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Abstract

New, automated forms of data-analysis are required in order to understand the high-
dimensional trajectories that are obtained from molecular dynamics simulations on pro-
teins. Dimensionality reduction algorithms are particularly appealing in this regard as
they allow one to construct unbiased, low-dimensional representations of the trajectory
using only the information encoded in the trajectory. The downside of this approach is
that a di�erent set of coordinates are required for each di�erent chemical systems un-
der study precisely because the coordinates are constructed using information from the
trajectory. In this paper we show how one can resolve this problem by using the sketch-
map algorithm that we recently proposed to construct a low-dimensional representation
of the structures contained in the protein data bank (PDB). We show that the resulting
coordinates are as useful for analysing trajectory data as coordinates constructed using
landmark con�gurations taken from the trajectory and that these coordinates can thus
be used for understanding protein folding across a range of systems.
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1 Introduction
For many years structural biologists have rationalised the functionality of proteins in terms
of their tertiary structures.1 As such an important question in the protein folding community
has concerned the direct prediction of the tertiary (folded) structure from the primary amino
acid sequence. Numerous groups have attempted to predict these structures based on a
fundamental understanding of the interactions between the various atoms that make up the
protein. However, as the number of protein structures determined by experimentalists has
built up, an alternative approach based on homology between amino acid sequences has
become popular. The plain fact is that the folded state of many proteins is generally some
mixture of a relatively small number of secondary structural units of which the alpha helix
and beta sheet are the two most common varieties. As a result one can make predictions
about the tertiary structure of a new protein by looking for similar sequences of amino acids
in the protein data bank (PDB). This new sequences will, in all probability, have a tertiary
structure similar to those found in the PDB databank.

There is a growing consensus in the experimental community that the folded state is
not the only factor that a�ects protein function. There is evidence that understanding phe-
nomena such as allosteric binding,2 signalling3 or the growing class of so-called intrinsically
disordered proteins4 requires dynamical information on protein motions as well as static
information on the structure of the folded state. It would be very di�cult to extract such
information using homology modelling alone so atomistic simulation based on an understand-
ing of the individual interactions between atoms still has a clear role to play. In addition, it
is still di�cult to determine structures in loop regions of the protein using homology mod-
elling.5�7 Therefore, for all these problems molecular dynamics (MD) and Monte Carlo are
thus still the methods of choice. Having said that homology modelling can play an impor-
tant role when it comes to interpreting the results from such simulations or when developing
variables to enhance the rate at which con�guration space is sampled. Pietrucci and Laio8

have shown that coordinates that count the number of segments of protein backbone that
resemble the known �-helical and �-sheet secondary structure elements are useful collective
variables. Furthermore, in many papers on atomistic simulation the results are rationalised
using the lens provided by the known secondary structure elements.

In this paper we thus ask the question: can one develop a set of collective variables
that can be used to insightfully interpret atomistic simulation data by using the information
contained in the protein databank? To develop such coordinates we use the sketch-map
algorithm9 that we have recently developed. This dimensionality reduction algorithm has
been shown to be remarkably robust10 and in this paper we �nd that we can indeed interpret
data generated during atomistic simulations using coordinates that are generated based on
the known structures in the protein databank (PDB). The coordinates we are able to extract
in this way allow us to di�erentiate between the various distinct con�gurations the protein
adopts during the simulation. Furthermore, and perhaps more intriguingly, these coordinates
tell us which con�gurations a particular amino acid sequence can adopt from amongst the
constellation of possibilities that have been observed previously as well as those which it
does not adopt.
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2 Background
The sketch-map algorithm works in a manner similar to the classical multidimensional scal-
ing (MDS) algorithm.11 These dimensionality reduction algorithms endeavour to arrange a
set of projections, fsg, in some low dimensional space so that the distances between them are
the same as the dissimilarities between the high-dimensional frames, fXg, that the projec-
tions are supposed to represent. There are a number of non-linear dimensionality reduction
(NLDR) algorithms12�16 that are now used almost routinely to generate low-dimensional
projections of data in this way, which all make assumptions about the structure of the high-
dimensional data. In developing sketch-map we recognised that it is impossible to match all
the dissimilarities between the trajectory frames at once as there are features in trajectory
data that appear to be truly high dimensional. We thus chose to match a subset of dissimi-
larities only - the dissimilarities that are within a certain, user-speci�ed range. Frames that
are very similar are assumed to be essentially the same and are thus projected at the same
point. Meanwhile the algorithm attempts to separate points that are very dissimilar but
does not particularly worry about making the distance between the projections larger than
the actual dissimilarity between the high-dimensional points.

