Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals

Published in:
The Lancet

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright (C) Kivimaki et al. Open Access article distributed under the terms of CC BY, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals

Summary

Background Long working hours might increase the risk of cardiovascular disease, but prospective evidence is scarce, imprecise, and mostly limited to coronary heart disease. We aimed to assess long working hours as a risk factor for incident coronary heart disease and stroke.

Methods We identified published studies through a systematic review of PubMed and Embase from inception to Aug 20, 2014. We obtained unpublished data for 20 cohort studies from the Individual-Participant-Data Meta-analysis in Working Populations (IPD-Work) Consortium and open-access data archives. We used cumulative random-effects meta-analysis to combine effect estimates from published and unpublished data.

Findings We included 25 studies from 24 cohorts in Europe, the USA, and Australia. The meta-analysis of coronary heart disease comprised data for 603 838 men and women who were free from coronary heart disease at baseline; the meta-analysis of stroke comprised data for 528 908 men and women who were free from stroke at baseline. Follow-up for coronary heart disease was 5·1 million person-years (mean 8·5 years), in which 4768 events were recorded, and for stroke was 3·8 million person-years (mean 7·2 years), in which 1722 events were recorded. In cumulative meta-analysis adjusted for age, sex, and socioeconomic status, compared with standard hours (35–40 h per week), working long hours (≥55 h per week) was associated with an increased risk of incident coronary heart disease (relative risk [RR] 1·13, 95% CI 1·02–1·26; p=0·02) and incident stroke (1·33, 1·11–1·61; p=0·002). The excess risk of stroke remained unchanged in analyses that addressed reverse causation, multivariable adjustments for other risk factors, and different methods of stroke ascertainment (range of RR estimates 1·30–1·42). We recorded a dose–response association for stroke, with RR estimates of 1·10 (95% CI 0·94–1·28; p=0·24) for 41–48 working hours, 1·27 (1·03–1·56; p=0·03) for 49–54 working hours, and 1·33 (1·11–1·61; p=0·002) for 55 working hours or more per week compared with standard working hours (p\textsubscript{meta}<0·0001).

Interpretation Employees who work long hours have a higher risk of stroke than those working standard hours; the association with coronary heart disease is weaker. These findings suggest that more attention should be paid to the management of vascular risk factors in individuals who work long hours.

Copyright © Kivimäki et al. Open Access article distributed under the terms of CC BY.

Introduction

Long working hours have been implicated in the cause of cardiovascular disease. In two meta-analyses of published cohort studies, the risk of coronary heart disease was raised in employees working long hours compared with those working standard hours. The relative risk was about 1·4, which, if substantiated, is substantial, because long working hours are fairly common. However, several limitations in these studies could have biased the estimates.

First, publication bias (the increased likelihood that studies with significant findings will be published) might have distorted the evidence. Second, reverse causation might have changed effect estimates if employees with advanced underlying cardiovascular disease reduced their working hours in the years before the cardiovascular...
event. Third, the association might be confounded; working long hours is more common in high socioeconomic status (SES) occupations, but the incidence of cardiovascular diseases is higher in low SES occupations. Fourth, few studies have examined long working hours as a risk factor for stroke, a major cardiovascular endpoint, although stress and extensive sitting, both of which are associated with long working hours, could increase the risk of stroke.

We did this meta-analysis of prospective cohort studies assessing long working hours and cardiovascular disease to overcome these limitations. We supplemented published studies identified by systematic review with unpublished individual-participant data to examine the effect of publication bias and increase the precision of the estimates. Additionally, we address bias due to reverse causation by excluding disease events that took place in the first years of follow-up, control for confounding by stratifying analyses by SES, and examine associations with incident stroke and coronary heart disease.

Methods
Search strategy and selection criteria
In accordance with the PRISMA guidelines, we identified published studies through a systematic review of PubMed and Embase from inception to Aug 20, 2014, with the following search terms without restrictions: “(work hours”, “working hours”, “overtime work”) and “(coronary heart disease”, “ischemic heart disease”, “acute myocardial infarction”, “angina pectoris”, “chest pain”, “stroke”, “cerebrovascular”, “cerebrovascular disease”). We also scrutinised the reference lists of all relevant major reviews, and those of the eligible studies identified by systematic review with unpublished data. Additionally, we address bias due to reverse causation by excluding disease events that took place in the first years of follow-up, control for confounding by stratifying analyses by SES, and examine associations with incident stroke and coronary heart disease.

