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We present a framework for the realization of dissipative evolutions of spin-boson models, including multi-
photon exchange dynamics, as well as nonlinear transition rates. Our approach is based on the implementation
of a generalized version of a dissipative linear quantum Rabi model. The latter comprises a linearly coupled
spin-boson term, spin rotations, and standard dissipators. We provide numerical simulations of illustrative
cases supporting the good performance of our method. Our work allows for the simulation of a large class
of fundamentally different quantum models where the effect of distinct dissipative processes can be easily
investigated.
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I. INTRODUCTION

The interaction between a bosonic mode and a two-level
system is one of the most fundamental models in quantum
physics and, consequently, is of significant relevance in sev-
eral branches of modern science such as quantum information
[1] and light-matter interaction theory [2]. Here, the Rabi
model [3,4] and its simplified but quantized version known
as the Jaynes-Cummings model (JCM) [5] play a prominent
role. The quantum Rabi model (QRM) describes the coherent
exchange of excitations between a spin and a bosonic mode,
and despite its simplicity displays a rich variety of physical
phenomena. As a matter of fact, during the last decade this
model has attracted great interest from different research areas
[6,7]. The diversity of physical phenomena encompassed in
this model and its scientific relevance are embodied by the
paradigmatic Rabi oscillations (or simply continuous revivals
of quantum populations), its integrability [8], the emergence
of distinct behavior in the ultrastrong [9–12] and deep-strong
coupling regimes [13], and by the existence of quantum phase
transitions in a suitable parameter limit [14–17].

The QRM can be achieved in a variety of quantum plat-
forms, being realizable in trapped ions [18,19], circuit-QED
[20–23], cold atoms [24], spin-mechanical systems [25], and
integrated optics [26]. However, the disparate ways in which
a spin and a bosonic mode can interact goes certainly beyond
the realm of the QRM. In this respect, one can find models
possessing multiphoton exchange dynamics [27–31] and/or
nonlinear transition rates [32–34], which may unveil novel
and interesting phenomena. Remarkably, while a QRM can
typically be well experimentally realized, the implementation
of other interaction mechanism such as those involving spin-
boson nonlinear terms remains a challenging task.

*r.puebla@qub.ac.uk

From a different perspective, models comprising n-boson
excitation-exchange processes with a spin degree of freedom
have been theoretically studied mainly in their n = 2 form,
i.e., in the so-called two-photon QRM (2QRM) [29–31]. The
2QRM is of particular interest for preparing nonclassical
states of light [27,28], while its solvability has been also
studied [35–38]. In addition, it is worth mentioning that
systems comprising both one- and two-boson exchange terms
can be as well of interest [39–41], even for the simulation
of relativistic effects [42]. Furthermore, these multiphoton
models can be classified as either linear or nonlinear, that is,
depending on whether their spin-boson coupling changes with
the Fock occupation number.1

It is also worth mentioning that the interaction of a single
spin with a large number (typically infinite) of harmonic
oscillators [43] has served as a testbed to scrutinize aspects of
quantum dissipation due to the presence of an environment.
As a microscopic description of such dissipative effects is
often very demanding (if not unfeasible) [44], it is customary
to rely on a phenomenological description of the system-
environment interaction based on a Lindbladian open-system
framework [44]. However, it is still possible to map a spin
interacting with an infinite number of environmental harmonic

1A remark is due to clarify the terminology that will be used
throughout this paper: although multiphoton spin-boson models such
as the 2QRM do involve nonlinear interactions among bosonic and
spin operators, we will refer to nonlinear interactions whenever the
spin-boson coupling constant depends in a nonlinear manner on the
Fock occupation number, regardless of the number of exchanged
bosons. Such nonlinear models, originally proposed to give account
for the quantum dynamics of a trapped-ion beyond the Lamb-Dicke
regime [32–34], may have also applications in the simulation of
Franck-Condon physics [76] or in dissipative preparation of Fock
states [70].
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oscillators into a generalized QRM, whose interaction with
the environment is now mediated only through the bosonic
mode [45–49]. As recently proved in [50], under certain
cases such method establishes an equivalence between non-
Markovian dynamics of a spin immersed in a structured
environment and a standard Markovian dynamics of a spin
coherently coupled to a harmonic oscillator (see Refs. [50,51]
for the required conditions for an exact equivalence and for a
recent review on non-Markovian dynamics of open quantum
systems, respectively). Moreover, it is worth stressing that
Markovian dissipation may yield a dissipative phase transition
in the QRM [52] as well as a rich phenomenology when
considering a large collection of spins [53–58]. In short,
studying and exploring the dynamics of a generalized QRM
undergoing dissipation, even when it is of a Lindblad form,
allows for the inspection of more complicated models and
their interaction with uncontrolled degrees of freedom that
form the environment.

Recently, it has been shown that a spin-boson model (for
the case of having a single bosonic mode) comprising n-
boson exchange terms can be realized only by having standard
one-boson exchange terms plus spin rotations [59]. In this
manner, a model comprising only linear spin-boson couplings
(a generalized QRM) allows to explore the fundamentally
different physics of its multiphoton counterparts, such as
that of a two- or three-photon QRM (2QRM) and (3QRM),
respectively, without the need of implementing these exper-
imentally challenging n-boson interaction terms that lead to
multiphoton exchange. Our work goes beyond such previous
results by (i) showing how standard dissipation translates
into simulated multiphoton spin-boson models, leading to
nontrivial dissipators; (ii) how nonlinear spin-boson models,
as defined in [32–34], i.e., those that emerge beyond the
Lamb-Dicke regime, can be directly accessed with only linear
interactions. We thus propose a strategy for the simulation
of nonlinear models. Moreover, as realizing a generalized
QRM can be well attained in different platforms, we open
ways for the simulation of such nonlinear models in platforms
that are relevant for quantum information processing, such
as microwave-driven ions [60] or circuit QED [61,62], but
that are unsuited for the direct achievement of the desired
nonlinearities.

