
Optimized Packet Classification for Software-Defined Networking

Guerra Perez, K., Yang, X., Scott-Hayward, S., & Sezer, S. (2014). Optimized Packet Classification for
Software-Defined Networking. In 2014 IEEE International Conference on Communications (ICC) (pp. 859-864).
Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICC.2014.6883427

Published in:
2014 IEEE International Conference on Communications (ICC)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2014 IEEE.
Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:07. May. 2021

https://doi.org/10.1109/ICC.2014.6883427
https://pure.qub.ac.uk/en/publications/optimized-packet-classification-for-softwaredefined-networking(e51139e5-747b-427e-bb0d-7dbf9b06a6de).html

Optimized Packet Classification for Software-
Defined Networking

K. Guerra Pérez, X. Yang, S. Scott-Hayward, S. Sezer

 The Institute of Electronics, Communications and Information Technology (ECIT)

Queen’s University of Belfast, UK

Abstract—Recent trends, such as Software-Defined
Networking (SDN), introduce programmability to the network

with the opportunity to dynamically route traffic based on

flow descriptions. Packet header lookup is the first phase in

this process. In this paper, we illustrate improved header
lookup and flow rule update speeds over conventional lookup

algorithms. This is achieved by performing individual packet

header field searches and combining the search results. We

propose that individual algorithms should be selected for
packet classification based on the application requirements.

Improving the network processing performance with our

configurable solution will directly support the proposed

capability of programmability in SDN.

Keywords—Software-Defined Networking (SDN); Packet
Classification; multi-dimensional algorithms; one-dimensional
algorithms; Access Control List (ACL) rules.

I. INTRODUCTION

In order to support the explosion of cloud services and
convergence of data centers based on virtualization
technologies, network operators, services and product
providers are driving a revolution in networking, which is
known as Software-Defined Networking (SDN). The key
differentiator between traditional networking and SDN is
flow-based management of the network elements (e.g.
switches, routers, etc.) leading to improved
programmability, reduced latency and higher performance
within the network [1].

Packet Classification is the first step in network
processing for identifying different applications and
protocols that exist on a network system. Layer 3-4 (in OSI
model) processing is of interest in this research work,
composed mainly by five individual fields (also called
tuples), Source and Destination Port fields, Source and
Destination Internet Protocol Address fields and Protocol
field. Routers process each input packet according to a pre-
defined rule that the packet matches. The rule information
is defined by the data and the mask for each dimension or
field; where the mask represents the possible wildcard
configuration. An action is associated to each rule. If the
rule set is an Access Control List (ACL), the action can be
“to reject” or “to accept” the packet. Fig. 1 shows an
example of an ACL rule set and an input packet, which
matches against rule number two (R2).

There are two different methods of matching depending
on the header field for Packet Classification. The first type

is Exact Matching (EM), in which input data is compared
with a given data set. A data set entry is only selected if it
matches on every bit. The second matching type is
Wildcard Matching (WM) in which there is possible
masking of part of the input data. Consequently, the input
data comparison does not have to form a complete match.
Longest-Prefix Matching (LPM) is a special case of WM,
which refers to algorithms that select the entry in a table of
defined prefixes with the most matching bits. An example is
shown in Fig.1, where the input packet matches with R2
and R3. The action is determined by R2 because it obeys
LPM based on the destination IP address. The most
commonly used approaches for LPM are Tree (or Trie)
algorithms. Range Matching (RM) is another WM type,
which searches the entry between different ranges of
defined values in the structure. This type of matching is
well suited to port field lookup [2] [3], which can also be
seen in Fig. 1 (destination and source port range).

Fig. 1. Example of a packet header match against an ACL rule set.

There are three main performance requirements
regarding packet processing. These are fast lookup, low
density and incremental update. There are two forms of
Packet Classification: Stateless and Stateful Classification.
In the Stateless Classification case, each packet is analyzed
and its matching rule is applied independently. This type of
classification requires a high lookup performance to enable
packet processing at the network speed.