Unpublished individual-participant data
We supplemented data from the published studies with unpublished individual-level data from 13 European prospective cohort studies participating in the Individual-Participant-Data Meta-analysis in Working Populations (IPD-Work) Consortium (appendix). We located additional individual-level data by searching the Inter-University Consortium for Political and Social Research and the UK Data Service to identify eligible large-scale cohort studies for which data were publicly available. Seven cohort studies were identified (appendix). All the studies with unpublished data successfully completed the data extraction and meta-analysis.

Figure 1: Study selection
(A) Long working hours and coronary heart disease. (B) Long working hours and stroke. *In one study published data* were used in the main analysis, but unpublished data from the IPD-Work Consortium were used in subgroup and sensitivity analyses. IPD-Work=Individual-Participant-Data Meta-analysis in Working Populations Consortium. ICPSR=Inter-University Consortium for Political and Social Research. UK DS=UK Data Service.
were approved by the relevant local or national ethics committee and all participants gave informed consent to participate.

Harmonised covariates, including potential confounding and mediating factors, were age, sex, SES, smoking, body-mass index (BMI), physical activity, hypertension, and diabetes. Additional covariates not available for all the studies were total cholesterol or hypercholesterolaemia, systolic blood pressure or hypertension, and diabetes.

Quality assessment
To assess the quality of included studies, we used the Cochrane Risk of Bias Tool for cohort studies. We analysed selection of exposed and non-exposed groups, assessment of exposure, exclusion of the outcome of interest at study baseline, adjustment for confounding variables, assessment of confounding variables, assessment of outcome, and adequacy of the follow-up. The quality of the study was regarded as high if all domains were assessed favourably.

Statistical analysis
Because the proportional hazards assumption was not violated in the unpublished IPD-Work data (all p>0.20), we used Cox proportional hazards models to generate HRs and 95% CIs for the association between working hours and coronary heart disease or stroke in each of the IPD-Work studies. In the open-access studies, incident coronary heart disease and stroke events were self-reported and had no precise date of event. For these studies, we used logistic regression to calculate study specific ORs and 95% CIs for the association between working hours and coronary heart disease or stroke.

We used meta-analysis to combine the results from the analyses of the unpublished data and the estimates from the published studies reported as HRs or ORs. Because disease incidence was low in the cohort studies, we regarded ORs as close approximations of RR and combined them with HRs, resulting in a common estimate of RR. In accordance with the Meta-Analysis of Observational Studies guidelines, we used all available data in the main analysis and did a sensitivity analysis including only high-quality studies according to the assessment of bias.

We analysed associations of long working hours with incident coronary heart disease and stroke separately. The basic model included age, sex, and SES as covariates. For the unpublished individual-participant data, multivariable adjusted models were additionally adjusted for smoking, alcohol consumption, BMI and physical activity, total cholesterol or hypercholesterolaemia, systolic blood pressure or hypertension, and diabetes; the number of covariates depended on the availability of data. For published studies, we used the most comprehensively adjusted estimates in multivariable adjusted models.

![Figure 2: Cumulative meta-analysis of published and unpublished data of the association between long working hours and incident coronary heart disease](image1)

Estimates adjusted for age, sex, and socioeconomic status.

![Figure 3: Cumulative meta-analysis of published and unpublished data of the association between long working hours and incident stroke](image2)

Estimates adjusted for age, sex, and socioeconomic status.