In practise projections are generated in sketch-map by minimising the following function:

�2 =
X

i 6=j

wiwj [F (Rij)� f(rij)]2

where f(r) = 1� (1 + (2a=b � 1)(r=�)a)�b=a

and F (R) = 1� (1 + (2A=B � 1)(R=�)A)�B=A

(1)

Rij is the dissimilarity between landmark points Xi and Xj and rij is the distance between
their projections si and sj. wi and wj are weights that are given to each of the landmarks. We
generally calculate these weights by considering how many con�gurations from the trajectory
lie in the Voronoi polyhedras of each of the landmarks. Within sketch-map the tuning to
a distance range of interest is achieved by adjusting the value of �. More information on
this procedure as well as instructions for setting the other parameters in the above functions
(A, B, a and b) can be found in the appendices of our recent paper10 and on our website
http://ep�-cosmo.github.io/sketchmap/.

When using sketch-map to examine trajectory data for protein molecules we use the
values of the full set of Ramachandran angles to represent each protein con�guration. As
such when we use sketch-map to examine a 16 residue protein say each of the X vectors in
our set of high dimensional con�gurations is a 30-dimensional vector of angles. To calculate
the dissimilarity, Rij, between two of these high-dimensional con�gurations we measure the
square root of the sum of the squares of the di�erences between these backbone torsional
angles. Furthermore, when calculating the di�erence between a pair of torsional angles we
obviously take the fact that these quantities are periodic into account.

We have shown in recent papers9,17 that, once projections for a relatively small number
of landmark frames have been found, a projection, x, for any high-dimensional con�guration,
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X, can be found by minimizing:

�2(x) =
NX

i=1

wi fF [Ri(X)]� f [ri(x)]g2 (2)

where Ri(X) is the dissimilarity between X and the ith landmark point and ri(x) is the dis-
tance between its projection, x, and the projection of the ith landmark point. This procedure
is remarkably robust. In fact we have shown that sketch-map coordinates generated from an
MD trajectory on one particular chemical system can be used to examine a second chemical
system even when the con�gurations adopted by this second system bear almost zero resem-
blance to those adopted by the �rst.10 This formula is thus the basis of the work presented in
this paper and our general coordinates for protein folding. In essence our approach involves
using a small set of con�gurations from the PDB data bank and constructing projections
for them using 1. We then insert these con�gurations and the projections we �nd for them
into 2 and use this formula to generate projections of all the con�gurations visited during a
molecular dynamics simulation. Once we have obtained a projection for each of the frames
in our trajectory we can then construct a histogram, H(x), (in this work by reweighting our
biased trajectories using the method described in18). We then examine the structures that
are projected near to the various maxima in this histogram as these con�gurations will have
low free energies.

3 PDB-based coordinates
As discussed in the previous two sections in generating the sketch-map coordinates that have
been employed in this work we took a di�erent route from the one that we have adopted in
previous papers. Instead of selecting a set of landmark coordinates from the MD trajectories
we chose landmarks from the set of protein structures that have been determined by NMR
and that have been deposited in the PDB databank. We chose to only use those structures
that had been determined by NMR because this technique is usually applied to determine
the structures of proteins with �exible domains in solution. We thus felt this would give us
a wide enough range of peptide con�gurations to construct coordinates from.

For the �rst example, 1000 landmark points were selected from the set of con�gurations
found in every 16-residue fragment contained in the 7846 NMR-solved structures deposited
in the Protein Data Bank. In other words, the landmarks were selected from a library of
more than 650,000 con�gurations that were generated by cutting all the NMR structures
into 16-residue long segments. Clearly, these landmark con�gurations give a good repre-
sentation of the full spectrum of conformational possibilities that have been observed for
any 16-residue sequence of amino acids. The staged algorithm,10 with a  value of 0.1, was
used to select a �nal set of landmark points, while the weights that enter equation 1 were
determined by counting the fraction of the remaining PDB con�gurations that were in the
Voronoi polyhedron of each of the landmarks. A sketch-map projection of this data was then
generated by minimising equation 1 with � = 6:9, A = 8, B = 8, a = 1 and b = 4. The
resulting set of sketch-map coordinates were then used to analyze the conformational ensem-
ble of the C-terminal fragment of the immunoglobulin binding domain B1 of protein G of
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Streptococcus19�22 (amino acids sequence Ace-GEWTYDDATKTFTVTE-NMe). We have
recently performed extensive parallel tempering well tempered ensemble metadynamics (PT-
WTE) simulations on this protein23 and it was these trajectories that were analysed again
in this work. In our previous work PT-WTE was used to enhance the sampling24 as it has
been shown to ensure fast and exhaustive exploration of the free-energy landscape.22,25,26
These PT-WTE trajectories were generated using gromacs-4.5.5,27 while torsional angles
were calculated using PLUMED.28,29 Further computational details for these calculations
are presented in our recent article on the free energy landscape of this particular protein.23