Our theoretical framework unveils a deep connection
among such multiphoton and nonlinear models, which might
have potential applications in quantum simulation and infor-
mation processing, as well as in the inspection of the impact
of dissipative processes in quantum optical processes.

The remainder of this article is organized as follows. In
Sec. II we present the general theory, explaining the steps
required to establish the approximate relation among the
mentioned dissipative models. In Sec. III we illustrate our
theoretical apparatus by discussing specific cases in which
a linear spin-boson model with typical dissipative processes
realizes a nonlinear multiboson model with transformed jump
operators. We exemplify how such dissipative models can
be realized to a very good approximation by simply using a
generalized QRM, and validate our predictions by performing
detailed numerical simulations, as shown in Sec. III C. Finally,
in Sec. IV we draw our conclusions and discuss possible
additional directions of investigation.

II. THEORETICAL FRAMEWORK

The starting point of our theoretical framework consists in
the consideration of a two-level system, described by the usual
spin- 1

2 Pauli matrices �σ = (σx, σy, σz ) subject to rotations,
coupled to a bosonic mode, in turn described by means of
the annihilation and creation operators a and a†. The total
Hamiltonian of the system can be written as

HG = Hspin + Hboson + Hint, (1)

where the first and second terms comprise operators acting
solely on the spin and the mode, respectively, thus reading as
(we assume units such that h̄ = 1 throughout the paper)

Hspin = δ0

2
σx +

nd�

j=0

� j

2
{cos � jt σz + sin � jt σy}, (2)

Hboson = νa†a. (3)

The third term corresponds to the spin-boson interaction. In
particular, we assume that Hint contains only linear spin-boson
exchange terms. Without loss of generality, such interaction
term can be written as

Hint = i
ην

2
σx(a − a†), (4)

where η is a real and dimensionless parameter, and the fre-
quencies � j and δ0 are related as � j = δ j − δ0. Finally, nd

is the total number of different drivings with amplitude � j

applied to the spin. Note that �0 = 0 by definition so that
the first term in the sum simply provides the free-energy
term �0σz/2. For nd = 0 (or � j>0 = 0), HG reduces thus
to a standard spin system with frequency splitting �0 and
bias parameter δ0, while the frequency of the bosonic mode
is given by ν [see Fig. 1(a) for a schematic representation].
Indeed, if δ j = 0 ∀ j, the previous model takes a more rec-
ognizable form, namely, that of a standard QRM. Therefore,
the Hamiltonian HG corresponds to a generalization of such
model, including spin drivings. It is worth mentioning that
the dimensionless parameter η gives account for the coupling
regime: while for 0 � |η|/2 � 0.1 counter-rotating terms may
be neglected, for 0.1 � |η|/2 � 1 and |η|/2 � 1 one finds the
so-called ultrastrong [9–12] and deep-strong coupling regimes
[13], respectively (cf. Ref. [63] for a spectral classification
of these regimes in the standard QRM). Note that we have
not included the so-called A2 term in HG which may have
a considerable impact in a cavity-QED realization of HG

[64–66]. However, as we do not consider here a specific setup,
we neglect such term while we refer to Appendix A for a
discussion on this issue.

In addition, we consider that the system undergoes dissi-
pation due to the interaction with an environment [44], whose
dynamics can be cast into the master equation

ρ̇G = −i[HG, ρG] + L[ρG], (5)

where L[·] describes the nonunitary (dissipative) part of the
dynamics. Moreover, we will assume that the superoperator
L[·] can be written in a diagonal Lindbladian form [44]

L[ρG] =
�

k

γkDk[ρG] =
�

k

γk

�
FkρGF †

k −1

2
[F †

k Fk, ρG]+

�
,

(6)
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FIG. 1. Sketch of the scheme for the simulation of nonlinear,
multiphoton, and dissipative spin-boson models. In (a) a linearly
coupled spin-boson system (a generalized quantum Rabi model with
spin bias δ0, spin drivings with amplitude � j>0, and frequency
� j>0) with Hamiltonian HG [cf. Eq. (1)] undergoes dissipation
characterized by the rates γk and the jump operators Fk . This allows
us to simulate a nonlinear n-boson spin-boson model undergoing
dissipation described by the F̃k’s operators. In (b) the Hamiltonian
is Hn [cf. Eq. (15)], which comprises interaction terms such as
σ+an + H.c. and/or σ+(a†)n + H.c. In addition, the transition rates
may strongly depend on the Fock-state label m through a function
fn(m) whose behavior is shown in (c) for different cases [cf. Sec. II
and Eq. (20)]. Note that we show fn(m) = 〈m| fn(a†a)|m〉, rescaled
by fn(0), for various choices of n and η. While fn(m) ≈ fn(0) for
small values of η and m, fn(m) significantly depends on m for
larger values of η, so that Eq. (14) is no longer well approximated
by Eq. (15) and, thus, a correct description requires its nonlinear
counterpart, as described in Sec. II A.

where [·, ·]+ stands for an anticommutator and Fk denotes the
kth jump operator with rate γk and dissipator Dk[·].

