal information of
the replay video as a single image with the same dimensions
as frames in the video. This method based on the motion in-
formation is proved less time consuming and is more accurate.

Reflectance Based Methods The reflectance differences
between the real and fake faces, in particular for the print



attack and replay attack, can offer important information for
face spoofing detection. The reflectance cue from a single
image is used to detect the face spoofing [1], [22]. [28]
utilizes the different multi-spectral reflectance distributions to
distinguish real and fake faces based on Lambertian model.

Multi-Feature Fusion Based Methods The fusion of mul-
tiple features show improved accuracy compared to individual
feature. [29] proposed a feature fusion with video motion
feature and texture feature to distinguish the authenticity of
the face. The author obtains the moving image from the face
video and the LBP feature from the last frame, fuses them and
uses the linear discriminant analysis (LDA) for classification.
[9] extracts the texture features from three multi-scale filtering
methods, then the resulting features are concatenated to form
the fused feature for classification.

Other Methods Apart from the aforementioned methods,
additional hardwares can also be employed for face spoofing
detection. Unlike face images directly captured by camera, 3D
depth information [30]-[32] and multi-spectrum and infrared
(IR) image. [30] proposed a method for face liveness detection
based on 3D projective invariants. In [31], the authors pro-
posed to recover sparse 3D shapes for face images to counter
the different kinds of photo attacks.

Summary The methods we introduced can usually achieve
promising performance of anti-spoofing on intra-database sce-
nario, however, it is still challenging to achieve strong perfor-
mance for inter-database scenario. The degraded generalization
capacity results from many cross-database factors: different
capture devices, different imaging environments, different
illuminations, different facial poses, etc. In this work, we
propose an anti-spoofing method which is illumination-robust,
generalizing well to environments with strong illumination
environments and without, achieves promising cross-database
performance.

B. Multi-Scale Retinex

Many related researches have been conducted to simulate
the human vision system using different luminance algorithms.
Land’s Retinex theory [33] proposed the a lightness model
named as Retinex theory to measure the lightness reflexion
in an image. After that, the Retinex algorithm has been
successfully applied to image enhancement [34], [35]. [36]
introduced a model called Single Scale Retinex (SSR), which
applied the Gaussian filter to normalize illumination of source
image. The work [37] focused on the filter of the SSR and
employed an improved SSR with the guided filter and achieved
promising image enhancement performance. The performance
of SSR algorithm is highly dependent on the parameter of
Gaussian filter. To overcome this limitation, a multi-scale
Retinex (MSR) model [23], which weights the outputs of
several SSRs, is proposed. [38] proposed a novel MSR based
on an adaptive weights to aggregate the SSRs and applied
in image contrast enhancement. In our work, we applied
MSR because: (1) MSR can separate an image to illumination
component and reflectance component, and the illumination-
removed reflectance component is used for liveness detection;
(2) the MSR algorithm can be regarded as a optimized high

pass filter, thus it can effectively preserve the high frequency
components which is discriminative between the real and fake
faces.

C. Feature Fusion

Existing fusion methods consist of two part: early fusion
(feature-level fusion) and late fusion (Score-level fusion).
Feature aggregation or subspace learning is actually the early
fusion. Aggregation approaches are usually performed by
simply element averaging or concatenation [39]. Subspace
learning methods aim to project the concatenated feature to
a subspace with the best use of the complementarity of the
features. Late fusion is to fuse the predicted scores after
computation based on different classifier by averaging [40] or
stacking another classifier result [41]. For the deep learning
task, researchers usually use simple fusion methods for fusing
deep features features, such as score fusion, feature averaging,
etc. In our work, we proposed an attention based fusion
method, aiming to exploit the best use of the features to fuse.

D. Visual Attention Model

Visual attention is a powerful mechanism that enables
perception to focus on important part which offers more
information. To combine spatial and temporal information [42]
employed an end-to-end deep neural network. In [43], the
authors proposed a novel visual attention model to integrate
different spatial features including color, orientation and lu-
minance orientation features, which can reflect the region of
interests of the human visual system. Different mechanisms of
attention have been employed to deal with the computer vision
tasks, including action recognition [44], emotion recognition
[45], image classification [46]. On the whole, the attention
model is usually used for aggregating features extracted by
different images. Inspired by the great success of attention
models, we apply attention model to fuse our features derived
from RGB images and MSR images.

III. METHODOLOGY

Spoofing detection is actually a binary (real vs. fake face)
classification problem. In deep learning era, a natural solution
of this task is to feed the input RGB images to a carefully
designed CNN with classification loss (softmax and cross
entropy loss) for end-to-end training. This CNN-based frame-
work has been widely investigated by [25], [26], [47]-[50].

Despite the strong nonlinear feature learning capacity of
deep learning, the performance of anti-spoofing degrades when
the input images are captured by different devices, under dif-
ferent lighting, etc. In this work, we aim to train a CNN which
generalizes better to various environments, mainly various
lightings.

The RGB images are sensitive to illumination variations yet
cover very detailed facial texture information. Motivated by
extensive research of (single-scale and multi-scale) Retinex
image, we find the Retinex (we use Multi-Scale Retinex -
MSR in this work) image is invariant to illumination yet
loses minor facial texture. Thus, in this work, we propose a
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Fig. 2. (A) is the overall pipeline; In (B), every single block represents one SSR module. The outputs of all SSR modules are weighted with scale parameters

to form MSR; (C) illustrates the work flow of attention-based fusion.

two-stream CNN (TSCNN) which trains two separate CNNs
accepting RGB images and MSR images as input respectively.
To effectively fuse RGB feature and MSR feature, we propose
an attention based fusion method.

In this section, firstly, we introduce the theory of the Retinex
to explain the reason why MSR image is discriminative for
anti-spoofing. After that, the complementarity of the RGB
and MSR features is analyzed and the proposed TSCNN is
detailed. Last, we introduce our attention-based feature fusion
method.

A. The Retinex Theory

Assumption Retinex theory was first raised by Land and
McCann in 1971 [33]. According to the literal meaning of the
word ‘Retinex’, it is a portmanteau constituted by ‘retina’ and
‘cortex’, imitating how the human visual system works. The
Retinex theory is based on the assumption that the color of
the object is determined by the reflection ability of light of
different wavelengths. The color of the object is not affected
by the non-uniformity illumination. The theory separates the
source image S(z,y) into two parts: the reflectance R(z,y)
and the illumination L(zx, y). In particular, R(z,y) and L(z, y)
contain different components of frequency. R(x,y) focuses
on high frequency components, while L(x,y) tends to low
frequency components. We formulate Retinex by Eq. (1):

where x and y are image pixel coordinates.