<table>
<thead>
<tr>
<th>Published studies</th>
<th>Total (N)</th>
<th>Events (N)</th>
<th>Relative risk (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holtermann (2010)</td>
<td>4943</td>
<td>591</td>
<td>1.28 (0.92–1.79)</td>
<td>0.1495</td>
</tr>
<tr>
<td>Virtanen (2010)</td>
<td>10957</td>
<td>759</td>
<td>1.50 (1.03–2.19)</td>
<td>0.0364</td>
</tr>
<tr>
<td>Nettenstrom (2010)</td>
<td>12103</td>
<td>854</td>
<td>1.40 (0.96–2.05)</td>
<td>0.0821</td>
</tr>
<tr>
<td>Toker (2012)</td>
<td>20941</td>
<td>947</td>
<td>1.30 (1.03–1.66)</td>
<td>0.0301</td>
</tr>
<tr>
<td>O’Reilly (2013)</td>
<td>435390</td>
<td>1904</td>
<td>1.25 (1.06–1.47)</td>
<td>0.0067</td>
</tr>
<tr>
<td>Unpublished studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOLF-S19</td>
<td>441444</td>
<td>2016</td>
<td>1.23 (1.02–1.49)</td>
<td>0.0296</td>
</tr>
<tr>
<td>Belasting21</td>
<td>435129</td>
<td>2089</td>
<td>1.21 (0.99–1.49)</td>
<td>0.0678</td>
</tr>
<tr>
<td>WOLF-N19</td>
<td>457777</td>
<td>2222</td>
<td>1.21 (1.00–1.47)</td>
<td>0.0476</td>
</tr>
<tr>
<td>COPSOQ-II18</td>
<td>459580</td>
<td>2259</td>
<td>1.20 (1.01–1.44)</td>
<td>0.0417</td>
</tr>
<tr>
<td>HoSSep17</td>
<td>475730</td>
<td>2127</td>
<td>1.22 (1.04–1.44)</td>
<td>0.0154</td>
</tr>
<tr>
<td>FPS16</td>
<td>520295</td>
<td>2548</td>
<td>1.19 (1.00–1.42)</td>
<td>0.0900</td>
</tr>
<tr>
<td>HNR16</td>
<td>522069</td>
<td>2586</td>
<td>1.19 (1.02–1.39)</td>
<td>0.0290</td>
</tr>
<tr>
<td>dWECs17</td>
<td>57604</td>
<td>2622</td>
<td>1.17 (1.01–1.37)</td>
<td>0.0392</td>
</tr>
<tr>
<td>COPSOQ-II18</td>
<td>539993</td>
<td>2664</td>
<td>1.18 (1.02–1.36)</td>
<td>0.0231</td>
</tr>
<tr>
<td>NWCS19</td>
<td>574503</td>
<td>2780</td>
<td>1.17 (1.02–1.35)</td>
<td>0.0225</td>
</tr>
<tr>
<td>Alameda18</td>
<td>575946</td>
<td>2905</td>
<td>1.16 (1.01–1.33)</td>
<td>0.0297</td>
</tr>
<tr>
<td>NHANES18</td>
<td>580868</td>
<td>3185</td>
<td>1.17 (1.03–1.33)</td>
<td>0.0160</td>
</tr>
<tr>
<td>ACL17</td>
<td>582371</td>
<td>3329</td>
<td>1.19 (1.05–1.35)</td>
<td>0.0064</td>
</tr>
<tr>
<td>WLSG13</td>
<td>587795</td>
<td>3977</td>
<td>1.13 (1.01–1.27)</td>
<td>0.0329</td>
</tr>
<tr>
<td>WLSS10</td>
<td>590271</td>
<td>4234</td>
<td>1.16 (1.03–1.29)</td>
<td>0.0150</td>
</tr>
<tr>
<td>MIDUS15</td>
<td>593531</td>
<td>4566</td>
<td>1.14 (1.03–1.27)</td>
<td>0.0125</td>
</tr>
<tr>
<td>HILDA15</td>
<td>598470</td>
<td>4652</td>
<td>1.13 (1.02–1.26)</td>
<td>0.0193</td>
</tr>
</tbody>
</table>