Our main goal now is to bring HG into the form of a model
that involves multiphoton exchanges, i.e., a model containing
interaction terms akin to σ±an or σ±a†n, denoted here by Hn.
To achieve such goal we first transform HG into Ha by moving
to a rotating frame. In particular, we define Ha = Ha,0 + Ha,1

with Ha,0 = −δ0σx/2 such that HG ≡ HI
a,1, i.e., Ha,1 in the

interaction picture of Ha,0. Then, we perform a unitary trans-
formation of the resulting Hamiltonian T †(iη/2)HaT (iη/2),
with T (α) a spin-dependent displacement operator. In the spin
basis, we have

T (α) = 1√
2

�
D†(α) D(α)

−D†(α) D(α)

�
, (7)

where D(α) = eαa†−α∗a is the displacement operator of am-
plitude α [2]. Finally, we move to an additional interaction

picture with respect to Hb,0 = (ν − ν̃)a†a − ω̃σz/2. Note that
the transformation T (α) has been proposed in Ref. [67] to
attain a fast trapped-ion implementation of the quantum Rabi
model. In order to ease the notation, in the following we
will use T ≡ T (iη/2), unless otherwise specified, as well as

Ux ≡ Ux(t, t0) = T e−i
� t

t0
dsHx (s) to denote the time-evolution

propagator of the Hamiltonian Hx (T accounts for time or-
dering), while the superscript I stands for operators in the
interaction picture.

As mentioned above, we start by moving to a rotat-
ing frame with respect to Ha,0 = −δ0σx/2, such that HG ≡
HI

a,1 ≡ U †
a,0(Ha − Ha,0)Ua,0 or, equivalently, Ha = Ha,0 +

Ua,0HGU †
a,0. While Hboson and Hint commute with Ua,0, the

time-dependent terms in Hspin do not. Recalling that � j =
δ j − δ0, the transformed Hamiltonian Ha becomes

Ha = νa†a + i
ην

2
σx(a − a†) (8)

+ 1

2

nd�

j=0

� j[cos δ jt σz + sin δ jt σy], (9)

while the whole master equation becomes

ρ̇a = −iUa,0[HG + Ha,0, ρG]U †
a,0 + Ua,0L[ρG]U †

a,0

= −i[Ha, ρa] + Ua,0L[U †
a,0ρaUa,0]U †

a,0. (10)

We now perform a unitary transformation using the operator
T in Eq. (7) with displacement amplitude α = iη/2, such that

Hb ≡ T †(iη/2)HaT (iη/2)

= νa†a + 1

2

nd�

j=0

� j[σ
+eiη(a+a† )e−iδ j t + H.c.]. (11)

Note that the previous Hamiltonian is similar to the one of
an optically trapped ion after performing the rotating-wave
approximation and written in the rotating frame with respect
to the free-energy term of its internal degree of freedom,
driven by nd classical radiation fields with amplitude � j [68].
The dynamics in this new frame follows from

T †ρ̇aT = − iT †[Ha, ρa]T + T †Ua,0L[U †
a,0ρaUa,0]U †

a,0T .

(12)

As ρb = T †ρaT , using the definition given in Eq. (11), we get

ρ̇b = −i[Hb, ρb] + T †Ua,0L[U †
a,0T ρbT †Ua,0]U †

a,0T . (13)

It is worth noting that the transformation HG → Hb is unitary,
and so is the one taking ρG into ρb. Finally, from the Hamilto-
nian Hb given in Eq. (11) one can attain the desired multiboson
and spin couplings by moving to a suitable interaction pic-
ture. Indeed, defining Hb,0 = (ν − ν̃)a†a − ω̃σz/2, HI

b,1 (with
Hb,1 = Hb − Hb,0) takes the following form:

HI
b,1 ≡ U †

b,0Hb,1Ub,0 = ν̃a†a + ω̃

2
σz

+
nd�

j=0

� j

2
[σ+e−i(ω̃+δ j )t eiη(a(t )+a†(t )) + H.c.], (14)
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where a(t ) = ae−i(ν−ν̃ )t . By requiring the Lamb-Dicke con-
dition η

�
〈(a + a†)2〉
1, one can expand the exponential

term into power series, so that interaction terms like σ+an

or σ+(a†)n with n � 1 become resonant when selecting δ j =
δ±

n ≡ ±n(ν̃ − ν) − ω̃, while any other term will be rotating
at frequency proportional to ν̃ − ν. The previous condition
is commonly known as Lamb-Dicke regime in the context
of trapped ions [68], while selecting frequencies δ±

n cor-
responds to driving red- and blue-sideband processes. We
will therefore refer to Lamb-Dicke regime to indicate such
condition. For small amplitudes � j 
 ν, one may neglect
fast-oscillating terms by performing a rotating-wave approxi-
mation, i.e., preserving only those terms which are resonant.
In this manner, we bring HI

b,1 into the form of a spin-boson
model with multiboson interaction terms, denoted here by Hn,
so that HI

b,1 ≈ Hn. Note, however, that the particular expres-
sion of Hn depends on the number nd of distinct drivings
and their respective frequency δ j . The most general expres-
sion of the multiboson model Hn within the Lamb-Dicke
regime is

Hn = ν̃a†a + ω̃

2
σz +

�

m∈B

[g̃meiφmσ+(a†)m + H.c.]