In the case of Stateful Classification, routing and
security policy related information are cached as part of
state information for each Flow Look-Up Table (Flow
LUT). It is not therefore necessary for every packet header
belonging to the same flow to be analyzed in terms of
routing lookup and access permission [4]. This reduces the
criticality of the lookup speed. However, with Stateful
Classification, the system bottleneck is the Flow LUT where
the flow patterns are stored. The Flow LUT contains a large
number of entries. It must also be possible to change the
table entries quickly in an updating rule. Consequently, any

algorithm that needs a re-construction of its structure for
update is not suitable for Stateful Classification.

Packet Classification can be performed either by
programming on the Central Processing Unit (software
approach), by using Application-Specific hardware, or a
combination. In order to address the needs of emerging
technologies, such as SDN, only hybrid solutions (software
and hardware together) comprised of multiple algorithms
are expected to address corner cases, whilst maintaining
performance for given memory technology and memory
size. Several Packet Classification solutions have been
proposed in the literature. Those algorithms are based on
Stateless Classification whereby the lookup speed
outweighs the importance of other parameters such as
memory space or update time. In this work, we consider all
requirements for stateful classification.

With the objective of optimizing the lookup
performance for the highly dynamic SDN environment, a
study of existing lookup methods has been performed. We
then analyse the performance of individual methods based
on a set of ACL rule filters. We determine that the optimum
approach is a combination of parallel one-dimensional
methods selected by application type. Our implementation
based on the label method is well-suited to current
hardware devices and to the programmable platform of
SDN, providing greater flexibility than previous algorithms.

II. LOOKUP APPROACHES AND IMPLEMENTATIONS

It is well-known that Ternary Content Addressable
Memory (TCAM) is often used in routers for very high
lookup speed and wildcard support. However, it is a device
with high cost and high power consumption. Furthermore
TCAMs are not suitable for accommodating large numbers
of rule filters due to high cost of manufacturing. The
memory size of a TCAM chip is limited to 1M entries using
144-bit words for IPv4 [5].

In order to support the programmable SDN platform,
this work focuses on optimal algorithms whose lookup
performance is comparable to TCAM. Thus, several lookup
algorithms based on multi-dimensional and one-
dimensional approaches are explored and discussed. We
evaluate their performance with regards to memory
accesses for lookup and update processes and memory
requirements.

A. Multi-dimensional Lookup

Algorithms belonging to this methodology use five
tuples of the packet header, either separately or
independently. These algorithms can be classified into three
main groups in terms of the different structural approaches:
Geometric, Decomposition and Hashing.

Optimized tree-based lookup approaches are proposed
as alternative solutions for TCAM. HyperCuts [6] is a
heuristic tree algorithm based on multi-dimensional space
division. In this method, each node defines a hyper cube
and each packet header defines a point in this space. When
the corresponding leaf node is found, the highest priority

matching rule is searched linearly, resulting in a lookup
dependent on the number of rules. Several algorithms, such
as [7], are focused on improving HyperCuts performance.

The classic decomposition-based algorithm is Recursive
Flow Classification (RFC) [8], which works with the packet
header partitioned in parallel. The decomposition
algorithms present high-speed lookup but require large
memory storage. For example RFC requires 1.62 Gbits
memory to perform lookup in four phases. However, due to
the high lookup performance of RFC, it is still of great
interest in recent research [9].

Tuple Space Search (TSS) [10] is an example of using
hashing algorithm. It is based on storing rule groups called
tuples into a hash table, according to the length of prefixes
of all dimensions. The input packet header must be
processed by an additional algorithm, such as binary tree, in
order to determine the corresponding tuple location. TSS
performs a linear search to find the highest priority rule.

The lookup performance of HyperCuts, RFC and TSS is
compared in Fig. 2. To produce these results, the algorithms
from [11] were modified. The evaluation in terms of
number of memory accesses and memory bit consumption
uses 10K ACL rules (filter set acl1_10K [11]).

Fig. 2. Lookup performance of multi-dimensional algorithms

It can be seen that TSS consumes less memory bits
since the rules are stored only once in the tables. However,
this method requires more memory accesses in both the
lookup stage and the rule insertion stage, making this
method less suitable for high lookup speed. The algorithms
that use parallel search, such as RFC, present better results
for insertion and lookup processes, as shown Fig 2.