Motivation L(z,y) and R(z,y) represent the illumination
and reflectance (facial skin texture in our task) components
respectively. L(z,y) is determined by the light source, while

(D

R(z,y) is determined by the property of the surface of cap-
tured objects, i.e face in our application. Illumination is clearly
not relevant to most classification tasks including face spoofing
detection, thus the separation of illumination and reflectance
(texture) is important because the separated reflectance only
can be used for illumination-invariant classification. Since
Retinex theory aims to conduct this separation, Retinex is used
in this work for illumination-invariant face spoofing detection.

Computation For the convenience of calculation, Eq. (1) is
usually transformed into the logarithmic domain:

log[S(z,y)] )]

where log[S(x,y)], log[R(x,y)], and log|L(x,y)] are repre-
sented by s(z,y), r(z,y), and I(z,y) for convenience.

Since s(z,y) is logarithmic form of the original image, we
can calculate the Retinex output r(x, y) by appraising I(z, y).
Thus, the performance of the Retinex is determined by the
estimation of [(x, y). Selecting the apposite method to estimate
l(x,y) is a considerable step for illumination normalization.

Summarizing the previous work of the Retinex, the illumi-
nation image can be generated from the source image using
the center/surround Retinex. Single-scale Retinex (SSR) [36]
is a center/surround based Retinex and is formulated as Eq.

3):

= log[R(z,y)] + log[L(z )

r(z,y) = s(z,y) — log[S(z,y) = F(z,y)] 3)
where F(x,y) denotes the surround function, and Symbol “*’
is the convolution operation. There are several forms of the

surround function which depends on the effect of the SSR.



The work [36] shows that a Gaussian filter works well for the
illumination normalization.

Gl,y) = Ke~ (" +v0)/e @)

where c is the scale parameter of Gaussian surround function.
The value of ¢ is empirically determined. K is selected to

satisfy:
//F(x,y)dacdy =1 (5

Let G(z,y) represent F(z,y), then Eq. (3) can be rewritten
as:

r(z,y) = s(x,y) — log[S(z,y) x G(z,y)] (6)

The large illumination discontinuities produce halo effects
which are often visible. This limitation expands SSR to a
more balanced method, multi-scale retinex (MSR) [23], by
superposing several outputs of SSRs with small, middle, and
large scale parameters at certain weights, shown in Fig.2 (B).
Specifically, this is expressed by,

k
rasr(a,y) = Z w; {log[S(z,y)] — log[S(z,y) * Gi(z,y)] }

)

Summary Retinex (MSR in our work) is used for face
spoofing detection with two reasons. (1) The MSR can
separate illumination and reflectance. In this work, we use
the reflectance images (MSR image) to train a CNN for
illumination-invariant face spoofing detection. (2) Since the
fake face image is regraded as the recaptured image in
many cases, which may lose some high frequency information
compared to genuine ones. Thus, high frequency information
can work as a discriminative clue for anti-spoofing. MSR
algorithm can be viewed as an optimized high pass filter to
capture the high frequency information for spoofing detection.

B. Two Stream Convolutional Neural Network (TSCNN)

In this section, we introduce our framework for anti-spoof:
TSCNN. Specifically, the original RGB images are converted
to MSR images in an off-line way. The two image sources
(RGB and MSR) are separately fed to two CNN for end-to-
end training with cross-entropy binary classification loss. The
learned two features (derived from RGB and MSR images)
are then learned to fuse using attention mechanism. In the
remaining parts of this section, we will detail each component
of our framework.

Complementarity of RGB and MSR Images RGB color
space is commonly used for capturing and displaying color
images. The advantage of the use of RGB images is clear:
RGB images can naturally capture detailed facial texture
which is discriminative for spoofing detection. However, the
disadvantage of RGB image is that it is very sensitive to
illumination variation. The intrinsic reason is that RGB space
has high correlation between the three color channels, making
it rather difficult to separate the luminance and chrominance
information. Because the luminance conditions of face images
in real world are different and the separation of luminance

(illumination) and chrominance (skin color) is rather difficult,
the features learned from RGB space tend to be affected by
illumination.

The MSR algorithm can achieve illumination invariant face
image by removing the illumination effects as introduced in
SectionIII-A. Thus, the MSR face image preserves the micro-
texture information of facial skin without the illumination
effects. Apart from the illumination-invariant merit of MSR
images, MSR images can generate discriminative information
for spoofing detection. Specifically, MSR algorithm removes
the low frequency components (illumination) from the original
image and leaves the high frequency ones (texture details).
However, the high frequency information is discriminative for
spoof detection because: the real faces have rich facial texture
details, while the fake faces, in particular recaptured faces,
lose some of such details.

As analyzed above, RGB and MSR images are comple-
mentary because: RGB images contain detailed facial texture
yet are sensitive to illuminations; while MSR images contain
less detailed texture yet are illumination invariant. In addition,
MSR images can keep high frequency information, which is
also discriminative for spoofing detection.

Two-stream Architecture Our method is motivated by the
fact that both RGB and MSR features are discriminative for
face spoofing detection. It is natural to train CNNs using
these two sources of information. In this work, therefore, we
proposed a two-stream convolutional neural network (TSCNN)
as shown in Fig.2 (A). The TSCNN consists of two identical
sub-networks with different inputs (RGB and MSR images)
and extract the learned features derived from RGB and MSR
images following the last convolution layer of the two sub-
networks. Given one input image/frame, we use MTCNN [51]
for face and landmark detection. Then the detected faces are
aligned using affine transformation. The RGB stream operates
on single RGB frames extracted from a video sequence. For
the MSR stream, the single RGB frames (processed to gray
scale first) are converted to MSR images as shown in Fig.2-
(B). Then MSR images are fed to the MSR subnetwork for
training. Each stream is based on the same network, in this
work, we use two successful networks (MobileNet [52] and
ResNet-18 [53]). To effectively fuse the features from two
streams, we propose an attention based fusion block, shown
in Fig.2-(C), which will be detailed in Section III-C.

To formulate the TSCNN framework (M), we introduce
a quadruplet M = (Ergp, Eymsg, F,C). Here Ergp and
FEysr are features extractors for RGB and MSR streams
respectively. F' is a fusion function and C is the classifier.
The feature extractor is a mapping F : I — f that takes an
input image (either RGB or MSR) [ and outputs a feature f
of D-dimension.