Unpublished studies				
O’Reilly (2013)	414949	215	1.38 (0.88–2.17)	0.1616
WOLF-S19	420496	312	1.28 (0.84–1.95)	0.2540
COPSOQ-II18	422343	349	1.30 (0.87–1.93)	0.2053
HeSSep17	438449	437	1.46 (1.03–2.07)	0.0340
FPS16	483759	760	1.40 (1.05–1.88)	0.0229
dWECs17	488824	852	1.35 (1.01–1.77)	0.0114
COPSOQ-II16	492117	874	1.37 (1.05–1.79)	0.0197
Whitehall17	499782	1026	1.34 (1.05–1.71)	0.0199
Alameda18	501426	1063	1.38 (1.09–1.75)	0.0077
NHANES18	506554	1180	1.42 (1.14–1.77)	0.0017
ACL17	508063	1259	1.37 (1.09–1.70)	0.0042
WLSG13	514715	1422	1.38 (1.14–1.68)	0.0012
WLSS10	518003	1512	1.33 (1.11–1.61)	0.0025
MIDUS15	520925	1535	1.33 (1.11–1.61)	0.0022
Sweden (Prof P J M Westerholm MD); Centre for Public Health, Queen’s University Belfast, Belfast, UK (D O’Kelly PhD); Institute for Social and Economic Research, University of Essex, Colchester, UK (Prof M Kumari); Centre for Cognitive Ageing and Cognitive Epidemiology and Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK (G D Illy); and School of Community and Social Medicine, University of Bristol, Bristol, UK (J E Ferrie)

We examined heterogeneity of the study-specific estimates with the I^2 statistic (higher values denote greater heterogeneity) and present the summary estimates of the random-effects analysis.46 To describe the development of evidence over time, we did a cumulative meta-analysis of the association of working hours with coronary heart disease and stroke, based on date of publication and, for the IPD-Work and open-access unpublished data, year of baseline examination.46 We estimated dose–response associations with generalised least-squares analysis of trend based on numbers of events and participants, effect estimates, and standard errors for the working hours categories (35–40 h, 41–48 h, 49–54 h, and ≥55 h per week).

We examined reverse causation by left-censoring—ie, exclusion from the analysis of coronary heart disease and stroke events that took place in the first 3 years of follow-up.4,8 Only studies in which definite event times were known were used in this analysis. Prespecified subgroup analyses were done by sex, age group (<50 vs ≥50 years), SES (high, intermediate, low), region (Europe [including Israel] vs USA), method of outcome ascertainment (medical records vs self-report), and publication status (published vs unpublished), and assessed group differences with meta-regression. We examined publication bias in published studies with funnel plots.

We did statistical analyses with SAS (version 9.2) or Stata (MP version 11.2) to analyse study specific data, with the exception of the data from the Netherlands Working Conditions Survey (NWCS)46 for which we used SPSS (version 19). We used Stata (MP version 11.2) to compute the meta-analyses.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. MKi, STN, IEHM, and WEH had full access to the IPD-Work consortium data and MJ had full access to the open-access datasets. MKi had final responsibility for the decision to submit for publication.

Results

Figure 1 shows a flow diagram for the study selection process. We identified 3705 studies of working hours and coronary heart disease and 1958 studies of working hours and stroke (figure 1). Six studies were eligible for inclusion: five about coronary heart disease41,47–49 and one about stroke (figure 1). We did not include two studies40,42 that were included in previous meta-analyses,1,2 because they did not meet the inclusion criteria (the outcome was a cerebro–cardiovascular composite rather than either coronary heart disease or stroke). In combination, the published and unpublished data included in this meta-analysis comprised 25 studies from the USA,16–19 Australia,16 Finland,20,21 Denmark,22,23,24,27,28,47,48 Belgium,29 Germany,30 the UK,31,32 Northern Ireland,17 and Israel.48 The definition of long working hours varied across published studies from 45 h or more47 to 55 h or more per week.4,8 In the studies with unpublished data,17–36 55 h or more per week were defined as long working hours and the reference category is 35–40 h. The appendix details characteristics of the study populations and quality assessment of the studies included. 17 (68%) of the 25 studies were assessed as being of high quality.17–36,42–49

603838 men and women free from coronary heart disease at baseline contributed to the analysis of long working hours and incident coronary heart disease. 4768 of these individuals had an event during the mean follow-up of 8.5 years. Four of the five published studies and all the IPD-Work studies had a uniform definition of incident coronary heart disease, with non-fatal myocardial infarction (I21–I22 in International Classification of Diseases [ICD]-10; 410 in ICD-9; or in line with WHO MONICA definitions)13 or coronary death (I21–I25 in ICD-10; 410–414 in ICD-9) recorded as the main cause of hospital admission or death.17–29,41,47,48 In one published study, the outcome was fatal ischaemic heart disease from a national mortality register.4 In studies from the open-access archives, incident coronary heart disease was assessed by self-report.