B. Combination of One-dimensional Lookups

Methods based on single-header-field search are
insufficient for performing classification of an input packet.
However, handling fields independently presents
advantages regarding lookup speed and/or update
complexity. The individual results from each header field
are combined to search for the matching rule. In this
section, we present several algorithms that focus on header
field splitting, characterized for one-dimensional lookup
applications, such as LPM, RM, etc.

Asymmetrical Multi-bit Trie (AM-T) [2] is a multi- bit
structure, where every child position is calculated using a
redundant expression, assuming that all header fields can be
represented by prefixes. AM-T uses parallelism with one
trie for each dimension. According to the experimental
study of each one-dimensional trie, better results are
achieved using tries with four levels for IP address fields.
The rest of the fields use three-level tries.

Taylor et al. proposed Distributed Cross-producting
Field Labels (DCFL) [12] to solve the Packet Classification
problem. DCFL is a parallel lookup scheme that performs
one-dimensional lookup for each packet header field. The
results are combined and linearly searched in several filters
in a phased process. It presents inefficient memory
utilization and slow lookup speed in the filters.

Controlled Cross-Producting (CC-P) [13] improves the
cross-producting algorithm transforming the range filters
into prefixes. The algorithm constructs a prefix trie where
each node is associated to a filter list. The final result is
found in a final cross-product table. Table I summarizes
the average number of memory accesses for the lookup
process in the worst case, as well as the memory space
required using ten thousand ACL rules.

TABLE I. PERFORMANCE EVALUATION OF COMBINATION ONE-
DIMENSIONAL LOOKUP ALGORITHMS

Algorithm
Avg. Memory Accesses

 per Lookup (worst case)

Memory bits

required

AM-T 44.99 186.11 Mb

DCFL [12] 23.1 22.54 Mb

CC-P [13] 30 20 Mb

AM-T lookup process is determined by the worst case
trie, which corresponds to the Destination IP address trie.
As shown in Table I, large memory consumption of AM-T
is a result of the replication of rules in different tries. DCFL
presents a faster lookup process but requires greater
memory space than CC-P.

III. CONFIGURABLE ONE-DIMENSIONAL LOOKUP FOR

SDN

The combination approaches discussed in the previous
section are based on determined algorithms on each header
field for lookup. In this section we analyze several
algorithms with a view to selecting different algorithms for
each header field in circuit run time. This supports re-
configurability for the SDN framework. These algorithms
were implemented in C++ and evaluated with different
ACL rule sets.

A. IP Address Dimension Lookup

Algorithms for IP address lookup handle two fields
from the packet header, i.e. source and destination IP
address. As each header field is composed of a large
number of bits (32 bits per packet for IPv4 (IPv4) or 128
bits per packet for IPv6), algorithms based on IP lookup
have limitations regarding prefix length. Moreover, the rule

for these IP address fields is formed by 32-bit or 128-bit
data plus wildcard bits mask. For this reason, algorithms
that support LPM are suitable for this field.

There are different tree/trie structures for IP lookup.
One type of Tree/trie structures is based on LPM and the
analysis is performed in data segments, according to the
tree levels. Multi-bit search tree algorithms [14] or Binary
search tree algorithms use this methodology and they are
performed for IP Address dimension lookup. Binary search
tree structures require a large number of memory accesses
for update and lookup. These processes depend on the
depth of the trie and, consequently, the length of the
prefixes. Other types of Tree/trie structures are focused on
range search where the comparison is performed according
to given intervals. Segment tree and Range tree are included
in this group.

It is possible to apply AM-T only to IP dimension
lookup. As shown in Table I, it requires a lower number of
memory accesses than multiple header fields as shown in
Fig 2. IP address lookup comparison has been performed
between Multi-bit trie algorithm and AM-T adapted to one-
dimensional lookup.