Both the extracted feature frgp and frrsr must have the
same dimension of D to be compatible for early (feature)
fusion. In particular, frep and fy;sgr can be obtained via dif-
ferent extractors (CNNs), while the feature dimension should
be assured the same.

The fusion function F' aggregates frgp and fy/sg into a
fused feature v via F*:



v=F(fran, fusr) ®)

The fused feature is then fed into a classifier C. Thus, the
TSCNN can be formulated as an optimization problem:

N
min S UOF(frcs, frsn) v ©)
i=1

where [(:,:) is a loss function, IV is the number of samples,
y is the one-hot encoding label vector.

Backbone Deep Networks CNNs have been successfully
applied to face anti-spoofing [25], [26], [47]-[49]. Most ex-
isting works trained their CNN models from scratch using the
existing face anti-spoofing databases, which are quite small
and captured in unitary environments. Since CNNs are data
hungry model, small training data might lead to overfitting.
To overcome overfitting and improve the performance of many
computer vision tasks, model finetuning/pretraining from big
image classification database, usually ImageNet [54], is an
effective way. In this work, we used two backbone networks
pretrained on ImageNet, i.e MobileNet [52] (lighter, less
accurate) and ResNet-18 [53] (heavier, more accurate) for
spoofing detection.

To adapt the MobileNet and ResNet-18 models to our face
anti-spoofing problem, we finetuned the pretrained models
using the face spoofing database. The 2-class cross-entropy
loss, i.e. Eq (10), is used for binary classification (real vs fake
faces). The output of bottleneck layers of MobileNet (1024D)
and ResNet-18 (512D) models work as the features for anti-
spoofing.

N

1
C=-=

N2 (10)

[yilng; + (1 — y;)In(1 — §;)]
where ¢ is the index of training sample, /V is the number of
training samples, ¢; is the predict value of the i, sample, y;
is the label of the iy, sample.

C. Attention based Feature fusion

Feature fusion is important for performance improvement
in many computer vision tasks. Improper fusion methods
can make the fused feature works worse than individual
features. In deep learning era, fusion methods including score
averaging, feature concatenation, feature averaging, feature
max pooling and feature min pooling are normally used. In
our anti-spoofing task, we find these fusion methods cannot
explore deeply the interplay of features from different sources,
therefore, we propose an attention-based fusion method as
shown in Fig.2-(C).

The proposed attention-based fusion methods is actually a
general framework which can be used for many deep learning
based fusion scenarios, certainly including the fusion of RGB
and MSR features. Given a set of features {f;,i =1,..., N},
we try to learn a set of weights corresponding to the features
{w;,s =1,..., N} to generate the aggregated feature v:

N
o= wit,
i=1

(11

Clearly, the key part of our attention method is to learn
the weights {w;} of Eq. (11). Note that our method becomes
feature average fusion if w; = 1/N, showing the generaliza-
tion capacity of our method. In our task of spoofing detection,
N =2, and the features to be fused are frap and fysgr.

Apart from learning w; directly, we learn a kernel ¢ which
has the same dimensionality of f;. g is used to filter the feature
vectors via dot product:

T
di=q" fi

The filter generates a vector which represent the significance

of the corresponding feature, named d;. To convert the signif-

icances to weights w; subject to ) . w; = 1, we passed d; to

a softmax operator and achieve all positive weights w;:

d;

(12)

e
Z_j eds

Obviously, the aggregation result r is unrelated with the
quantity of input feature f;. The only parameters to learn is
the filter kernel ¢, which is easy to be trained via standard
backpropagation and stochastic gradient descent.

(13)

w; =

IV. EXPERIMENTS

In this Section, we conduct extensive experiments and
evaluate our method. We first have a brief introduction of
three benchmark databases in Section IV-A. After that, we
present the experimental settings of our method in section B
so that the other researchers can reproduce our results. The
following sections (SectionIV-C to G) present the results on
the three databases. In particular, the results on CASIA-FASD
are shown with the seven test scenarios.

A. Benchmark Database

In this subsection, to assess the effectiveness of our pro-
posed anti-spoofing technique, an experimental evaluation on
the CASIA Face Anti-Spoofing Database [55], the REPLAY-
ATTACK database [56] and the OULU database [57] is
provided. These three datasets consist of real client accesses
and different types of attacks, which are captured in different
imaging qualities with different cameras. In the following
paragraphs, we will have a brief introduction of the databases.

1) The CASIA Face Anti-Spoofing Database (CASIA
FASD): The CASIA Face Anti-Spoofing Database is divided
into the training set consisted of 20 subjects and the test
set containing 30 individuals(see, Fig.3). The fake faces were
made by capturing the genuine faces. Three different cameras
are used in this database to collect the videos with various
imaging qualities: low, normal, and high. In addition, the
individuals were asked to blink and not to keep still in the
videos to collect abundant frames for detection. Three types
of face attacks were designed as follows: 1) Warped Photo
Attack: A high resolution (1920 x 1080) image, which is
recorded by a Sony NEX-5 camera, was used to print a
photo. The attacker simulates the facial motion by warps the
photo in a warped photo attack. 2) Cut Photo Attack: The
high resolution printed photos are then used for the cut photo
attacks. In this scenario, an attacker hides behinds the photo



Fig. 3. Sample from the CASIA FASD. From top to bottom: low, normal and
high quality images. From the left to the right: real faces and warped photo,
cut photo and video replay attacks.

Fig. 4. Samples from the REPLAY-ATTACK database. The first row presents
images taken from the controlled scenario, while the second row corresponds
to the images from the adverse scenario. From the left to the right: real faces
and high definition, mobile and print attacks.

_/

Fig. 5. Samples from the OULU-NPU database. From top to bottom is the
three sessions with different acquisition conditions. From the left to the right:
real faces, print attack 1, print attack 2, video attack 1 and video attack 2.

and exhibits eye-blinking through the holes of the eye region,
which was cut off before attack. In addition, the attacker put
a intact photo behind the cut photo, putting the eye region
overlapping from the holes and moving the intact photo up
and down slightly to simulate the blinking of the eyes. 3)

Video Attack: In this attack, the high resolution videos are
displayed on an iPad and captured by a camera.