Figure 2 shows results of the cumulative meta-analysis adjusted for age, sex, and socioeconomic status. We excluded three IPD-Work studies from this analysis: Whitehall II46 to avoid overlap with published data, and IPAW and PUMA47,48 because of no events in the exposure group. Working long hours was associated with a modest overall increase in risk of incident coronary heart disease compared with working standard hours (RR 1.13, 95% CI 1.02–1.26; p=0.02; figure 2). There was no significant heterogeneity in the study-specific estimates ($I^2=0\%$, p=0.49; appendix).

<table>
<thead>
<tr>
<th>Events (N)</th>
<th>Total (N)</th>
<th>Relative risk (95% CI)</th>
<th>p value</th>
<th>Dose-response p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤35 h</td>
<td>478</td>
<td>16 022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35–40 h</td>
<td>1393</td>
<td>88 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41–48 h</td>
<td>460</td>
<td>21 521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49–54 h</td>
<td>281</td>
<td>83 020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥55 h</td>
<td>347</td>
<td>11 363</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Association of categories of weekly working hours with incident coronary heart disease and stroke

Estimates adjusted for age, sex, and socioeconomic status. *For trend from standard to long working hours.

Sweden (Prof P J M Westerholm MD); Centre for Public Health, Queen’s University Belfast, Belfast, UK (D O’Kelly PhD); Institute for Social and Economic Research, University of Essex, Colchester, UK (Prof M Kumari); Centre for Cognitive Ageing and Cognitive Epidemiology and Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK (G D Illy); and School of Community and Social Medicine, University of Bristol, Bristol, UK (J E Ferrie)

Correspondence to: Prof Mika Kivimäki, Department of Epidemiology and Public Health, University College London WC1E 6BT, UK m.kivimaki@ucl.ac.uk

See Online for appendix

For the Inter-University Consortium for Political and Social Research see http://www.icpsr.umich.edu/icpsrweb/ICPSR

For the UK Data Service see http://ukdataservice.service.ac.uk

We examined heterogeneity of the study-specific estimates with the I^2 statistic (higher values denote greater heterogeneity) and present the summary estimates of the random-effects analysis.46 To describe the development of evidence over time, we did a cumulative meta-analysis of the association of working hours with coronary heart disease and stroke, based on date of publication and, for the IPD-Work and open-access unpublished data, year of baseline examination.46 We estimated dose–response associations with generalised least-squares analysis of trend based on numbers of events and participants, effect estimates, and standard errors for the working hours categories (35–40 h, 41–48 h, 49–54 h, and ≥55 h per week).

We examined reverse causation by left-censoring—ie, exclusion from the analysis of coronary heart disease and stroke events that took place in the first 3 years of follow-up.4,8 Only studies in which definite event times were known were used in this analysis. Prespecified subgroup analyses were done by sex, age group (<50 vs ≥50 years), SES (high, intermediate, low), region (Europe [including Israel] vs USA), method of outcome ascertainment (medical records vs self-report), and publication status (published vs unpublished), and assessed group differences with meta-regression. We examined publication bias in published studies with funnel plots.

We did statistical analyses with SAS (version 9.2) or Stata (MP version 11.2) to analyse study specific data, with the exception of the data from the Netherlands Working Conditions Survey (NWCS)46 for which we used SPSS (version 19). We used Stata (MP version 11.2) to compute the meta-analyses.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. MKi, STN, IEHM, and WEH had full access to the IPD-Work consortium data and MJ had full access to the open-access datasets. MKi had final responsibility for the decision to submit for publication.