+
�

n∈R

[g̃neiφnσ+an + H.c.], (15)

where the sets R and B encompass all the terms for which
δ j = δ+

n and δ j = δ−
m , respectively. We have set φn = nπ/2

and g̃n = ηn� j,n/(2 n!), where � j,n denotes the amplitude
of the driving with frequency δ j = δ±

n . From Eq. (15) we
can see that, for a single term δ0 = δ+

n (δ−
n ) with nd =

0, the resulting Hamiltonian becomes that of an n-boson
(anti-)JCM. If an additional driving is introduced, one can
bias the weights between rotating and counter-rotating terms
in an n-photon QRM. Interestingly, by suitably adjusting the
parameters ν̃ and ω̃, different coupling regimes of these mod-
els are accessible, from weak (ν̃, ω̃ � g̃n) to deep-strong cou-
pling (ν̃ � g̃n). The latter regime, however, entails that longer
evolution times under HG are required to simulate Hn, as
ν̃ 
 ν.

We would like to draw the attention to the Hamiltonian Hn,
which encompasses different models displaying fundamen-
tally different physics. In Sec. III we will analyze particular
examples in which Hn reduces to the forms of well-known
models such as JCM, one-photon and two-photon QRMs
[29–31,35–37].

Finally, after moving to a rotating frame with respect
to Hb,0 and performing the rotating-wave approximation,
Eq. (13) becomes

ρ̇n = −i[Hn, ρn] + L̃[ρn], (16)

where now the transformed dissipative part is

L̃[·] = �L[�† · �]�† with � = U †
b,0T †Ua,0. (17)

Hence, � is a unitary transformation that approximately
maps the model HG into Hn. Recall that Ub,0 =
e−i(t−t0 )[(ν−ν̃ )a†a−ω̃σz/2], T ≡ T (iη/2) as given in Eq. (7) and
Ua,0 = ei(t−t0 )δ0σx/2 with t0 the initial time. As a consequence,
the structure of L[ρG] [Eq. (6)] is preserved, although with

the replacement Fk → F̃k = �Fk�
†. The new jump operators

F̃k are, in general, time-dependent operators. Hence, although
the transformed master equation resembles a Lindbladian
one, the dynamics in general does not represent a semigroup
[69].

Nevertheless, the dynamics of an initial state ρG(t0) evolv-
ing under Eq. (5) approximately corresponds to the dynamics
of ρn(t0) = �†ρG(t0)� following Eq. (16), where the spe-
cific form of Hn crucially depends on the frequencies δ j ,
amplitudes � j , and number of terms nd . We remark that
the simulation of Hn starting from HG holds to a very good
approximation provided the previous conditions are satisfied,
i.e., that HI

b,1 can be well approximated by Hn, thus

ρn(t ) ≈ �ρG(t )�†. (18)

In other words, how well state ρn(t ) can be realized from
ρG(t ) depends solely on how well the conditions for the ap-
plication of the rotating-wave approximation, which allows to
neglect of fast-oscillating terms in Eq. (14), are met. Equation
(18) is the main result of the theoretical framework illustrated
in this section.

A. Going beyond the Lamb-Dicke regime

If the Lamb-Dicke condition η
�

〈(a + a†)2〉
1 is not sat-
isfied, the exponential term in Eq. (14) can not be expanded as
carried out previously to achieve Eq. (15). It is, however, still
possible to write a Hamiltonian after a suitable rotating-wave
approximation (beyond the Lamb-Dicke regime), resulting
in nonlinear spin-boson terms [32–34,70,71]. In this regime,
the Hamiltonian HI

b,1 is better approximated by the nonlinear
counterpart of Hn, i.e.,

HI
b,1 ≈ Hn,η

= ν̃a†a + ω̃

2
σz +

�

m∈B

� j,m

2
[σ+(a†)n fm(a†a) + H.c.]

+
�

n∈R

� j,n

2
[σ+ fn(a†a)an + H.c.], (19)

where we have introduced the operator fn(a†a):

fn(a†a) = e−η2/2
∞�

l=0

(iη)2l+n

l!(l + n)!
(a†)l al . (20)

We stress that, although the previous model in Eq. (19) cer-
tainly contains a nonlinear spin-boson coupling (for n > 1),
there is yet another source of nonlinearity originated from the
function fn(a†a). Indeed, the transition rates between states
|e, m〉 and |g, m + n〉 are effectively reduced depending on
the value of fn(a†a), and thus on that of η, which can vary
significantly for varying Fock number [cf. Fig. 1(c)] [34]. For
a single term, that is in a nonlinear JCM, such feature hinders
the appearance of the hallmark of the standard JCM, namely,
collapses and revivals of quantum population. Moreover,
fn(a†a) may vanish for a certain Fock state, thus exhibiting
a blockade of the propagation of quantum amplitudes across
the Hilbert space [70]. Although we will refer to nonlinear
models whenever fn(a†a) has been taken into account, for the
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sake of clarity we indicate it by introducing a subscript η to
the Hamiltonian [as in Eq. (19)].

If one, however, finds itself within the Lamb-Dicke
regime, then the previous Hamiltonian takes the form given
in Eq. (15), i.e., Hn,η ≈ Hn since fn(a†a) becomes con-
stant [see Fig. 1(c)]. Note that for η

�
〈(a + a†)2〉 
 1, we

have fn(a†a) ≈ (iη)n/n! which, together with the amplitude
� j,n/2, leads to the coupling given in Eq. (15), g̃neiφn . Beyond
their mathematical interest, these models display a number of
interesting features with potential application in bosonic mode
cooling [72] or in dissipative state preparation of Fock states
and nonlinear coherent states [33,70,73]. We will come back
to these models in Sec. III, in particular in Sec. III B 3 where
we provide numerical simulations to illustrate their simulation
using HG.