2) REPLAY-ATTACK Database: The REPLAY-ATTACK
Database consists of video recordings of real accesses and
attack attempts to 50 clients (see, Fig.4). There are 1200
videos taken by the webcam on a MacBook with the resolution
320 x 240 under two illumination conditions: 1) controlled
condition with a uniform background and light supplied by
a fluorescent lamp, 2) adverse condition with non-uniform
background and the day-light. For performance evaluation,
the data set is divided into three subsets of training (360
videos), development (360 videos), and testing (480 videos).
To generate the fake faces, a high resolution videos were taken
for each person using a Canon PowerShot camera and an
iPhone 3GS camera, under the same illumination conditions.
Three types of attacks were designed: (1) Print Attacks: High
resolution pictures were printed on A4 paper and recaptured
by cameras; (2) Mobile Attacks: High resolution pictures
and videos were displayed on the screen of an iPhone 3GS
and recaptured by cameras; (3) High Definition Attacks: the
pictures and the videos were displayed on the screen of an
iPad with resolution of 1024 x 168.

3) OULU-NPU Database: OULU-NPU face presentation
attack database consists of 4950 real access and attack videos
that were recorded using front facing cameras of six different
mobile phones (see, Fig.5). The real videos and attack materi-
als were collected in three sessions with different illumination
condition. The attack types considered in the OULU-NPU
database are print and video-replay. These attacks were created
using two printers (Printer 1 and 2) and two display devices
(Display 1 and 2). The videos of the real accesses and attacks,
corresponding to the 55 subjects, are divided into three subject-
disjoint subsets for training, development and testing with 20,
15 and 20 users, respectively.

B. Experimental Settings

In our experiments, we followed the protocols associated
with each of the three databases which allows a fair com-
parison with other methods proposed in the state of art. For
CASIA FASD, the model parameters are trained and tuned
using the training set and the results are reported in terms of
Equal Error Rate (EER) on the test set. Since the REPLAY-
ATTACK database provides a validation set, the results are
given in terms of EER on the validation set and the Half Total
Error Rate (HTER) on the test set following the official test
protocol. EER is achieved at the point where the false rejection
rate (FRR) is equal to false acceptance rate (FAR). To compute
HTER, we first compute EER and the corresponding threshold
on the validation set. Then HTER can be calculated via the
threshold on the test set.

Following [58], we evaluate our method on OULU-NPU
database with two metrics: Attack Presentation Classification
Error Rate (APCER) (Eq. (14)) and Bona Fide Presentation
Classification Error Rate (BPCER) (Eq. (15)).

Npar
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where, Np4r is the number of the attack presentations for
the certain presentation attack instruments (PAI), Npp is the
total number of the bona fide presentations. If the prediction
of ith presentation is attack, R.s, gets the value "1", while
the prediction is bona fide, the value of R.s, is "0". These
two metrics correspond to the False Acceptance Rate (FAR)
and False Rejection Rate (FRR) commonly used in the PAD
related literature [58], [59]. In addition, we apply the average
of the APCER and the BPCER, called Average Classification
Error Rate (ACER), to measure the overall performances.

For the operational systems, the metrics we used (EER,
HTER, APCER and BPCER) cannot quantify verification
performance. Following the Face Recognition Vendor Test
(FRVT) and the common metrics of face recognition, the
Receiver Operating Characteristic (ROC) is used to measure
the performance of liveness detection. To clearly visualize
the TPR@FAR=0.1 and TPR@FAR=0.01 in the figures, the
logarithmic coordinates are used for the X-axis of the ROC
curves.

To be consistent with many previous works, the pre-
processing steps are needed, consisted of frame sampling and
face alignment. Since these three databases consist of videos,
we extract the frames from each video. After that, the MTCNN
[51] is used for face detection and landmark detection. Then
the detected faces are aligned to size of 128 x 128. For
every aligned face, we conduct data augmentation including
horizontal flipping, random rotation (0-20 degree), and random
crop (114 x 114).

For each database, we used the training set to fine-tune
the MobileNet and ResNet-18 model with cross-entropy loss
and the testing set and validation set are used to evaluate the
performance.

For the learning parameter setting, we set the momentum as
0.9 and the learning rate as 0.0001 for training the network. It
is observed that the network training converges after 50 epochs
with the batch size 128 during the training.

BPCER = (15)

C. Results of CASIA-FASD

The CASIA-FASD is split into the training set comprised
of 20 subjects and the test set containing 30 individuals. For
each of the seven attacking scenarios, the data should then
be selected from the corresponding training and test sets for
model training and evaluation.

Different color spaces might lead to different performance
of anti-spoofing [48], though RGB color is the most widely
used. To explore the effect of color space, we conduct
experiments and compare the performance of three color
spaces: RGB, HSV and YCbCr. All the training settings of
3 color space keep the same. Specifically, the original input
images/frames in database are converted to MSR images. Then
the images of different color spaces are fed to our TSCNN
respectively. The spoofing detection results (EER, the lower
the better) based on MobileNet and ResNet-18 are reported
in Table I. The ROC curves are shown in Fig.6-(a) and

the attention Fusion results in terms of TPR@FAR=0.1 and
TPR@FAR=0.01 are presented in Table VII.

Results: (1) From results on seven scenarios, RGB and
YCbCr generally outperform HSV color space using both
ResNet-18 and MobileNet. And the results of RGB and YCbCr
are quite similar.

(2) We can see that RGB, HSV and YCbCr features all work
better than MSR features for both MobileNet (4.931%, 5.134%
and 5.091% vs. 9.531%) and ResNet-18 (3.437%, 4.831% and
3.635 vs. 7.883%).

(3) The fusion of MSR and RGB features works better than
MSR and HSV, MSR and YCbCr for both MobileNet (4.175%
VS 5.061% and 4.339%) and ResNet-18 (3.145% VS 4.661%
and 4.761%). (4) The fusion of MSR and RGB features works
better than individual one for MobileNet (fusion: 4.175% vs
RGB: 4.931% and MSR: 9.513%). The same conclusion can
be drawn for ResNet-18 fusion. As for the reason why RGB
is better than HSV and YCbCr, we believe that the MSR plays
a role of reducing the impact of illuminations, while the RGB
tries to preserve the detailed facial textures. However, HSV and
YCbCr are based on the separation of the luminance and the
chrominance, which are not effective for the fusion with MSR.
It verifies the complementarity of RGB and MSR images.

(4) From the Table VII, not surprisingly, the overall results
of CASIA-FASD with ResNet (99.71% and 85.33%) are better
than that with MobileNet (98.95% and 82.51%).

D. Results of REPLAY-ATTACK and OULU-NPU

REPLAY-ATTACK and OULU-NPU are divided into three
subsets: training, test and development. The training set is used
to train a classifier or feature extractor while the development
set is typically employed to adjust parameters of the classifier.
The test set is used for result evaluation. In this experiment,
we follow the experimental settings of CASIA-FASD and use
MobileNet and ResNet-18 for evaluation.