Figure 1: Histograms constructed from the trajectories of the �-hairpin protein studied in
this work displayed as a function of the two sets of sketch-map coordinates. The histogram
in panel A, H(WTE), is shown as a function of a set of sketch-map coordinates that were
constructed using landmark con�gurations that were taken from the parallel tempering tra-
jectories. Meanwhile, the histogram labelled B, H(PDB), is shown as a function of a set
of sketch-map coordinates that were constructed using landmark con�gurations that were
taken from the PDB data bank. Numerical labels were given to each of the various maxima
in these histograms. Panel C shows representative con�gurations from each of these free en-
ergetic basins. The black numbers beside each of these protein con�gurations in panel C is
the average root mean square deviation (r.m.s.d.) between the structures projected close to
each of the maxima in the histogram. These quantities were calculated by taking the sum of
the squares of the di�erence in torsional angles between con�gurations. The numbers labeled
A and B are the average r.m.s.d. values calculated for H(WTE) and H(PDB) respectively.

To understand the free energy landscape that is being explored by this particular protein
and in order to test the general, PDB-based sketch-map coordinates we constructed two
representations of our trajectory data using sketch-map. For the �rst of these, we selected
landmark con�gurations from the trajectory itself. In total 1000 landmark points were
selected using the staged algorithm10 with  equal 0.1 and weights determined by counting
the fraction of the remaining con�gurations that were in the Voronoi polyhedron of each
of the landmarks. Projections of these con�gurations were generated using equation 1 with
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� = 6, A = 8, B = 8, a = 2 and b = 8. Projections for the remainder of the trajectory were
then generated by minimizing equation 2. The histogram shown in �gure 1A, H(WTE), was
then generated by reweighting the trajectory.18

The second histogram, H(PDB), shown in �gure 1B, was also generated by projecting
and reweighting the data from our beta hairpin trajectory using equation 2. However, in this
second case the landmark con�gurations for which projections were constructed using equa-
tion 1 were taken from the PDB databank as described previously. H(PDB) looks markedly
di�erent to H(WTE) but as we will show in the following paragraphs we can construct a
mapping between the maxima in the two histograms. Before we do that, however, it is
worth noting that both H(WTE) and H(PDB) show that the free energy landscape for this
particular protein is extremely rough and that this protein is quite �exible. It can adopt a
wide range of di�erent structures all of which contain the familiar secondary structure units
(e.g. �-helices, �-sheets, etc.) to di�erent degrees. These di�erent structural possibilities are
all projected in di�erent parts of the sketch-map planes, so these coordinates can be used
to determine how frequently the protein adopts particular con�gurations. There are �ve
con�gurations of the protein which appear from these coordinates to be particularly stable.
This is based on the fact that there is a large maximum in the histogram at these points
and, consequently, an associated minimum in the underlying free energy landscape. Rep-
resentative con�gurations from these maxima are shown in �gure 1C. Given the structures
found in these basins they can be thought of as folded, misfolded and unfolded states of the
protein.

In a recent paper10 we discussed how one could extract a quantitative measure of the
quality of any sketch-map projection by calculating the sketch-map stress function (equation
1 with all weights set equal to one) for those con�gurations whose projections were found by
minimising equation 2. Obviously, minimising equation 1 for the many thousands of non-
landmark points in a trajectory is not feasible but a one-time calculation of this quantity is
not impossible. When this calculation is performed using the trajectory-based sketch map
coordinates a value of 0.016 is obtained. By contrast, when the calculation is performed using
the sketch-map coordinates that were constructed using the information from the PDB a
value of 0.052 is obtained, which is slightly higher. However, as we discussed in our previous
paper,10 the quantity being calculated here measures how well the dissimilarities between
non-landmark con�gurations are being reproduced in the two dimensional projections. These
dissimilarities do not enter in equation 1 or equation 2 so this is a rather stringent test on
the quality of our �tting procedure. Furthermore, the value of this quantity measures the
fraction of con�gurations that are projected far apart when they should be close together or
vice versa. 0.052 and 0.016 are thus both rather small fractions and hence this small decrease
in quality does not particularly concern us.