III. EXAMPLES AND NUMERICAL RESULTS

In this section we provide specific examples of the theo-
retical framework presented in Sec. II. We start by showing
how typical jump operators transform under the map � [cf.
Eq. (17)]. Then, in Sec. III B, we show different examples
of how the state satisfying Eq. (16) can be obtained from
ρG obeying Eq. (5), supported by numerical simulations and
computing state fidelities between the ideal ρn(t ) and its
reconstructed version from ρG(t ).

A. Transformed jump operators

As we have explained in Sec. II, the jump operators
Fk affecting the Hamiltonian HG map into F̃k = �Fk�

†. In
the following, we show the transformation for customary
jump operators in quantum optics, namely, σz, σ± as well
as a, a† and a†a, which correspond to spin dephasing, spon-
taneous emission and absorption, boson leakage and heat-
ing, and boson dephasing, respectively [44]. In addition,
we comment on what would be required to engineer a de-
sired dissipative process F̃k . One can calculate easily the
transformed jump operators as explained in Sec. II, i.e.,
F̃k = �Fk�

† where � = U †
b,0T †Ua,0, Ua,0 = eitδ0σx/2, Ub,0 =

e−it ((ν−ν̃ )a†a−ω̃σz/2) with t0 = 0, and T ≡ T (iη/2) as defined
in Eq. (7). As an example, in Appendix B we provide the full
derivation of the transformation of F into F̃ for spontaneous
emission and absorption.

It is worth mentioning that, as reported in Ref. [74],
considering independent decoherence processes acting either
on the spin or on the bosonic mode may become a crude
approximation as their coupling enters in the ultrastrong
regime [i.e., for η/2 � 0.1, cf. Eq. (4)]. It is then convenient
to move to a suitable dressed basis, where the relevant degrees
of freedom are mixed up, and where one can adequately
describe distinct dissipative processes [74]. However, even in
the ultrastrong coupling regime the differences in the steady-
state populations between both approaches are small, in the
order of 10−2 for 〈a†a〉 [74]. Thus, considering independent
channels of dissipation may be considered as a reasonable
approximation even for η/2 � 0.1. Although a dressed basis
treatment lies outside the scope of this work, we provide a
discussion in Appendix C on how the results vary when this is
considered instead.

Spin dephasing. The jump operator associated with spin
dephasing reads as Fsd = σz, whose rate is given by γsd. One
thus obtains

�σz�
† = D(t )e−it (δ0+ω̃)σ+ + H.c., (21)

with the time-dependent displacement operator D(t ) ≡
D(iηei(ν−ν̃ )t ) = eiη[a(t )+a†(t )]. Introducing the previous expres-
sion in the dissipator, we find

D̃sd[ρ] = − ρ + D(t )σ+ρσ−D†(t ) + D†(t )σ−ρσ+D(t )

+ (D(t )σ+ρσ+D(t )e−2it (δ0+ω̃) + H.c.). (22)

We thus observe that spin dephasing produces decoherence
in the transformed frame by mixing spin and bosonic de-
grees of freedom. Indeed, neglecting fast-oscillating terms,
the previous dissipator contains in general nonlinear jump
operators of the form σ±an, σ±(a†)n, and σ±(a†)nan at order
ηn. We highlight that, although Eq. (21) may seem to indicate
that the dissipative terms σ+an or σ−(a†)n can be tuned by
properly adjusting the frequency δ0 [as carried out to attain
Eq. (15)], a correct description demands taking into account
all the resonant terms appearing in Eq. (22) and not only those
in Eq. (15). However, within the Lamb-Dicke regime, it is
still possible to approximate D̃sd[ρ] by a simple expression.
Indeed, for γsd 
 ν, one may consider only the zero-order
term in η, so that

D̃sd[ρ] ≈ σxρσx − ρ = Dσx [ρ]. (23)

As the Lamb-Dicke condition breaks down, the previous
approximation no longer holds, thus demanding the inclusion
of the terms of Eq. (22). We refer to Appendix D for numer-
ical results in which nonlinear jump operators are crucial to
correctly reproduce the targeted dissipative dynamics.

Spontaneous emission and absorption. The jump operators
associated to spontaneous emission and absorption processes
at rates γse and γsa are Fse = σ− and Fsa = σ+, respectively.
Their transformed form is (cf. Appendix B for the derivation
of such expressions)

�σ±�† = 1
2 (−σz ± D(t )e−it (δ0+ω̃)σ+ ∓ H.c.). (24)

Hence, these processes lead into spin dephasing in the
transformed picture, as well as mixed decoherence on the
spin and bosonic degrees of freedom, as D(t )e−it (δ0+ω̃)σ+
comprises nonlinear operators of the form anσ+ and
(a†)nσ+. Furthermore, we can already notice that if
F = σx, its transformed form becomes particularly sim-
ple, �σx�

† = −σz, while for σy a more intricate ex-
pression is attained, �σy�

† = Re[eiη[a(t )+a†(t )]e−it (δ0+ω̃)]σy +
Im[eiη[a(t )+a†(t )]e−it (δ0+ω̃)]σx. As in the case of spin dephasing,
provided that γse,sa 
 ν, it is possible to approximate Eq. (24)
within the Lamb-Dicke regime as