Results

Figure 1 shows a flow diagram for the study selection process. We identified 3705 studies of working hours and coronary heart disease and 1958 studies of working hours and stroke (figure 1). Six studies were eligible for inclusion: five about coronary heart disease41,47–49 and one about stroke (figure 1). We did not include two studies40,42 that were included in previous meta-analyses,1,2 because they did not meet the inclusion criteria (the outcome was a cerebro–cardiovascular composite rather than either coronary heart disease or stroke). In combination, the published and unpublished data included in this meta-analysis comprised 25 studies from the USA,16–19 Australia,16 Finland,20,21 Denmark,22,23,24,27,28,47,48 Belgium,29 Germany,30 the UK,31,32 Northern Ireland,17 and Israel.48 The definition of long working hours varied across published studies from 45 h or more47 to 55 h or more per week.4,8 In the studies with unpublished data,17–36 55 h or more per week were defined as long working hours and the reference category is 35–40 h. The appendix details characteristics of the study populations and quality assessment of the studies included. 17 (68%) of the 25 studies were assessed as being of high quality.17–36,42–49

603838 men and women free from coronary heart disease at baseline contributed to the analysis of long working hours and incident coronary heart disease. 4768 of these individuals had an event during the mean follow-up of 8.5 years. Four of the five published studies and all the IPD-Work studies had a uniform definition of incident coronary heart disease, with non-fatal myocardial infarction (I21–I22 in International Classification of Diseases [ICD]-10; 410 in ICD-9; or in line with WHO MONICA definitions)13 or coronary death (I21–I25 in ICD-10; 410–414 in ICD-9) recorded as the main cause of hospital admission or death.17–29,41,47,48 In one published study, the outcome was fatal ischaemic heart disease from a national mortality register.4 In studies from the open-access archives, incident coronary heart disease was assessed by self-report.

Figure 2 shows results of the cumulative meta-analysis adjusted for age, sex, and socioeconomic status. We excluded three IPD-Work studies from this analysis: Whitehall II46 to avoid overlap with published data, and IPAW and PUMA47,48 because of no events in the exposure group. Working long hours was associated with a modest overall increase in risk of incident coronary heart disease compared with working standard hours (RR 1.13, 95% CI 1.02–1.26; p=0.02; figure 2). There was no significant heterogeneity in the study-specific estimates ($I^2=0\%$, p=0.49; appendix).
528,908 men and women free from stroke at baseline contributed to the analysis of long working hours and incident stroke. 1722 of these individuals had an event during mean follow-up of 7·2 years. The only published study available assessed fatal, but not non-fatal, stroke.4 Incident stroke in the IPD-Work studies was defined with hospital and mortality records (I60, I61, I63, I64 in ICD-10; 430, 431, 433, 434, 436 in ICD-9). Incident stroke was based on self-reported data in the open-access datasets.

We excluded three IPD-Work studies from the cumulative meta-analysis of incident stroke (WOLF-N,19 IPAW20, and PUMA21) because of no events in the exposure group. Working long hours was associated with an increased risk of incident stroke (RR 1·33, 95% CI 1·11–1·61; p=0·002; figure 3). Again, there was no significant heterogeneity in the study-specific estimates (I²=0%, p=0·67; appendix).

None of the published studies reported numbers of participants and events and RR for all categories of working hours. Thus, only IPD-Work and the open-access studies (20 for coronary heart disease17–36 and 16 for stroke27,28,30–35) contributed to the dose–response analyses. No linear trend from standard to long working hours was shown for coronary heart disease; by contrast, we recorded a dose–response association for stroke (figure 4), for which the RR per one category increase in working hours was 1·11 (95% CI 1·05–1·17).

We recorded no evidence of significant bias arising from reverse causation, confounding, outcome ascertainment, publication status, geographical region, loss to follow-up, or study quality in the associations of long working hours with coronary heart disease and stroke (figure 5, appendix). Any subgroup differences were small with one exception: an analysis limited to high-quality studies showed an SES-dependent association between long working hours and coronary heart disease, with an RR of 2·18 (95% CI 1·25–3·81; p=0·006) in the low SES group, 1·22 (0·77–1·95; p=0·40) in the intermediate SES group, and 0·87 (0·55–1·38; p=0·56) in the high SES group (p=0·001 for difference between groups; appendix).

Discussion

Our findings show that individuals who work 55 h or more per week have a 1·3-times higher risk of incident stroke than those working standard hours. There was no evidence of between-study heterogeneity, reverse causation bias, or confounding. Furthermore, the association did not vary between men and women or by geographical region, and was independent of the method of stroke ascertainment, suggesting that the finding is robust. Long working hours were also associated with incident coronary heart disease, but this association was weaker than that for stroke.