Different scenarios were studied for IPv4 using two 16-
bit tries per dimension in order to acquire the optimal
parameter values. From our analysis, Multi-bit trie and AM-
T present better results in terms of a tradeoff between the
memory space and the number of memory accesses, when
four (MultiT-4 and AM-T-4) or five levels (MultiT-5 and
AM-T-5) are selected.

B. Port Address Dimension Lookup

The main challenge in a Port Lookup is to search
intervals when a rule is being updated and perform a point
search for the packet lookup. Two structures based on
binary lookup using RM are studied in this section.

There are different variations of Range tree. Range
Search tree proposed for this application is constructed
while a new rule interval is inserted. Despite each node
representing an interval, one main characteristic is that the
tree node information is dynamically updated. It presents a
fast lookup but is not suitable for long filters because
updating requires a re-organization of the tree, resulting in
slower insertion and deletion. We propose three possible
range trees according to the interval split. The first case
(Range-1) works with the complete 32 bits of the input data
and, consequently, there is only one tree in each dimension.
The second case (Range-2) implies that there are two trees
for source port field and another two for the destination port
field. Each tree analyzes 8-bit start-point interval and 8-bit
end-point interval. The final case (Range-4) applies the
same idea using 4 trees per dimension.

For a further comparison, we implement Segment tree,
which is a fixed balanced data structure where each node
defines a specific range. The child node contains part of its
father interval. This static structure requires a build time
and presents a straightforward update. Segment tree was

studied with division trees as well. The first case (Segm-4)
is composed of 4 trees for each header field, handling 8 bits
from the input Port interval. There are two other cases
(Segm-5 and Segm-6) provided in our test.

C. Rule Filters Analysis and Performance Optimization

Different algorithms have been presented and analyzed
for an optimal update and lookup performance. For a
further optimized implementation, several parameters of
different rule types are analyzed in this section.

Rule syntax has been widely researched. Trie-based
algorithms for IP lookup are an example. This kind of
method uses the presence of wildcards in the rule in order
to differentiate the trie structure by defining parameters
such as the trie depth or number of trie nodes. Likewise,
TSS performs the grouping of tuples according to the
number of non-wildcard bits in the rule fields.

In order to determine the importance of a method that
supports LPM, a study of the wildcards was performed for
three different ACL rule-sets (acl1_1K, acl1_5K,
acl1_10K) composed by 917, 4415 and 9604 rules [11].
From this survey we can conclude that more than 50% of
the rules are formed mainly by wildcards and, particularly,
the source IP address field presents a greater index of
wildcards. Consequently, the destination IP address field
determines the worst case for the LPM methodology.

A further study was performed using the ACL rule set to
analyze how the wildcards are distributed. Table II
expresses the number of rules with a certain number of
wildcard bits. It can be identified that most wildcards are
concentrated in the last eight bits, followed by 16 bits. From
the analysis, we conclude that the partition of 8-bit
segments presents a potential optimization for lookup
performance.

TABLE II. NUMBER OF WILDCARDS/RULE FOR IP FIELD

No. of

wildcards/rule

acl1_1K acl1_5K acl1_10K

Src Dst Src Dst Src Dst

Total 610 534 2819 2428 5602 4862

8 bits 273 256 1153 1146 2425 2301

16 bits 50 83 210 316 431 681

Another method which derived from analysis rule
construction is DCFL. DCFL is focused on the repetition of
rule fields. In our study, a significant number of unique
rules for each dimension was extracted from a set of rule
filters, as shown in Table III.

TABLE III. NUMBER OF UNIQUE RULES

Algorithm acl1_1K acl1_5K acl1_10K

Source IP Address 103 805 4784

Destination IP Address 297 640 733

Source Port 1 1 1

Destination Port 99 108 108

Protocol 3 3 3

As previously mentioned, IP address is the largest field.
The IP address field can be split into two or more partitions
in order to make it more manageable. Similarly the
decomposition methodology presents performance time
advantages and thus, each IP address partition can be
performed in parallel. With this consideration, Table IV
summarizes the number of different partitions when the IP
address for source and destination fields are divided into
two 16-bit sets; high part and low part. Comparing Table III
and Table IV, we can conclude that the partition of a field
presents advantages with a decrease in the number of
unique rule fields. For example, for acl1_1K filter there are
90 unique rules when the source IP address is split into 16-
bits compared with 103 unique rules without partitions.