From Table II and Fig.6-b, we can see the fusion of MSR
and RGB works better than individual ones in terms of EER
(fusion: 0.131% vs RGB: 0.384% and MSR: 7.365%) and
HTER (fusion: 0.254% vs RGB: 1.561% and MSR: 8.584%)
on REPLAY-ATTACK database using MobileNet. The same
conclusion can be found for ResNet-18. From Table VII,
the overall results of REPLAY-ATTACK using MobileNet
(99.42% and 99.13%) are better than that with ResNet-18
(99.21% and 98.59%). In addition, we further fuse the fused
MobileNet features (RGB+MSR) and fused ResNet-18 fea-
tures (RGB+MSR). Because feature dimensionality of original
MobileNet (1024D) and ResNet-18 (512D) is different, we
change the bottleneck layer of the MobileNet to be of 512D
to conduct our attention-based fusion. From Table II, we can
see this further fusion works better than ResNet fusion, but
slightly worse than the MobileNet fusion.

To further verify the effectiveness of the fusion of RGB and
MSR on illumination variations, we conduct the experiment on
REPLAY-ATTACK database which contains two illumination
conditions: 1) controlled condition with a uniform background
and light supplied by a fluorescent lamp, 2) adverse condition
with non-uniform background and the day-light. To discuss



TABLE I
EER (%) OF THREE COLOR SPACES AND MSR FEATURES ON CASIA-FASD DATABASE IN SEVEN SCENARIOS
Attack Scenarios Low Normal High Warped Cut Video | Overall
RGB 15.301 8.996 6.412 8.551 6.011 | 5.661 7.802
LBP MSR 10.690 | 10.302 5.331 7.609 8.091 | 8.701 9.003
RGB+MSR Fusion 8.996 9.330 5.981 7.604 6.771 | 4.390 7.408
RGB 10.610 4.606 5.260 5.934 3978 | 3.846 4.931
HSV 8.714 5.884 6.995 3.723 4709 | 4.682 5.143
YCbCr 8.441 4993 4519 6.410 5792 | 3.904 5.091
MobileNet MSR 7.056 8.129 5.818 9.828 5.126 | 9.833 9.531
RGB+MSR Fusion 6.745 4.068 3.258 5.258 2453 | 2.647 4.175
HSV+MSR Fusion 7.633 4.982 5.601 4.679 4510 | 4.511 5.061
YCbCr+MSR Fusion | 7.003 5.120 3.227 4.031 6.001 | 3.799 4.339
RGB 4.021 5.851 1.703 5.019 1.941 | 2.679 3.437
HSV 6.341 2.291 5.815 3.459 2.992 | 4.578 4.831
YCbCr 7.441 2.185 1.713 4.249 3329 | 3.716 3.635
ResNet MSR 6.793 6.270 10.098 7.665 5.087 | 9.531 7.883
RGB+MSR Fusion 3.545 2.170 2.785 4419 2.572 | 4931 3.145
HSV+MSR Fusion 5.319 2.907 4.886 3.299 2.555 | 4931 4.661
YCbCr+MSR Fusion | 6.178 3.099 4.690 4.003 3.133 | 3.999 4.761
(a) ROC Curve on CASIA-FASD in Three Color Spaces with ResNet
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Fig. 6. ROC curves on REPLAY-ATTACK and CASIA-FASD databases. (a) ROC curves on CASIA-FASD with ResNet under different color spaces and
MSR. (b) ROC curves on REPLAY-ATTACK with MobileNet with LBP and CNNs.

the improvements over lightings, we divided the database into  maintain the texture details under neutral illuminations. After

two parts: adverse illumination and controlled illumination and
run the experiments separately. From Table III and Fig.7-(a),
MSR features have the better results than RGB features in
adverse illumination (stronger lighting), showing the robust-
ness of MSR on strong lightings. On the other hand, RGB
outperforms MSR features in controlled illumination (close to
neutral lighting), showing the RGB has the strong capacity to

fusion, the results are improved in both adverse and controlled
illumination. So the Fusion of MSR and RGB can effectively
handle various lightings and improve the performance.

For the OULU-NPU database, we follow [58] to use four
metrics: we present EER in development set and APCER,
BPCER and ACER in test set.

Table IV and Table VII shows the results of RGB, MSR



(a) ROC Curve of REPLAY-ATTACK in Different llluminations with MobileNet
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(b) ROC Curve of Different Fusion Methods on CASIA-FASD with ResNet
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ROC curves on on REPLAY-ATTACK and CASIA-FASD databases. (a) ROC curves on REPLAY-ATTACK with MobileNet under different

illuminations. (b) ROC curves on CASIA-FASD with ResNet under different fusion methods.

TABLE 11
EER (%) AND HTER (%) OF RGB AND MSR FEATURES ON
REPLAY-ATTACK DATABASE

REPLAY-ATTACK
Method EER | HTER
LBP RGB 3.990 4.788
LBP MSR 4.701 5.060
MobileNet RGB 0.384 1.561
ResNet RGB 0.628 2.038
MobileNet MSR 7.365 8.584
ResNet MSR 8.350 9.576
LBP Attention Fusion 3.491 4.903
MobileNet Attention Fusion 0.131 0.254
ResNet Attention Fusion 0.210 0.389
ResNet + MobileNet Attention Fusion | 0.177 0.293

TABLE III
EER (%) AND HTER (%) OF RGB AND MSR FEATURES ON ADVERSE
ILLUMINATION AND CONTROLLED ILLUMINATION IN REPLAY-ATTACK

DATABASE

Adverse Controlled

Method illumination illumination
EER | HTER | EER | HTER
MobileNet RGB 0.451 1.971 0.140 1.107
ResNet RGB 0.705 | 2.444 | 0411 1.677
MobileNet MSR 7.660 | 8.621 6.138 | 7.218
ResNet MSR 8.720 | 9.031 7.993 8.930
MobileNet Attention Fusion | 0.165 1.299 0.093 0.097
ResNet Attention Fusion 0.285 1.433 0.169 1.310

and fusion feature based on MobileNet and ResNet-18. In
terms of ACER and EER, we can see the fusion of RGB and
MSR performs better than individual ones. For most results in
four protocols, the fusion of features significantly outperforms
individual features.

The consistent improvement of feature fusion shows the
effectiveness of the use of two information sources: RGB and
MSR. As shown in Table II and Table IV, the popular networks
(MobileNet and ResNet-18) achieve competitive performances
on REPLAY-ATTACK and OULU-NPU database .