An instructive exercise is to look at the structures that have their projections near the
various maxima that we see in the histograms in �gure 1. In order to facilitate this process we
wrote a tcl package, called GISMO, that can be added the the popular molecular visualization
pacakge VMD.30 This package plots a small square in a tcl/tk canvas widget for each of the
frames in the trajectory. These squares are centered on the values of a set of user-speci�ed
variables - in this paper we used the projections of the frames that were generated by sketch-
map. The bene�t of plotting using this tool is that the user can click on the squares and
the corresponding trajectory frame is shown in the main VMD window. By using this tool
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one is thus able to get a better understanding of where sketch-map is projecting the various
con�gurations of the protein. This tool is thus extremely helpful when it comes to preparing
�gures such as that shown in �gure 1 as we can use it to �nd representative con�gurations
for each of the basins in the free energy landscape.

An examination of the projections and histograms generated with the two di�erent sets of
collective variables using the GISMO tool described in the previous paragraph shows us that,
although the maxima appear in di�erent locations in the two histograms, one can construct
a one-to-one mapping between the maxima in H(PDB) and H(WTE). In other words, when
you project the trajectory using any set of sketch-map coordinates you �nd a set of maxima
in the histogram. Importantly, the set of high-dimensional structures to which these features
correspond appear to be the same both when the sketch-map coordinates are constructed
using trajectory data and when the coordinates are constructed using landmarks taken from
the PDB. This gives us some con�dence that we can identify the structures that have low-free
energy by analysing the histogram of visited con�guration displayed as a function of these
PDB-based, sketch-map-generated coordinates.

To make the comparison between H(PDB) and H(WTE) more quantitative we collected
all the structures that were projected in the vicinity of each of the basins highlighted in
H(WTE) and performed some analysis on these structures. The �rst experiment we did
involved calculating the dissimilarity between all of the structures within each of the basins
separately. These dissimilarities were calculated as the square root of the sum of the squares
of the di�erences in torsional angles in the di�erent structures. In other words, we calcu-
lated these dissimilarities in the same manner that we calculated the dissimilarities between
landmarks in equations 1 and 2. The average dissimilarity between the con�gurations in
each of the basins is displayed close to the inset �gures of the protein con�gurations. The
number on top represents the average in-basin dissimilarity for the maxima corresponding to
that structure in the left hand histogram H(WTE), while the lower number gives the same
quantity for the histogram shown on the right H(PDB). The numbers obtained from this
analysis are reassuring and suggest that all of the structures in each of the basins are struc-
turally similar. For the majority of basins the average in-basin dissimilarity value is slightly
higher for H(PDB), which suggests that these coordinates are slightly less discriminating
than those constructed from trajectory data. This is perhaps to be expected, however, as
the landmark con�gurations that were taken from the PDB cover a much broader range of
structural possibilities than those taken from the trajectory. More importantly, however,
this slight decrease in quality is does not large enough to put one o� using the PDB-based
sketch-map. The fact that it covers a broader range of structural possibilities makes it more
general and hence more transferable. As such it can be used to project trajectories obtained
for di�erent chemical conditions or for di�erent amino-acid sequences.

The results from the second experiment that we did to quantitatively compare the his-
tograms obtained with the two sets of landmark con�gurations are shown in �gure 2. To
construct this �gure we took the structures that were projected near to each of the max-
ima in H(WTE), and projected them using the sketch-map coordinates that were used to
construct H(PDB). There are a very large number of frames projected near to the various
maxima in H(WTE) therefore, to display this information more clearly, we built a histogram
that shows where there these con�gurations are projected in H(PDB). These �ve histograms
- one for each major basin - are shown as red contour plots in �gure 2 overlain on H(PDB). It