TABLE IV. NUMBER OF UNIQUE RULES WITH 2 IP ADDRESS

PARTITIONS

IP address

Field

acl1_1K acl1_5K acl1_10K

High Low High Low High Low

Source 4 90 33 740 142 4393

Destination 130 257 236 496 380 609

Taking into account the above observations, a label

method, which was introduced by DCFL, is presented for
our algorithm combination, where each unique rule field is
labeled. The label method is an efficient technique for
algorithms with fixed structure such as Segment tree. In this
method, a list of labels is stored in trie nodes instead of rule
list. The lookup process traverses the tree in the same
manner as before in order to find the corresponding label
list. However, the update process of algorithms with
dynamic structures such as Range Search tree require a re-
configuration time for the node labels such that the label
method is not applicable.

Table V shows the evaluation results of Segment Tree

using the proposed label method. Using this approach,

better Highest Priority Matching Rule (HPMR) lookup

performance can be achieved. As most rules consist of the

same header field, rule insertion is not always necessary for

rule updates. A new rule is only inserted when its unique

label is not in the tree, resulting in a faster lookup/insertion

operation. Additionally, memory storage is reduced by

avoiding replicated rules stored in the tree nodes. The same

approach is also applied to IP address field lookup.

TABLE V. LABEL METHOD EVALUATION ON SEGMENT TREE

M
et

h
o

d
 Number of Memory Accesses

Memory Bits

required (Mb)
HPMR

lookup/packet
Insertion/rule

Label

List

Rule

List

Label

List

Rule

List

Label

List

Rule

List

Segm-4 49.3 >10K 5.21 10.02 1.249 11.40

Segm-5 31.33 8927 4.165 7.93 1.25 13.21

Segm-6 56.55 9063 4.17 7.92 1.29 16.56

D. Discussion

Table VI summarizes the results in terms of the average
memory access per packet lookup, which is evaluated in

terms of HPMR and the list stored in nodes, node list (NL),
per rule insertion and memory required for each algorithm.
The results are presented after applying the label method to
the suitable algorithms. Range Search tree does not use the
label method, as previously described.

TABLE VI. PERFORMANCE EVALUATION OF ONE-DIMENSIONAL

ALGORITHMS

Algorithm

Memory Accesses of

Lookup per packet

Memory

Accesses of

Insert/rule

Memory

bits

required NL HPMR

IP Address field

MultiT-4 2.55 28.8 5.39 5.11 Mb

MultiT-5 3.53 29.05 5.78 4.32 Mb

AM-T-4 2.8 40.8 10.8 8.86 Mb

AM-T-5 3.96 41.3 8.58 6.01 Mb

Port field

Segm-4 5 49.3 5.21 1.249 Mb

Segm-5 5 31.33 4.165 1.25 Mb

Segm-6 4 56.55 4.17 1.29 Mb

Range-1 6.92 137.48 54.31 Mb

Range-2 3.48 >10K 18.22 13.38 Mb

Range-4 3.48 1440 18.22 25.34 Mb

Comparing the results shown in Fig. 2, Tables I and VI,

it is found that by performing individual searches on each
header field with algorithm combinations, better results in
terms of lookup and update speed can be achieved. For
example, AM-T-5 for IP lookup requires on average 41.3
memory accesses in the worst case. However, RFC requires
48 memory accesses for multi-dimensional search (Fig. 2).
The presented algorithms in Table I suffer from a memory
blowup. However, it can be seen that the results regarding
lookup speed are considerably improved. In the worst case
lookup, AM-T requires 44.99 memory accesses (Table I),
exceeding the multi-dimensional lookup algorithms. The
challenge is to reduce the total storage required and
determine an efficient combination of different algorithms
avoiding multiple rule copies.