TABLE IV
EER (%), APCER (%) , BPCER (%) AND ACER (%) OF RGB AND MSR
FEATURES ON OULU-NPU DATABASE

Dev Test
Prot.| - Methods 1o T APCER(%)[BPCER(%)| ACER(%)
MobileNet RGB 6.1 9.6 6.2 7.9
ResNet RGB 2.3 3.5 8.7 6.1
| MobileNet MSR 10.5 10.6 9.4 10.0
ResNet MSR 5.7 7.5 93 8.4
MobileNet
Attention Fusion 5.2 3.9 9.5 6.7
ResNet
Attention Fusion 21 31 6.7 5.9
MobileNet RGB 5.7 6.5 10.7 8.6
ResNet RGB 2.7 3.7 8.1 5.9
5 MobileNet MSR 9.6 8.9 9.9 9.4
ResNet MSR 4.3 3.8 11.6 7.8
MobileNet
Attention Fusion 31 3.6 9.0 6.3
ResNet
Attention Fusion 2.0 7.6 22 4.9
MobileNet RGB | 5.3+0.5 | 3.5+1.8 9.3+£2.6 | 6.4+3.7
ResNet RGB 2.7+0.8 | 9.3£0.8 57+1.2 | 7.2+2.6
3 MobileNet MSR [10.8+1.2| 6.9+2.5 12.3+09 | 9.7£1.9
ResNet MSR [ 4.6£0.8 | 8.3+1.9 94+1.8 | 8.7£2.1
MobileNet 15, 03| g7445 | 53423 | 63422
Attention Fusion
ResNet
Attention Fusion 1.9+04 | 3.9+2.8 7.3+1.1 5.6+1.6
MobileNet RGB | 6.3+0.4 | 12.3+7.5 | 9.7£2.6 | 10.3+£3.1
ResNet RGB 2.6+£0.5] 17.94£9.1 | 10.1£5.5 | 14.94+6.4
4 MobileNet MSR [11.8+1.8[24.7+10.5[21.3+£12.8 [22.0+11.6
ResNet MSR | 6.6£0.7 | 19.6£9.1 | 16.2£8.8 | 17.1£8.1
MobileNet ¢\ 07 | 10.94+4.6 | 12.745.1 | 113439
Attention Fusion
ResNet
Attention Fusion 23+03 | 11.343.9 | 9.7+4.8 | 9.8+4.2

E. Attention based fusion results

As mentioned above, RGB feature is mainly focusing on
micro-texture of facial skin on the all frequencies together,
while the MSR feature is focusing on the high frequencies
which reduces the influence of illumination. Table I, Table II
and Table IV have verified the effectiveness of the fusion of
these two features (RGB and MSR). In this section, we further
explore this effectiveness.



TABLE V
EER (%) OF DIFFERENT FUSION METHODS ON CASIA-FASD DATABASES IN SEVEN SCENARIOS

[ [ Attack Scenarios | Low [ Normal | High [ Warped | Cut [ Video [ Overall |
Concatenated Features 7.808 3.473 5.957 5.364 3.267 | 4479 5.191
Score Average 10.611 4.612 5312 5.934 3971 | 3877 4.953
MobileNet Feature Average 8.086 3.311 5.819 5.253 3.333 | 4278 5.108
Feature Max 8.048 3410 6.017 5.347 3321 | 4.529 5.201
Feature Min 7.820 3.458 5.380 5.149 3267 | 4.064 4.887
Attention Fusion 6.745 4.068 3.258 5.258 2453 | 2.647 4.175
Concatenated Features 5.568 3.099 4.302 4.092 2.516 | 3.143 3.380
Score Average 5.902 2.969 3.830 4.202 2.658 | 3.224 3.332
ResNet Feature Average 6.242 3.291 4.689 3.935 2.929 | 3.956 3.895
Feature Max 5.846 4.039 4.536 4.331 3.091 | 4.198 4.189
Feature Min 7.244 2.825 4.941 4.280 3.030 | 3.984 4.157
Attention Fusion 3.545 2.170 2.785 4.419 2572 | 4931 3.145

First, we show some qualitative results via visualization.
Compared with average feature fusion which weights different
features equally, attention fusion has the flexibility to adap-
tively weight the features in an asymmetry way. Therefore,
our attention-based fusion has the potential to obtain the
better weights leading to better performance. Fig.8-(A) shows
this asymmetry weighting mechanism of our attention-based
fusion method. The samples in Fig.8-(A) are selected from
REPLAY-ATTACK database which covers two imaging light-
ness conditions: adverse illumination (uneven, complicated
lightings), controlled illumination (even, neutral lightings).
From the samples in Fig.8, we can see the weights for
MSR and RGB are adaptively asymmetry. Under adverse
(uneven, complicated lightings) illumination, the weights of
MSR images are higher than those of RGB ones because MSR
images are more illumination-invariant than RGB ones. Under
controlled illumination, unsurprisingly, the RGB images gain
higher weights. Fig.8 (B) shows some samples under different
illuminations with three scores (RGB, MSR, the fusion of
them). We can see some samples failed with individual RGB or
MSR scores, but the fusion results lead to correct recognition,
showing the effectiveness of the fusion of RGB and MSR, in
particular, under various illuminations.

Second, we show some qualitative results. Specifically,
we compare the proposed attention-based fusion methods
with some popular feature fusion methods including score
averaging, feature concatenation, feature averaging, feature
max pooling, feature min pooling and the proposed attention
method. The fusion results are presented separately for differ-
ent databases.

Table V shows the results of CASIA-FASD with the seven
scenarios. In addition, Fig.7-(b) shows the ROC curves of
the popular feature fusion methods using MobileNet. The
proposed attention based fusion method achieves the lowest
EER across all other scenarios ("Overall’) 4.175% (MobileNet)
and 3.145% (ResNet-18), showing that the superiority of
the our fusion methods against others. For MoblieNet and
ResNet-18, the 2nd and 3rd best performed fusion methods are
{’Feature Min’ and ’Score Average’} and {’Score Average’
and ’Concatenated Features’}, respectively.

Table IV-E shows the fusion results on REPLAY-ATTACK
and OULU-NPU. We can see that our attention-based fusion
works consistently better than all other fusion methods on

both REPLAY-ATTACK (EER and HTER) and OULU-NPU
(EER). The promising performance results from the fact that
attention-based fusion can adaptively weight the RGB and
MSR features.