D̃se,sa[ρ] ≈ 1
4 (Dsd[ρ] + Dse[ρ] + Dsa[ρ]). (25)

In Appendix D we provide numerical results when the pre-
vious approximation does not hold and higher-order terms in
Eq. (24) become crucial to correctly reproduce the targeted
dissipative dynamics.
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Boson leakage, heating, and dephasing. The transformed
jump operators for these boson dissipative processes, with
rates γbl, γbh, and γbd, respectively, read as

�a�† = ae−it (ν−ν̃ ) − i
η

2
σz, (26)

�a†�† = a†eit (ν−ν̃ ) + i
η

2
σz, (27)

�a†a�† = a†a + σz
η

2
(ia−it (ν−ν̃ ) + H.c.), (28)

up to constant factors. Therefore, provided |ν − ν̃| � ηγbl,bh

so that terms like σzρa† can be neglected, boson leakage
and heating remain in the transformed frame Hn without
modifying their rate γbl,bh, and add spin dephasing at the
reduced rate γbl,bhη

2/4. In particular, for boson leakage, the
transformed dissipator reads as

D̃bl[ρ] = aρa† − 1

2
[a†a, ρ]+ + η2

4
(σzρσz − ρ)

+ η

2
[ia(t )ρσz − iσzρa†(t )] (29)

≈ Dbl[ρ] + η2

4
Dsd[ρ]. (30)

Analogous considerations hold for boson heating. Similarly,
boson dephasing leads approximately into

D̃bd[ρ] ≈ Dbd[ρ] + η2

4
Daσz [ρ] + η2

4
Da†σz

[ρ] (31)

and, thus, while boson dephasing remains in the simulated
model, it also produced decoherence mixing spin and boson
degrees of freedom, with dissipators characterized by jump
operators aσz and a†σz.

Engineered channel of dissipation. Aside from the cus-
tomary dissipation processes, let us consider the situation
in which a specific dissipative channel with jump operator
F̃ is addressed. The simulation of F̃ requires thus �†F̃�

to be implemented in L[ρG] [cf. Eq. (5)]. For the sake of
clarity, we provide an example which we will exploit later
on: if one aims to simulate spontaneous emission, F̃ = σ−,
a dissipative process with F = 1

2 D(iη)(σz − iσy) needs to be
included in L[ρG] (see Appendix B for its derivation). Note
that, although the resulting processes �†F̃� may be challeng-
ing for their experimental implementation, one may still resort
to approximations depending on the precise parameters, as
aforementioned.

B. Examples of the theory: Simulating Hn from HG

In order to show the versatility and richness of the effects
encompassed by the framework described in Sec. II, we
specialize the general procedure to simulate a few interesting
scenarios.

1. n-boson JCM: Hn � HnJCM

Let us first consider a simple case in which nd = 0
with δ0 = n(ν̃ − ν) − ω̃. In this case, our starting Hamil-
tonian becomes time independent and takes the form of a

generalized QRM

HG = νa†a + δ0

2
σx + �0

2
σz + i

ην

2
σx(a − a†), (32)

where the bias parameter δ0 breaks explicitly the Z2 sym-
metry. Although HG above is in general nonintegrable, for
δ0 = kν (k ∈ Z), the model retrieves the integrability of the
standard QRM [8]. The dynamics in this system obeys a
master equation in Lindblad form, as introduced in Eqs. (5)
and (6). Interestingly, applying the map, this Hamiltonian
approximately corresponds to an n-boson JCM (that is, Hn

adopts the form of HnJCM)

HnJCM = ν̃a†a + ω̃

2
σz + g̃n[eiφnσ+an + H.c.] (33)

with g̃n = �0η
n/(2 n!) and φn = nπ/2 [cf. Eq. (15)]. The

forms taken by the initial state in each frame are related
as ρnJCM(t0) = T †ρG(t0)T , while the state ρnJCM(t0) evolves
according to a master equation whose jump operators are in
general time dependent.

The Hamiltonian HnJCM results from the use of the rotating-
wave approximation, which requires both �0 
 ν and the
Lamb-Dicke condition. Therefore, in order to realize an inter-
acting nJCM (g̃n ∼ ν̃), the parameters need to fulfill ω̃, ν̃ 

ν. In turn, this results in δ0 ≈ −ν, which means that the
integrability of the generalized QRM HG in Eq. (32) is only
weakly broken [8]. It is worth mentioning that, by taking
δ0 = −n(ν̃ − ν) − ω̃, one would attain an n-boson anti-JCM,
an interaction term of the form σ−an + H.c., as illustrated
in Eq. (15). In Fig. 2 we show the numerical results for
a one- and two-boson JCM, including distinct channels for
dissipation, to illustrate the good performance of simulating
these models from a simple HG (see Sec. III C for further
details).