Considering the IP address dimension lookup results
from Table VI, we can conclude that, although MultiT-4
presents faster search of list in nodes and MultiT-5 requires
the least amount of storage, Multi-bit search trie with 4
levels is optimal because it requires the lowest number of
accesses. In addition, the Multi-bit algorithm presents a
straightforward lookup and update process.

Considering the port dimension results, Segment tree
surpasses Range Search tree in all evaluation parameters
apart from NL lookup process. When Range Search tree is
split, the lookup speed is increased due to the reduction in
trie depth and the replicated rules in the nodes. In
particular, Segment-5 presents a tradeoff between number
of bits and the number of memory accesses. The label filter
lookup is taken into consideration in the number of memory
accesses of HPMR lookup.

Comparing the lookup approaches, the one-dimensional
algorithms perform the lookup and insertion processes
using fewer memory accesses per packet. The space
requirement for one-dimensional algorithms is considerably
lower than that for multi-dimensional algorithms that use

parallel lookup. Nevertheless, the individual header field
lookup algorithms share the same rule data. Therefore, an
efficient architecture combining several one-dimensional
algorithms with a shared rule filter is required.

According to the basic idea of Stateful Classification,
where only the first packet of each flow is analyzed, the
need for very high speed lookup is used only for flow set-
up. Therefore, the lookup for Packet Classification is not
time constrained as it is performed at the establishment of
the flow. From a hardware perspective, a lookup latency of
several cycles can be tolerated. This lookup throughput is
sufficient to provide bandwidth for new flows.

IV. SYSTEM INTEGRATION

As discussed in the previous section, we determine that
managing individual fields with efficient dedicated
algorithms results in high performance Packet
Classification. The challenge is how to lookup in parallel
each header field in order to achieve higher search speed
and an efficient memory distribution. According to this
argument, each algorithm studied in this work presents
advantages and disadvantages across three main evaluation
parameters: lookup time, update speed and memory space.
There is no unique algorithm which can handle five fields
efficiently in the above three aspects. As a result, we
propose a programmable system to select the optimal
combination as shown in Fig. 3.

This hardware architecture is ideally suited for SDN
with the separate control and data plane. In an example
implementation, the host Packet Classifier selects the
optimal algorithms combination according to the network
application. This means that the appropriate algorithm per
lookup dimension (header field) is selected to optimize the
packet classification. The Configuration/Lookup controller
is configured with the rules and algorithms specified by the
host Packet Classifier.

For each packet, Flow LUT examines the packet header
and classifies the packet into a flow. If this packet is the
first packet of a flow, a flow ID is created in the Flow LUT
and extracted packet header fields are passed to the
Configuration/Lookup Controller for Packet Classification.

At this point the combined lookup algorithm method
presented in this work is deployed to efficiently classify the
packet. Following the lookup process, the Configuration/
Lookup Controller block returns an action determined by
the matching rule. This action is stored in the Flow State
block at the location indexed by the flow ID. For the
following packets belonging to the same flow, a matched
flow ID is output to the Flow State and the same action is
retrieved directly from the Flow State block.

In an illustration of the performance of the combined

algorithm approach, Table VII shows examples of

algorithm configurations focused on improving one of the

three key parameters for the Packet Classifier block. The

optimal combination of algorithms for the Port field and the

IP address field is presented for the worst case assuming a

parallel lookup. It should be noted that the protocol field is

not included in Table VII. This is due to the fact that the

protocol field only contains three values; TCP, UDP or

don’t care, as determined in the rule analysis of Section

III.C. As such, the protocol field is easily implementable

with a simple lookup table.

Fig. 3. Example implementation of the proposed HW architecture

TABLE VII. EVALUATION OF ALGORITHM CONFIGURATIONS

The trade-off in system parameters is clear from the
results in Table VII. For example, both fast lookup and
update can be achieved with the MultiT-4 method applied
to the IP field and Segm-5 applied to the Port field lookup.
In comparison, if low density is required, in order to reduce
the memory area on the chip, for example, then the MultiT-
5 method is best applied to the IP field with Segm-4 applied
to the Port field lookup.