7



Figure 2: Figure showing the one to one mapping between the maxima in H(PDB) and
H(WTE). The structures that were projected near to the �ve maxima in �gure 1A. were
collected using our in-house tool GISMO. These structures were then re-projected using
the sketch-map coordinates that were built using landmark con�gurations taken from the
PDB. A histogram showing the locations of the projections of these structures was then
constructed. In the �gure above this histogram is shown as a red contour plot on top of
H(PDB). The same labels as were used in �gure 1 are used to indicate the major basins.
What is clear from this �gures is that points that are projected close together when the data is
projected using sketch-map coordinates constructed using trajectory data are also projected
close together when they are projected using coordinates constructed using structures taken
from the PDB. As a consequence we see that there is a one-to-one mapping between the
low-free energy features that are seen in the left and right panels of �gure 1.
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is immediately apparent that those con�gurations that appear close together when they are
projected using sketch-map coordinates that are constructed using landmarks taken from
the trajectory, also appear close together when they are projected using the coordinates
constructed using landmark data taken from the PDB. In addition, each of these markedly
di�erent sets of con�gurations are projected in di�erent parts of the sketch-map plane (i.e.
in di�erent maxima) both when they are projected using coordinates constructed using tra-
jectory data and when they are projected using coordinates constructed using data from the
PDB. In addition, because we have displayed the histograms constructed by this procedure
on top of H(PBE), we can see clearly that there is a one-to-one mapping between the maxima
in H(WTE) and H(PDB). We are thus con�dent we can identify low free energy con�gu-
rations using sketch-map and that the basins we observe are not simply artefacts from the
dimensionality reduction’s �tting procedure.

4 Understanding force�eld di�erences
Recently Palazzesi et al.25 have studied a nine-residue intrinsically disordered peptide (IDP)
whose dynamical behaviour has been experimentally characterized by Dames et al.31 In
their paper they show that the behavior of the peptide changed markedly when the inter-
atomic potential was changed. In particular the distribution of end to end distances for the
AMBER03w32,33 force �eld is shifted to longer values with respect to that observed with
AMBER99SB*-ILDN34�36 as shown in the inset in �gure 3. These marked di�erences be-
tween the behaviours of the two force �elds were also observed for a number of biophysical
parameters and for some NMR experimental observables.25 Palazzesi et al. were thus even-
tually able to conclude that the AMBER03w was the better force�eld for this particular
IDP as this potential reproduced the experimentally observed C� and NH chemical shifts
and 3J(HN-H�) coupling parameters better than the AMBER99SB*-ILDN.

Di�erences in the ensemble averages for two force �elds come about because each force
�eld stabilizes a di�erent set of atomic con�gurations. Consequently, a better understanding
of the conformational ensemble that is being explored with a particular force �eld allows
one to explain more completely why averaged properties, such as the NMR observables,
have the value that they do. In this regard the two dimensional projections generated by
sketch-map are useful as they help you to examine the conformational ensemble. In other
words, we can use sketch-map to project the trajectories obtained with the AMBER03w
and AMBER99SB*-ILDN force �elds and can thus visualize the di�erences in the ensembles
of con�gurations visited during the two trajectories. This procedure gives one more infor-
mation on the structures that are being adopted than simply comparing the distribution of
end-to-end distances or the distribution of values observed for some other biophysical char-
acteristic. However, a di�culty with this approach would have been deciding whether to use
a sketch-map projection in which the landmark frames were selected from the AMBER03w
trajectories, a sketch-map projection constructed from the AMBER99SB*-ILDN trajectory
or a sketch-map projection that contained landmarks from both trajectories. With our new
approach based on using the protein data bank, however, we no longer need to make this
decision. We constructed sketch-map coordinates for this system using landmarks taken
from the PDB. Once again we downloaded the 7,846 structures that have been determined
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Figure 3: Histograms of the trajectory for the 9-residue, intrinsically disordered protein
studied in Palazzesi’s work shown as a function of the general PDB-based sketch-map coor-
dinates. The histogram on the left was calculated using a trajectory where the AMBER03w
force�eld was used to evaluate the forces while that on the right was calculated using the
AMBER99SB*-ILDN force�eld. The structures corresponding to the most populated basins
are shown in the insets. The AMBER03w force�eld has only one prominent basin in its land-
scape and the con�gurations in this basin all have the chain fully extended. Meanwhile, the
AMBER99SB*-ILDN force�eld has numerous basins in its free energy landscape for which
the protein is compact and contains some secondary structural elements. These di�erences
between the con�gurations adopted by the two force�elds explain why the distribution of end
to end distances is peaked at a higher value for the AMBER03w force�eld. The distribution
of end-to-end distances for the two force�elds is shown in the inset. The green curve is the
distribution for the AMBER03w force�eld, while the red curve is the distribution for the
AMBER99SB*-ILDN.
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using NMR but this time we cut them into 9 residue segments. This procedure gives more
than 700,000 structures from which we selected 1,000 landmark frames using the staged al-
gorithm as described in the previous sections. Once again we determined the weights that
enter equation 1 by considering how many of the non-landmark points from the PDB are
in the Voronoi polyhedra of each of the landmarks. Projections of these landmark frames
were then constructed by minimizing 1 with � = 4:2, A = 7, B = 7, a = 1 and b = 4.
The original frames and these projections were then inserted into equation 2, which was
used to project the parallel-tempering well-tempered ensemble (PT-WTE)37,38 trajectories
generated in Palazzesi et al.’s paper. The resulting histograms for this 9-residue protein,
modelled with the two di�erent force �elds, and projected on this general set of sketch-map
coordinates are shown in �gure 3.