Combining estimates from published studies and unpublished data allowed us to examine the status of long working hours as a risk factor for coronary heart disease and stroke with greater precision and a more comprehensive evidence base than has previously been possible. Our findings are consistent with two previous meta-analyses of long working hours and coronary heart disease reviewing prospective data from less than 15,000 participants—a substantially smaller evidence base than that in the present meta-analysis. Socioeconomic differences in the association between long working hours and coronary heart disease have been reported for mortality from ischaemic heart disease in Northern Ireland.5 Our meta-analysis of high-quality cohort studies confirms a stronger association for fatal
and non-fatal incident coronary heart disease in individuals with low SES occupations than in those with high SES occupations.

We are not aware of previous prospective cohort studies of the association between long working hours and incident stroke, although this association is biologically plausible. Sudden death from overwork is often caused by stroke and is believed to result from a repetitive triggering of the stress response. Behavioural mechanisms, such as physical inactivity, might also link long working hours and stroke; a hypothesis supported by evidence of an increased risk of incident stroke in individuals who sit for long periods at work. Physical inactivity can increase the risk of stroke through various biological mechanisms, and heavy alcohol consumption—a risk factor for all types of stroke—might be a contributing factor because employees working long hours seem to be slightly more prone to risky drinking than are those who work standard hours. Some, albeit inconsistent, evidence suggests that individuals who work long hours are more likely to ignore symptoms of disease and have greater prehospital delays in relation to acute cardiovascular events than those who work standard hours.

Our meta-analysis has some limitations. A large proportion of the unpublished individual-participant data was from the IPD-Work Consortium, which is based on a convenience sample potentially contributing to availability bias. Exposure to long working hours was based on self-report and was measured only once. Because the tendency to work long hours is not necessarily stable over time, further research on prolonged exposure to long working hours, preferably with objective measures, is needed to establish whether our findings are underestimated because of misclassification of the exposure. In two studies, high loss to follow-up could also have contributed to an underestimation of associations, although this bias seemed to be small or absent in the total data. We had harmonised data for multivariable adjustments for age, sex, SES, smoking, BMI, physical activity, and alcohol consumption, but not for salt intake and blood-based risk factors. Ascertainment of coronary heart disease and stroke varied, ranging from medical records of brain imaging and autopsy to repeated self-report questionnaires; therefore, some outcome misclassification is possible. However, the absence of heterogeneity in the study-specific estimates, and the uniform findings in the analyses stratified by method of ascertainment, suggest that this misclassification is not a major source of bias.

In conclusion, our meta-analysis shows that employees who work long hours have a higher risk of stroke than those working standard hours. However, the evidence for coronary heart disease is less persuasive. Our findings suggest that more attention should be paid to the management of vascular risk factors in individuals who work long hours.

Declaration of interests
We declare no competing interests.

Contributors
All authors designed the study, generated hypotheses, interpreted the data, and wrote and critically reviewed the report. MKi wrote the first draft of the report. MKi and MV did the literature search. MJ and STN analysed the data. MJ, STN, and MKi had full access to anonymised individual-participant data from all constituent studies, with the exception of data from NWCS, COPSOQ-I, COPSOQ-II, DWECS, IPAW, and PUMA. WEH had full access to NWCS data and IEHM had full access to the individual-participant data from COPSOQ-I, COPSOQ-II, DWECS, IPAW, and PUMA.

Acknowledgments
The IPD-Work Consortium was funded by the European Union New and Emerging Risks in Occupational Safety and Health research programme, the Finnish Work Environment Fund, the Swedish Research Council for Working Life and Social Research, the German Social Accident Insurance (the AeKo-Project), Danish National Research Centre for the Working Environment, the Academy of Finland, the BUPA Foundation (grant 22094477), and the Ministry of Social Affairs and Employment, the Netherlands. MKi is supported by the Medical Research Council (grant number K011351), the UK Economic and Social Research Council, and the US National Institutes of Health (R01HL06310; R01AG034454). AS is supported by the British Heart Foundation.

References