Table VII shows results using 10K rules. In current
network at least one million entries are essential for Packet
Classification. Using the configuration for a tradeoff lookup
and update, in the worst case, the memory requirement
should be 10 times the current memory space required for
10K rules. It is possible to implement the system in current
devices. As an example, Stratix V GX FPGA platform
provides 8 Gbits DDR3-SDRAM and 36 Mbits QDR II
SRAM memory devices and a maximum embedded
memory capacity of 65 Mbits. TCAM supports 1M entries,
whilst our proposed system can store 76M entries using this
platform.

V. CONCLUSION

Packet classification requires lookup on multiple fields
of the packet header. With increasing volumes of network
traffic, the ability to perform fast, efficient Packet
Classification is the key to meeting the security and
performance requirements of carrier-grade networks. In this
work, a range of lookup approaches have been tested
against the criteria of memory access requirements for
lookup and update and number of stored bits. An analysis
of rule-sets has also been performed.

Based on our analysis, this work has identified that
using a combination of different lookup approaches and
performing lookups in parallel provides a distinct advantage
over the multi-dimensional lookup method based on a
unique algorithm such as RFC or HyperCuts. The proposed
architecture for our implementation of label method is well-
suited to the programmable platform of SDN, providing
greater flexibility than the combination of one-dimensional
lookup algorithms. Our future work will focus on
optimizing memory accesses to maximize network traffic
throughput including IPv6 and other packet header fields.

REFERENCES

[1] S. Sezer, S. Scott-Hayward, P. Kaur Chouhan, B. Fraser, D. Lake, J.
Finnegan, N. Viljoen, M. Miller, N. Rao. “Are we ready for SDN?-
Implementation Challenges for Software- Defined Networks.”IEEE
Communications Magazine, Vol 51, July 2013.

[2] B. Zheng, C. Lin and X. Peng, “AM-Trie: An OC-192 Parallel
Multidimensional Packet Classification Algorithm for Network
Processor”. IMSCCS’06. Vol.1 pp.:377-384, 2006.

[3] I. Sourdis, G. Stefabakis, R. de Semt, G. N. Gaydadjiev, “Range Trie
for Scalable Address Lookup”, 5th ACM/IEEE ANCS’09, pp. 143-
152, 2009.

[4] “Stateful and Stateless Data Processing ” [Online]. Available:
http://www.juniper.net. Accessed April 2013.

[5] K. Kannan, S. Baneerje, “Compact TCAM: Flow entry compaction
in TCAM for Power Aware SDN”, ICDCN, volume 7730, pp. 439-
444, 2013.

[6] S. Singh, F. Baboescu, G. Varghese, J. Wang “Packet Classification
Using Multidimensional Cutting”. SIGCOMM, pp. 213-224, 2003.

[7] B. Vamanan, G. Voskuilen, T. N. Vijaykumar, “EffiCuts:
optimizing Packet Classification for Memory and Throughput”,
SIGCOMM, pp. 207-218, 2010.

[8] P. Gupta and N. Mckeown, "Packet classification on Multiple
Fields", SIGCOMM’99, 1999.

[9] M. Dixit, A. Kale, M. Narote, S. Talwalkar, B.V. Barbadekar, “Fast
Packet Classification Algorithms”, International Journal of
Computer Theory and Engeneering, Vol 4, no. 6, 2012.

[10] V. Srinivasan , S. Suri , G. Varghese. “Packet Classification using
Tuple Space Search”. SIGCOMM, 1999.

[11] H. Song http://www.arl.wustl.edu/~hs1/project/filterset/. Accessed
on July 2013.

[12] D. E. Taylor and J.S. Turner, “Scalable Packet Classification using
Distributed Crossproducting of Field labels”, IEEE INFOCOM
2005, Vol. 1, pp.269-280, March 2005.

[13] P. C. Wang, “ Scalable packet classification with controlled cross-
producting”, Journal Computer Network vol 53, pp. 821-834, 2009.

[14] X. Qui, L. Xu, B. Yang, Y. Xue , J. Li, “Packet Classification
Algorithms: From Theory to Practice”, IEEE INFOCOM, pp. 648-
656, 2009.

