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Abstract—We present a single vision-based, self-
localization method for autonomous mobile robots in a
known, indoor environment. This absolute localization
method is landmark assisted, therefore, we propose an
algorithm that requires the extraction of a single landmark
feature i.e., the length of a known edge. Our technique is
based on measuring the distance from two distinct, arbi-
trarily positioned landmarks in the robot’s environment,
the locations of which are known a priori. A single camera
vision system is used to perform distance estimation. The
developed framework is applied to tracking a robot’s pose,
i.e., its position and orientation, in a Cartesian coordinate
system. The position of the robot is estimated using a bi-
lateration method, while its orientation calculation utilizes
tools from projective geometry. The validity and feasibility
of the approach are demonstrated through experiments.

I. INTRODUCTION

Estimating a robot’s pose (position and orientation)
is one of the fundamental problems in mobile robotics,
as achieving reliable navigation in any environment
becomes more and more important. When dealing with
indoor mobile robots, self-localization is important since
it allows the agent to perform autonomously. Com-
monly, depth information regarding distinct objects in
the environment is required for position estimation. This
can be done with a wide range of sensors, i.e, laser
range finder and sonar. However, these solutions require
integration over time and high-level reasoning in order
to accomplish localization [1].

On the other hand, vision has the potential to provide
enough information to uniquely identify the robot’s
position. From the available self-localization techniques,
it seems that vision-based ones are potentially the most
flexible and powerful source of information for such
a task [2]. Vision-based techniques are also closely
intertwined with the robotic agent’s environment; ele-
ments like ceiling lights and door frames can be uti-
lized for some of their features which are either color
transitional or line-based, e.g. the perceived length of a
known horizontal edge [3]. Such techniques are based
on passive beacon (“natural landmark”) detection; in
general, landmarks have a known, fixed position, relative
to which a robot can localize itself. Thus, the main

task in self-localization is to recognize such landmarks
reliably and to subsequently compute the robot’s po-
sition. When dealing with natural landmarks, ambient
conditions, such as lighting, can be proven problematic,
hence more computational power might be necessary.
On the other hand, active beacon navigation, i.e. when
the environment needs to be modified with stationary
beacon systems which require electric outlets or bat-
tery maintenance, provides very accurate localization
information with less processing effort. This approach
naturally yields higher reliability, but the costs of the
installation and maintenance are also higher [4].

In this study, the testbed of our algorithm is a vehicular
mobile robot development platform, called AlphaBot [5]
(Fig. 3), equipped with a single frontal pivoted camera;
omni-directional cameras with viewing angle of 360◦

could potentially provide more landmarks but suffer from
higher cost due to their mirror system, low resolution of
the camera, and the requirement of an additional space
to fit the mirror and the camera. Differently, with frontal
cameras one can have high resolution but the viewing
field is limited. That is why our algorithm is extended
to utilize the pivoted stereo head to successfully detect
the landmarks.

The application setting envisioned resembles that of
a warehouse, a factory floor or a ship’s cargo hold. In
this case, the robot’s environment is considered known,
relatively static and slightly modified with colored cylin-
drical navigation aids to make the algorithm’s evaluation
smoother, as distinct landmarks are naturally scarce.
Therefore, our position estimation algorithm has to be
based on the minimum number of distinct landmarks.
The fact that our approach works with the simplest
camera system and the minimum amount of identified
natural landmarks, is what differentiates it from similar
works in the field.

The rest of the paper is structured as follows. In
Section II, the current state of the art is presented, while
in Section III the single vision-based self-localization
algorithms is broken down into three distinct steps.
The experimental setup and the evaluation findings are



presented in Section IV, while conclusions and future
plans are exposed in Section V.

II. RELATED WORK

During the last few years, significant effort has been
put into estimating a robot’s pose, i.e. position and ori-
entation, through the use of a sensing system, e.g., GPS,
infrared or ultrasonic distance sensor, lidar, accelerome-
ter / compass / magnetometer or a camera. Among these,
the image-based camera localization is the most flexible
and low cost approach [6], but at the same time it is
the most complex one. As a result, many research works
have been involved with developing novel techniques for
dealing with the peculiarities on this domain.