TABLE VI
EER (%) AND HTER (%)OF DIFFERENT FUSION METHODS ON
REPLAY-ATTACK AND OULU-NPU DATABASES

Methods REPLAY-ATTACK | OULU-NPU
) EER | HTER EER
Concatenated Features | 0.412 0.381 6.381
Score Average 0.363 0.360 6.472
. Feature Average 0.396 0.395 7.549
MobileNet Feature Max 0310 | 0.294 8317
Feature Min 0.574 0.565 9.841
Attention Fusion 0.131 0.254 5.692
Concatenated Features | 0.841 0.668 4.518
Score Average 1.278 1.178 9.565
ResNet Feature Average 0.873 0.725 5.358
Feature Max 0.958 0.906 4.964
Feature Min 0.579 0.490 2.578
Attention Fusion 0.210 0.389 2.021

F. Comparisons with State-of-the-art

Table VIII presents the comparisons of our approach with
the state-of-the-art methods for face spoofing detection. In gen-
eral, the proposed algorithm outperforms many competitors,
demonstrating the effectiveness of our method by fusing RGB
feature and MSR feature with attention model.

For REPLAY-ATTACK database, the proposed method
achieves the best (MobileNet+Attention) and 2nd best
(ResNet-18+Attention) performance in terms of EER, show-
ing the effectiveness of the fusion of two clues (RGB and
MSR). In terms of HTER, our method (MobileNet+Attention)
achieves the 2nd best performance, slightly lower than Bottle-
neck feature fusion + NN [50]. However, our method greatly
outperforms [50] in terms of EER.

For CASIA-FASD database, it can be seen in Table VIII that
we also achieve the best (ResNet-18 + Attention) and 2nd best
(MobileNet + Attention) performance in terms of EER.

For OULU-NPU database, as shown in Table IX, we can
achieve 2nd best performance for most results under the four
protocols, while the method of [63] works best, which uses
the additional information of 3D depth shape and rPPG (The
rPPG signal provides temporal information about face liveness,
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Fig. 8. Results on REPLAY-ATTACK database. (A) Attention fusion weights (numbers in the boxes) showing the importance of RGB and MSR. Samples
cover 2 imaging lightness conditions: adverse illumination (Row 1 and 2) and controlled illumination (Row 3 and 4). (B) Three prediction scores: RGB, MSR
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TABLE VII
TPR@FAR=0.1 AND TPR@FAR=0.01 OF THE ATTENTION FUSION RESULTS ON CASIA-FASD, REPLAY-ATTACK AND OULU-NPU DATABASES

Database Methods Protocol | TPR@FAR=0.1 TPR@FAR=0.01

ResNet Attention Fusion overall 99.71% 85.33%
CASIA-FASD MobileNet Attention Fusion overall 98.95% 82.51%
ResNet Attention Fusion overall 99.21% 98.59%
REPLAY-ATTACK |—yroeireNet Attention Fusion | overall 99.42% 99.13%
Prot.1 94.15% 83.44%
. . Prot.2 95.11% 86.78%

ResNet Attention Fusion Prot3 | 93.59%105% | 84.39%L04%

Protd | 93.00%F04% | 83.60%E05%
OULU-NPU Prot.1 98.94% 96.74%
. . . Prot2 99.10% 96.86%

MobileNet Attention Fusion —p S —1—ge 71010 6 96.04%305%

Protd | 97.83%E04% | 95.22%E0.6%

which is related to the intensity changes of facial skin over
time).

To summarize, our method can achieve very strong perfor-
mance across all the three benchmark databases, showing the
merits of the proposed method.

G. Cross-Database Comparisons

The spoofing faces of different databases are captured using
different devices under different environments (e.g. lightings).
Therefore, it is interesting to evaluate our strategy in a cross-
database protocol to verify its generalization capacity.We con-
ducted a cross-database evaluation between CASIA-FASD and

REPLAY-ATTACK. To be more specific, cross-database is to
train and tune the classifier on one database and test on another
database. The generalization ability of the system in this case
is manifested by the HTER obtained on the validation and test
sets. The countermeasure was trained and tuned with CASIA-
FASD or REPLAY-ATTACK each time, and then tested on
the other databases. The results are reported in Table IV-F
compared with the state-of-the-art techniques in this cross-
database manner.

Due to the domain shift (different imaging environments)

between databases, the performaence of all the anti-spoofing
methods drops. Compared with the state-of-the-art methods,