Figure 3 shows that the con�gurations the protein adopts in the simulations with the
two force �elds are markedly di�erent. When the atomic interactions are modelled using
the AMBER99SB*-ILDN potential the system samples from the four high maxima in the
histogram shown around the right panel of 3. There is evidence of secondary structural
elements in the con�gurations projected near these features. Conformations A and C, in
particular, resemble an �-helix and a �-sheet respectively.

The histogram obtained when the calculations are run using the AMBER03w potential
shows only one marked maxima. The protein con�gurations that are projected near to this
maxima are extended and show no evidence of any particular secondary structural elements.
The fact that this is the most stable con�guration of the peptide for AMBER03w explains
why the average end-to-end distance is very long in this simulation - this trajectory contains
very few structured con�gurations. By contrast, the average end-to-end distances from
the AMBER99SB*-ILDN simulations are considerably shorter in large part because when
this potential is used the system remains for long periods of time in collapsed, secondary-
structure-containing con�gurations.

5 Conclusion
Our previous papers9,10,17 have demonstrated that sketch-map is a useful tool for analysing
the output from molecular dynamics simulations. By projecting representative con�gurations
from the trajectory into a lower dimensional space an unbiased set of collective coordinates
is created. These collective coordinates are less reliant on a simulators chemical or physical
intuition about the problem, which increases the likelihood of making surprising or unex-
pected discoveries. In previous work we have always constructed sketch-map variables by
selecting landmark frames from the molecular dynamics trajectories we have run. In this
work we have shown how we can construct sequence-independent coordinates using exper-
imental data and that we can use these coordinates to interpret trajectories, even if they
sample very di�erent parts of conformational space. The use of landmarks from the protein
data bank ensures that the coordinates contain a reasonable representation of the various
structural possibilities that are open to the peptide. Furthermore, by not selecting landmarks
from the trajectory one ensures that the quality of the sketch-map coordinates will not be
a�ected if the trajectory does sample all of con�guration space. Lastly, standard general
PDB-based sketch-map coordinates can be constructed for amino acid sequences of di�erent
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lengths and placed online in a repository. Other researchers using sketch-map can then pro�t
by using these variables and comparing the results that they obtain with those that were
obtained in prior publications or in di�erent simulation conditions. We have thus provided
various sets of sketch-map coordinates for peptides ranging from six to sixteen amino acids
in length. These coordinate sets are available from http://ep�-cosmo.github.io/sketchmap/.

Sketch-map is not solely for the analysis of trajectory data. Elsewhere we have demon-
strated that bias potentials can be constructed that are a function of the sketch-map co-
ordinates and that the sampling of phase space can be accelerated in this way.17 We have
shown that the advantage of this over more conventional approaches is that the sketch-map
variables are able to distinguish between many of the basins in the free energy landscape.
As such when these variables are used in tandem with methods such as metadynamics fewer
problems arise because of barriers in the transverse degrees of freedom. In this context
the general, PDB-based sketch-map coordinates that have been the subject of this paper
represent an exciting possibility. If such coordinates can be used to enhance sampling this
will greatly reduce the amount of time that has to be spent looking for appropriate collec-
tive variables to study protein folding. Using the information contained in the protein data
bank ensures that the structural possibilities for the amino acid sequence are enumerated in
the coordinates. Furthermore, because of the way sketch-map projections are constructed,
di�erent basins in the energy landscape will be projected in di�erent parts of the low dimen-
sional space. These PDB-based sketch-map variables thus have the potential to be general
collective variable for metadynamics simulations, which is an idea that we intend to explore
further in future publications.
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