2. n-boson QRM Hn � HnQRM

In this case, the Hamiltonian HG contains two different
time-dependent terms with amplitude �1 and frequencies
�1 = δ1 − δ0 with δ0,1 = ±n(ν̃ − ν) − ω̃ [cf. Eq. (2)]. After
a suitable transformation, one obtains an n-photon QRM as

HnQRM = ν̃a†a+ ω̃

2
σz+g̃n[eiφnσ++e−iφnσ−] ⊗ [an+(a†)n],

(34)

that is, Hn adopts the form of HnQRM. This model holds
provided that �0 = �1, while the parameters g̃n and φn are the
same as the ones given for the nJCM and general Hn model.
It is worth mentioning that, in general, one can simulate an
anisotropic nQRM by simply tuning different amplitudes �0

and �1 in HG. The n-boson version of the quantum Rabi
model (nQRM) has been mainly studied in its two-boson form
(n = 2), which is of importance in describing second-order
processes in different quantum optics setups. The Hamiltonian
H2QRM displays a remarkable feature: at g̃2 = ν̃/2 and above
a certain excitation energy, the eigenstates become those of
a free particle and the spectrum turns into a continuum band
[29,30,35]. Furthermore, upon the spectral collapse at g̃2 =
ν̃/2, the Hamiltonian becomes unbounded from below for
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FIG. 2. The dynamics induced by the nJCM embodied by the
Hamiltonian HnJCM in Eq. (33) is depicted by lines and compared
to their simulation through HG (shown by the points) as given
in Sec. III B 1. In the plots reported in the left column we have
taken n = 1, while n = 2 has been used for the right column. In
(a) and (b) [(c) and (d)] we show the evolution of 〈σz〉 (〈a†a〉),
while in (e) and (f) we plot the infidelity 1 − F (ρnJCM(t ), �ρG(t )�†)
that quantifies the quality of the simulation obtained starting from
ρG(t ). The initial state |ψ (0)〉nJCM = |0〉|e〉 evolves under HnJCM

without dissipation (solid red line), and with dissipators corre-
sponding to the transformed boson leakage (dashed blue line) and
spin dephasing (dotted green line). The parameters used in the
simulations are ω̃ = nν̃, g̃1 = ν̃/2, g̃2 = ν̃/10, �0 = ν/100, ν̃ =
ν/2000, γbl = ν̃/2, and γsd = ν̃/40.

g̃2 > ν̃/2. For any nQRM with n � 3 the Hamiltonian HnQRM

is unbounded both from below and above for any nonzero
coupling g̃n>2 �= 0 [75]. We would like to remark that this
allows to attain a strongly coupled QRM without the need of
increasing the coupling in the original HG, i.e., from a weakly
coupled spin-boson system. A similar result has been pro-
posed in [20], although following a different strategy where
ultrastrong and deep-strong coupling is achieved after a suit-
able interaction picture. In Fig. 3 we show numerical results
considering n = 1 in different coupling regimes, and n = 2
with g̃2 < ν̃/2. The parameters are detailed in Sec. III C. The
simulation of the unitary dynamics for n = 3 (3QRM) has
been shown in Ref. [59].

3. Beyond Lamb-Dicke: Nonlinear n-boson anti-JCM
Hn,� � HnaJCM,�

As discussed in Sec. II A, the theoretical framework that we
have presented can be exploited even beyond the Lamb-Dicke
regime. Here, we consider a nonlinear n-boson anti-JCM,
whose nonlinear interaction terms have been already intro-
duced in Eq. (19). Then, considering δ0 = −n(ν̃ − ν) − ω̃

and nd = 0, the Hamiltonian Hn,η takes the form of HnaJCM,η,

FIG. 3. Dynamics of a nQRM, HnQRM [see Eq. (34)] for n = 1
(left) and n = 2 (right column), depicted by lines and their simulation
using HG (points) as described in Sec. III B 2. In (a) and (b) [(c) and
(d)] we show the evolution of the expectation value 〈σz〉 (〈a†a〉),
while in (e) and (f) we plot the infidelity 1 − F (ρnQRM(t ), �ρG(t )�†)
between the targeted state and its simulated counterpart. For the
1QRM (left column) we choose a pure initial state |ψ (0)〉1QRM =
|α = 1/2〉|e〉 where |α〉 represents a coherent state, while for the
2QRM the initial state reads as ρ2QRM(0) = ρ th

b (0.25) ⊗ |+〉〈+|
where ρ th

b (〈a†a〉) is a thermal state with 〈a†a〉 average number of
bosons. Different styles correspond to distinct coupling constants
(left) or dissipation rates (right), as indicated in (e) and (f), re-
spectively. The parameters are ν̃ = ν/5000 and � = ν/100, while
γbl = 2γsd = ν̃/50 and ω̃ = 0 (1QRM) and g̃2 = ν̃/10 with ω̃ = 2ν̃

(2QRM). See Sec. III C for further details.

which reads as

HnaJCM,η = ω̃

2
σz + ν̃a†a + �0

2
[σ+(a†)n fn(a†a) + H.c.].

(35)

Again, we remark that although the previous models are
certainly nonlinear in the sense that they involve n-boson
and spin interaction terms, we make use here of the term
nonlinear (subscript η) to indicate that the transition rates
between |e, m〉 and |g, m + n〉 become nonlinear, and differ
fundamentally from those of the standard (linear) one [34].
The transition rates involve the function fn(a†a) that can
significantly modify these rates [see Eqs. (19) and (20), as
well as Fig. 1(c)]. Here, we keep the convention used in previ-
ous works where these models have been dubbed nonlinear
although comprising linear, i.e., one-boson, spin-boson ex-
change interaction terms [33,34,70]. According to our theory,
this nonlinear model can be indeed realized from a linear
and time-independent Hamiltonian (32). In order to observe a
significant effect of the nonlinearity stemming from the latter
one needs, however, a large-η parameter and/or bosonic pop-
ulation. The departure from the Lamb-Dicke regime, in which
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FIG. 4. Dissipative dynamics towards the steady state in (a) HG