In [7] the authors discuss the localization of small,
autonomous mobile robots using a single landmark
feature, found in the environment, specifically a color
transition, a junction or a line intersection. Ultimately,
the position and orientation of the robot is calculated by
estimating the distance from a single landmark, from two
arbitrary points, whose displacement can be measured
using dead-reckoning sensors. Distance measurements
are performed through a stereo vision system. A dif-
ferent approach is followed in [8], where a database
of landmark images from representative viewpoints is
compiled off-line to be later used in an on-line position
estimation process; during this, observed landmarks are
matched to stored landmarks and the transformation
subspace that relates the observed ones with a set of
tracked ones is exploited to perform the localization.
A novel algorithm for landmark matching, triangulation
reconstruction and comparison (LTRC) is demonstrated
in [9]. In a similar fashion to the previously mentioned
work, landmark matching is also performed here, with a
panoramic camera this time. In this case, at least three
landmarks are identified and triangulated to estimate the
current robot position. Ambiguities during this process
are resolved in a reconstruction and comparison stage
where the most realistic estimation is selected.

Strategic placement of the landmarks is, finally,
demonstrated in [10]; a bilateration method is utilized
instead of trilateration, as the distance from exactly two
landmarks is sufficient for providing a unique pose of the

(a) Beacon Schematic (b) Actual Beacon

Fig. 1: Landmarks

robot. The ambiguity between the two possible poses,
resulted from the bilateration, is resolved by considering
a fixed order of the landmark points. The camera system
used here is omni-directional.

III. SINGLE VISION-BASED SELF-LOCALIZATION

In our case, in order to estimate the AlphaBot’s 3-
degrees-of-freedom pose in the grid, in terms of (x, y)
coordinates and θ heading orientation, a single vision
-based self-localization algorithm was developed. This
algorithm is classified as single vision -based, because
the robot uses a single frontal camera. Moreover, it is
landmark-assisted, since it requires a single landmark
feature (width of beacon) to work. The approach taken
here is feature-based and relies on the principles of pro-
jective geometry. In particular, the cylinder was selected
as the shape of the Beacons (Fig. 1), because of its
interesting property; its 2D projection is a rectangle,
independently of any viewing angle that has a rotation
axis parallel to the cylinders axis. The Beacons are col-
ored differently from the environment colors, e.g., blue,
red, orange and green, in order to facilitate the detection
from the AlphaBot’s camera. The camera mounted on
the AlphaBot has a 30-degree horizontal angle of view,
so a rotation of six 30-degree steps is needed in order
to cover the 180-degree-area in front of it, on aggregate,
and detect two, at least, Beacons. This requirement is
discussed further on Subsection III-A. The following
three steps are performed:

A. Beacon Recognition

In order to detect the presence of a Beacon within an
image, the Python OpenCV Library 1was utilized; first,
the image is transferred to the HSV (Hue, Saturation and
Value) color space, because this conversion is robust to-
wards external lighting changes. In particular, in cases of
minor changes in external lighting, such as pale shadows,
Hue values vary relatively less than RGB values. After
this, the algorithm applies an offline calculated HSV
mask to the image, acting as a color filter for each of the
Beacon colors. Then, it groups the adjacent filtered pixels
and draws the minimum-area rectangles that surround
each of these groups. This mask consists of a set of
lower and upper values regarding the Hue, Saturation
and Value of each color, acting as boundaries. In this
study, the following ranges where used: H ∈ [0o, 180o],
S ∈ [0, 255] and V ∈ [0, 255]. For example, the
[H,S, V ] mask corresponding to blue colored pixels is:
lower[30, 75, 100] and upper[110, 255, 255].

Next, from the rectangles drawn on the image, the
ones that possess the following features are considered
to be classifiable as a Beacon:

1) The identified rectangle is in upright position.

1https://github.com/opencv/opencv



Fig. 2: Beacon contour detection in HSV color space.

2) Its shorter side is parallel to the x axis and its
longer side parallel to the y axis of the image
plane.