TABLE VIII

TABLE X

INTER-DATABASE TEST RESULTS IN TERMS OF HTER (%) ON THE
CASIA-FASD AND REPLAY-ATTACK DATABASE

COMPARISON BETWEEN THE PROPOSED COUNTERMEASURE AND Method Train Test Train Test
STATE-OF-THE-ART METHODS ON REPLAY-ATTACK AND CASIA | REPLAY | REPLAY | CASIA
CASIA-FASD DATABASES IN TERMS OF EER(%) AND HTER (%) FASD ATTACK | ATTACK FASD
Motion [60] 50.2% 47.9%
Methods REPLAY-ATTACK | CASIA-FASD LBP [56] 35.9% 37.6%
, EER | HIER EER LBP-TOP [61] 49.7% 60.6%
Motion [60] 11.6 117 26.6 Motion-Mag [64] 50.1% 47.0%
LBP [56] 13.9 13.8 18.2 Spectral cubes [22] 34.4% 45.5%
LBP-TOP [6]] 7.90 7.60 10.00 CNN [14] 48.5% 39.6%
CDD [62] . - 11.8 Color-LBP [10] 47.0% 39.6%
DOG [3] - - 17.0 Colour Texture [8] 30.3% 37.7%
DMD [27] 5.3 3.8 21.8 Depth + rPPG [63] 27.6% 284%
1QA [4] - 15.2 324 Deep-Learning [13] 48.2% 45.4%
CNN [14] 6.10 2.10 7.40 KSA [65] 31% 51%
_IDA [3] - 74 - Frame difference [66] 50.25% 43.05%
Motion + LBP [29] | 4.50 5.11 - Ours (MobileNet
Color LBP [10] 0.40 2.90 6.20 ““Attegﬁ‘ofl) e+ 30.0% 33.4%
Bottleneck feature Ours (ResNet-18 +
fusion + NN [50] | 083 0.00 5.83 A(ttenﬁon) 36.2% 34.7%
Ours (MobileNet
+ Attention) 0.131 0.254 4.175
Ours (ResNet-18
+ Attention) 0.210 0.389 3.145 TABLE XI
INTER-DATABASE TEST RESULTS FOR RGB FEATURES IN TERMS OF
MAXIMUM MEAN DISCREPANCY ON THE CASIA-FASD AND
REPLAY-ATTACK DATABASE
Model Train Val MMD
CASIA-FASD CASIA-FASD 0.7653
Resnet18 RGB CASIA-FASD REPLAY-ATTACK | 1.4561
REPLAY-ATTACK | REPLAY-ATTACK | 0.6871
TABLE IX REPLAY-ATTACK CASIA-FASD 1.3484
COMPARISON BETWEEN THE PROPOSED COUNTERMEASURE AND Cisii_iisg RECID?‘SAI?fTATSAD K ?'8354
STATE-OF-THE-ART METHODS ON OULU-NPU DATABASE IN TERMS OF Mobilenet RGB CASIA-FAS = C 3276
REPLAY-ATTACK | REPLAY-ATTACK | 0.7469
EER (%), APCER (%), BPCER (%) AND ACER (%) REPLAY-ATTACK CASIA-FASD 1.2765
Dev Test
Prot. Methods EER(%)|APCER(%)|BPCER(%)| ACER(%)
CpgD [58] 0.6 29 10.8 6.9 TABLE XII
GRADANT [58] L1 1.3 12.5 6.9 INTER-DATABASE TEST RESULTS FOR MSR FEATURES IN TERMS OF
1 [Depth + rPPG [63]] - L6 1.6 L6 MAXIMUM MEAN DISCREPANCY ON THE CASIA-FASD AND
MobileNet 52 3.9 95 6.7 REPLAY-ATTACK DATABASE
Attention Fusion
ResNet 2.1 5.1 6.7 5.9 Model Train Val MMD
Attention Fusi : : ‘ ‘
ention *usion CASIA-FASD CASIA-FASD 0.9831
MixedFASNet [58]] 1.3 97 25 6.1 Resnet18 MSR CASIA-FASD REPLAY-ATTACK | 1.8746
GRADANT [58] | 09 31 19 25 ; REPLAY-ATTACK | REPLAY-ATTACK | 0.6541
2 [Depth + 1PPG [63]] - 27 27 27 REPLAY-ATTACK CASIA-FASD 1.0133
MobileNet 1 5 | 36 9.0 6.3 CASIA-FASD CASIA-FASD | 0.8655
Attention Fusion
u Mobilenet MSR CASIA-FASD REPLAY-ATTACK | 1.7749
ResNet 2.0 76 20 4.9 ! REPLAY-ATTACK | REPLAY-ATTACK | 0.8811
Attention Fusion REPLAY-ATTACK | CASIA-FASD T.1661
MixedFASNet [58][1.4£0.5] 5.3£6.7 | 7.8E5.5 | 6.514.6
GRADANT [58] |09£04| 2.6£3.9 | 5.0153 | 3.8124
3 |Depth + rPPG [63]| - 27E13 | 3.1E17 | 29£15
MobileNet TABLE XIII
Attention Fusion 5.1+03) 8.7+4.5 5.3£23 | 6.3£22 INTER-DATABASE TEST RESULTS FOR RGB AND MSR FUSION
ResNet FEATURES IN TERMS OF MAXIMUM MEAN DISCREPANCY ON THE
Attention Fusion | /004 39£28 | 73£L1 | 5.6£1.6 CASIA-FASD AND REPLAY-ATTACK DATABASE
Massy HNU [58] |1.0£0.4]35.8£35.3 | 83141 [22.1£17.6 - -
GRADANT [58] [1.1£03| 5.0%45 | 15.0=7.1 | 10.0£5.0 Model Train Val MMD
4 [Depth + PPG [63]] - 93556 | 104260 | 9.5£6.0 CASIA-FASD CASIA-FASD | 0.6215
MobileNet Resnet18 CASIA-FASD REPLAY-ATTACK | 1.2511
Attention Fusion |0-170-7| 10.9%4.6 | 12.7£5.1 | 11.3+3.9 RGB + MSR Fusion | REPLAY-ATTACK | REPLAY-ATTACK | 0.7003
ResNet REPLAY-ATTACK CASIA-FASD 1.1295
Attention Fusion |[>3F0-3| 11.34£3.9 | 97448 | 9.844.2 CASIA-FASD CASIA-FASD | 06619
Mobilenet CASIA-FASD REPLAY-ATTACK | 13518
RGB + MSR Fusion | REPLAY-ATTACK | REPLAY-ATTACK | 0.7139
REPLAY-ATTACK CASIA-FASD 1.0551




our method (MobileNet + Attention) achieves the 2nd best
performance (30.0% and 33.4%), slightly worse than the
best one [63] (27.6% and 28.4%). However, [63] uses more
auxiliary information (3D face shape, rPPG signals) than our
method.

To explore the reasons of performance drop in the cross-
database evaluation, we consider the standard distribution
distance metric, maximum mean discrepancy (MMD) [67] to
measure the distance domain shift between the source feature
and target feature distributions.

MMD(Fr, Fy) =
1 1 (16)
N f;T o(f1) vl f; o(fo)

As shown in the equation above, we define a representation
¢(), which operates on train data features, f; € Fr and
validate data features, f,, € Fy . The larger the value of MMD,
the bigger the domain shift.

From the result of Table XI XII XIII, we can see that: (1)
When we train and test on the same database, the MMD is
smaller than that train and test on different databases for both
MobileNet and ResNet-18.

(2) Since the CASIA-FASD has seven scenarios, when we
train on the CASIA-FASD database and test on the REPLAY-
ATTACK database, the MMD is bigger than that we train
on the REPLAY-ATTACK and test on the CASIA-FASD
database.

(3) The fusion of RGB and MSR features reduced the MMD
of the cross-database compared with individual one for both
MobileNet and ResNet-18.

V. CONCLUSION

In this paper, we proposed an attention-based two stream
convolutional networks for face spoofing detection to distin-
guish real and fake faces. The proposed approach applies
the complementary features (RGB and MSR) extracted via
CNN models (MobileNet and ResNet-18) and then employs
the attention based fusion method to fuse these two features.
The adaptively weighted features contain more discriminative
information under various lighting conditions.

We evaluated our approaches of face spoofing on three chal-
lenging databases, i.e. CASIA-FASD, REPLAY-ATTACK and
OULU-NPU, which indicated the competitive performance in
both intra-database and inter-database. The experiments of
fusion methods show that the attention model can achieve
promising results on feature fusion. The cross-database evalu-
ations show the effectiveness of the fusion of RGB and MSR
information.
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