3) Its aspect ratio stays between Beacon-specific,
predefined, boundaries.

These simple criteria are defined to filter out objects
on the field that are similarly shaped and colored as
the Beacons. If no rectangle fits these criteria, then it
is assumed that the image does not depict a Beacon in
whole. On the other hand, if more than one Beacons are
detected, a selection is made to consider only one of
them. Fig. 2 depicts the result of the above process. The
resulting information retrieved is the perceived width
p of the contour rectangle surrounding the Beacon, in
pixels.

B. Distance and Angle Relative to Beacon Estimation

After detecting a Beacon within an image, the process
of estimating the AlphaBot’s distance and angle from
this Beacon, takes place. Performing this step twice,
for two distinct Beacons, allows the deduction of the
exact position and pose of the AlphaBot on the grid.
It is worth noting that in the scope of this work, we
assume the positions of the Beacons to be known.
However, we believe this method to be extensible to the
case where the positions of the Beacons is unknown,
e.g., where a Simultaneous Localization and Mapping

Fig. 3: AlphaBot’s main axes.

(SLAM) technique can be leveraged to initially identify
these positions. The camera mounted on the AlphaBot
follows the pinhole camera model [11]; that means that
the relative size of the projected objects depends on their
distance to the focal point. To find the distance, we utilize
the triangle similarity theorem, i.e., the distance of the
object to the camera, dc, is given from the following
equation:

dc =
wf

p

where:

w = Beacon width in cm.
f = camera’s focal length im mm (known from
camera’s datasheet or computed through camera
calibration).
p = perceived Beacon width in pixels (px).

We should note here that across the localization pro-
cess we consider the AlphaBot to be a dimensionless
point on the center of its wheel axis. However, the
AlphaBot’s camera lenses axis is placed 7cm from the
robot’s center, as shown in Fig. 3. Thus, the actual esti-
mated distance, d, between the Beacon and the AlphaBot
is:

d = dc + 7

Fig. 4: Method for calculating the angle between the
AlphaBot and the Beacon.



The core novelty of our localization method lies in
the calculation of the angle between the AlphaBot and
the Beacon. As shown in Fig. 4, we assume the 2D
projection of the Beacon on the plane of the captured
image. We also assume the origin (0, 0) at the middle
of the bottom border of the image plane and the axis z,
coming through it, as shown in Fig. 4. To calculate the
angle θb between the camera’s line of sight and the line
which starts from the camera lens and is perpendicular
to the Beacon’s axis, d and a are required. An insight of
this angle’s real-world nature would be this: “the angle
that the camera has to rotate to horizontally centre the
Beacon’s 2D projection on the image plane”. The dis-
tance ap, in pixels, is the perpendicular distance between
the axis z and the Beacon’s axis, which are parallel to
each other, and can be readily calculated as the contour’s
vertices coordinates are known from the last step. The
distance between the Beacon’s axis and the AlphaBot,
d, in cm, was calculated in the previous step as well.
Hence, it is only needed to translate the distance ap to
the distance a in cm. To enable this conversion, we first
ensure that the cm-per-pixel ratio, which applies to the
Beacon’s 2D projection on the image plane, is preserved
throughout the rest of the plane. This holds true, as the
real-world z axis and its projection on the image plane
coincide, which subsequently means that the real-world
distance a and its projection coincide as well. Moreover,
the pixel size has the same cm length, independently
of the pixel’s position through the camera’s conformity
with the pinhole model, which makes the projection free
of any linear distortion. Consequently, we have

a = ap(
w

p
),

where
w

p
is equivalent to the cm-per-pixel ratio. With a

and d known, we can calculate θb,

θb = arcsin(
a

d
).

The approach still works when other objects, such
as obstacles in the environment, are depicted in the
projection. The only constraint is that the Beacon has
to be captured in whole. The last thing to note is that,
as mentioned earlier, the camera rotates on its pivoted
system in order to scan the area in front of the robot for
Beacons. However, the angle θc to which the camera is
rotated is known. As a result, the overall θo to which the
AlphaBot is rotated, with the given Beacon as reference,
is

θo = θc + θb.

C. Grid Position and Orientation (Pose) Estimation

After having the distance, (d0, d1), and angle
(θo0 , θo1) from two Beacons available, the AlphaBot’s
pose in terms of position and orientation is estimated.

Fig. 5: Bilateration method for calculating AlphaBot’s
position in the grid.

The locus formed by the set of possible (x, y) locations
whose distance from Beacon Pi equals the estimated
distance di, i ∈ [0, 1], is a circle. This observation allows
us to utilize the bilateration method in order to estimate
the position of the AlphaBot, as shown in Fig. 5 with P3;
this method has been used extensively in previous works
regarding localization in wireless sensor networks [12],
as it requires much lower computational complexity,
yet still retains the same localization accuracy, if the
environmental setup allows it.

In our setting, we are able to retrieve a unique solu-
tion of the location of the AlphaBot by combining the
knowledge of the relative angle observations θo0 and θo1 .
Indeed, for the two (at most) candidate locations that
the observations were taken as shown in Fig. 5, there
is always exactly one feasible configuration that allows
both angle values to be attained, or equivalently, that
result in the same absolute angle θ estimation. This is
demonstrated in Fig. 6; for example, let θo1 = 20◦ and
θo2 = 150◦. As shown there is only one feasible point
where both angle measurements are verified.

Our developed method requires only two beacons for
localization, under the assumption of course that the

Fig. 6: Method for invalidating one of the two possible
solutions.



measurements are accurate. Nevertheless, the problem
of placing the minimal number of landmarks in the
map still remains. This number depends on the viewing
angle of the camera and the density of the obstacles, or
equivalently, visibility of the beacons from all directions.
For our setting where the viewing angle is 180o and
for a rectangular map with obstacles not obstructing
the visibility of the beacons, the minimum number of
beacons need to be placed is 4. The problem becomes
significantly harder for non-convex and/or non-static
maps and tall obstacles, and is the object of our future
research.

The bilateration process is briefly depicted in Fig.
5; the mathematical justification behind calculating the
circles’ intersection points is the following; considering
the two triangles P0P2P3 and P1P2P3 we can write

c20 + h2 = d0
2

and

c21 + h2 = d1
2

where c0 and c1 are the distances of P0 and P1,
respectively, from the bisector coming through the two
intersection points of the circles and c0 + c1 equals the
distance d2 between the two Beacons. Using d2 = c0+c1
we can solve for c0,

c0 =
d0

2 − d12 + d2
2

2d2

Then we solve for h by substituting c0 into the first
equation, h2 = d0

2 − c20, so we get

P2 =
P0 + c0(P1 − P0)

d2

And finally, P3 = (x3, y3) in terms of P0 = (x0, y0),
P1 = (x1, y1) and P2 = (x2, y2), is either

x3 =
x2 + h(y1 − y0)

d2
, y3 =

y2 + h(x1 − x0)
d2

or

x3 =
x2 − h(y1 − y0)

d2
, y3 =

y2 − h(x1 − x0)
d2

As mentioned above, one of the two solutions is
always rejected as invalid.

The final part of the localization process is to calculate
the AlphaBot’s orientation in the grid with respect to
a given reference point. As a first step, we assume a
Reference Point in a known location on the AlphaBot’s
South, in Cartesian coordinates; as shown in Fig. 7,
the exact locations of both the Beacon (P0) and the
AlphaBot are known by now, thus calculating the dis-
tances b (Beacon - Reference Point) and r (AlphaBot

Fig. 7: Method for calculating the angle between the
AlphaBot and the Beacon.

- Reference Point) is straightforward. Also, distance d0
(Beacon - AlphaBot) and angle θo (AlphaBot’s angle
with Beacon as reference) have been calculated in the
previous steps; hence, by utilizing the cosine rule, the θt
angle can be obtained:

θt = arccos(
b2 + r2 − d02

2br
)

The actual orientation angle, θ is given from the
following subtraction:

θ = θt − θo

IV. EXPERIMENTAL EVALUATION

For the evaluation of the proposed self-localization
technique, experiments were conducted in a floor space
of 2.5 square meters, hereinafter mentioned as the “op-
erating space”. The evaluation of the proposed technique
is broken down into two parts; i) the association of the
perceived distance’s error with the real distance from the
detected Beacon and ii) the overall accuracy of the final
estimation of the AlphaBot’s pose.

As depicted in Fig. 8, the AlphaBot is located between
50cm and 250cm from the Beacon of interest. The
distance of 50cm corresponds to the minimum distance
from which a Beacon can be portrayed in whole with
the current camera setup. One can notice that the abso-
lute error of the distance-to-Beacon estimation increases
gradually as the distance increases, but the accuracy
never drops bellow 93%. Moreover, the different relative
orientations of the AlphaBot seem to have a negligible
effect in the accuracy of the distance estimation; −30◦,
0◦ and 30◦ were randomly selected to illustrate this
behaviour. We must highlight that the most accurate
estimations, though, were observed when the real dis-
tance between the AlphaBot and the identified Beacon



Fig. 8: Absolute error of the estimated distance relative
to the real distance from a Beacon, for different orien-
tations.

was in the range [80cm, 100cm], as the average of the
estimation’s absolute error was in the area of 1.3cm, or
approximately 1%.

To illustrate the overall accuracy of our self-
localization method, we composed a random walk for the
AlphaBot to perform on the aforementioned operating
space; the robot followed a predefined trajectory of
random poses and estimated its position and orienta-
tion at each point. In Fig. 9 the trajectory of the real
positions is depicted with the blue dashed line, having
at each point a specific orientation depicted with blue
arrows, while the estimated positions and orientations
are depicted with red dashed lines and green arrows
respectively. The lines connecting the different points
do not represent the actual movement of the AlphaBot
but are drawn for clarity. The deviation between the real
poses and the estimated ones produced by the proposed
algorithm for this random walk, is considered acceptable
for the selected application. We note that in a typical

Fig. 9: Real versus estimated AlphaBot trajectory.

setting where the robotic agent moves autonomously, the
measurements generated by our method can be fed to
a state observer of the robot’s position and orientation,
improving significantly the accuracy.

When comparing the estimated poses with the real
ones, it can be noticed that the combined coordinates
error, after the bilateration of the two relative distances
takes place, never exceeds 20% in either x or y axis.
Regarding the estimation of the orientation, at each point,
the absolute error lies in the [2◦, 12.5◦] range. All in all,
when a Beacon is correctly detected within the captured
image, we notice that the proposed method is not only
precise but also independent of environmental variables,
e.g., light conditions, when it comes to pose estimation.

V. CONCLUSIONS

In this paper we proposed a vision-based self local-
ization approach for indoor autonomous mobile robots.
Based on a bilateration method and some core principles
of the projective geometry, our algorithm requires the
detection of distinct landmarks in the environment and
the calculation of the robot’s relative distance from them
in order to obtain the robot’s pose (x, y, θ). Distance
calculation is based on feature extraction from the land-
marks. The localization algorithm has to rely on the
minimum number of landmarks as they are scarce in
our application’s setting, thus a bilateration approach that
requires the identification of two landmarks was used.

The experimental evaluation showed that when the
robot’s real distance from the detected landmark resides
in the interval [80, 200]cm the accuracy of estimation
lies above 95%, independently of the robot’s relative
orientation. Regarding the orientation calculation, a quite
stable, average error of 6◦ was observed during the ex-
perimentation. Finally, to illustrate the overall efficiency
of the proposed localization algorithm, a trajectory of
poses was given to the robot to follow, the results
of which were more than adequate, for a real world
application.

The main drawback of this method is that it is heavily
affected by ambient conditions, as any other passive
beacon -based technique. As a result, our future plans
include the utilization of better camera equipment (ultra
wide angle / high resolution lens), and the improvement
of the feature extraction software component, for more
efficient interpretation of landmarks. Also, it is in our
future intentions to incorporate this technique to path
planning problems for autonomous systems.
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