and (b) H1aJCM,η [see Eq. (33)], where HG is such that allows for
the realization of the nonlinear 1JCM (see Sec. III B 3), where ω̃ =
ν̃ = �0 f1(0)/4 (which would be equivalent to g̃1 = ν̃/2 for H1aJCM)
and ν̃ = 10−3ν with η = 0.8. The initial state ρG(0) = ρ th

b (0.75) ⊗
|g〉〈g| for HG evolves under boson damping with rate γbl = ν̃/2 for
(a), and its transformed form for (b) [Eq. (30)]. The insets show the
short-time dynamics. (c) Shows the time evolution of the purity for
ρG(t ) (solid lines) and ρ1aJCM,η (dashed lines) while in (d) we plot the
infidelity between �ρG(t )�† and ρ1aJCM (dashed lines) and ρ1aJCM,η

(solid lines) for different rates, which for the latter may drop below
our numerical precision 10−5. See Sec. III C for further details and a
discussion.

fn(a†a) ≈ e−η2/2(iη)n/n!, can be essentially captured by plot-
ting 〈m| fn(a†a)|m〉 as a function of the Fock state m and
for different values of η. In Fig. 1(c) we plot 〈m| fn(a†a)|m〉
for n = 0 and 1 and two values of η, namely, η = 0.05 and
0.75, which illustrate the considerable modification of the
transition rates for the latter case. Indeed, one can find η

such that fn(a†a)|k〉 ≈ 0, and so the transition between states
|e, k〉 ↔ |g, k + n〉 is suppressed in a HnJCM,η. See Ref. [70]
for further a discussion and potential applications regarding
this nonlinearity.

The nonlinear n-boson JCM HnJCM,η can thus be real-
ized only by having access to a generalized QRM, with a
Hamiltonian of the form of HG given in Eq. (32), with δ0 =
n(ν̃ − ν) − ω̃. Interestingly, nonlinear effects [as plotted in
Fig. 1(c)] will become significant as HG enters in the ultra-
strong coupling regime, i.e., η/2 � 0.1. In a straightforward
manner, one can realize different nonlinear models from a
generalized quantum Rabi model in the ultrastrong coupling
regime, such as a nonlinear nQRM [70]. Note that for the
latter case one will proceed as explained in Sec. III B 2, adding
a spin driving into HG and with a larger η value such that
ones goes beyond the Lamb-Dicke condition. In Figs. 4 and
5 we plot the results of the dynamics under H1aJCM,η and
its reconstructed version using HG. See Sec. III C for further
details regarding parameters and dissipative processes.

FIG. 5. Dissipative preparation of a Fock state via H1aJCM,η and
spontaneous emission |ψ〉ss

1aJCM,η = |ms〉|g〉, which also corresponds
to a pure state in the HG counterpart but of the form |ψ〉ss

G =
D(iη/2)|ms〉|+〉. In (a) we show the dynamics toward the steady state
of ρ1aJCM,η (solid lines) and its simulation from ρG (points), start-
ing from |ψ (0)〉1aJCM,η = |0〉|g〉 and with ω̃ = ν̃ = �0 f1(0) (which
would be equivalent to g̃1 = 2ν̃ for H1aJCM) and γse = 4ν̃. For η ≈
0.64, f1(ms = 8) vanishes, so that the state |ms = 8〉|g〉 becomes
steady [see (b)]. (c), (d) Show the evolution of the purity (green),
fidelity with respect to its steady and pure state ρss (red) for ρ1aJCM,η

(lines) and ρG (points), and the infidelity between ρ1aJCM,η(t ) and
�ρG(t )�†.

C. Numerical results

In the following, we present numerical results support-
ing the theoretical framework, specialized to the cases dis-
cussed previously, namely, where HG allows for the realiza-
tion of HnJCM, HnQRM, and HnJCM,η with distinct dissipative
processes.

We start showing that the dynamics of an nJCM [Eq. (33)]
undergoing dissipative processes can be realized simply using
a generalized QRM, whose form has been given in Eq. (32).
In Fig. 2 we present numerical results of the simulation of the
dynamics of a one- and two-boson JCM using HG without dis-
sipation, boson leakage, and spin dephasing. The transformed
dissipators for spin dephasing and boson leakage have been
approximated as in Eqs. (23) and (30), respectively, as ex-
plained in Sec. III A. The parameters used for the simulations
presented in Fig. 2 were ω̃ = ν̃ = g̃1/2 (1JCM) and ω̃ = 2ν̃ =
g̃2/10 (2JCM), while �0 = ν/100 and ν̃ = ν/2000 which
correspond to η = 0.05 (1JCM) and η = 0.14 (2JCM), while
the initial state considered for HnJCM is |ψ (0)〉nJCM = |0〉|e〉.
Hence, the initial state in the frame of HG reads as |ψ (0)〉G =
T †|0〉|e〉. The dissipation rates are γbl = ν̃/2 and γsd = ν̃/40.
Note that the approximation D̃sd[ρ] ≈ Dσx [ρ] does not work
well in the 2JCM due to the larger value of the parameter η, as
indicated by a larger infidelity in the latter case. Therefore, our
theory allows us to reproduce the dynamics of these models
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in different dissipative and coupling regimes to a very good
approximation, as demonstrated by the low infidelities [cf.
Figs. 2(e) and 2(f)].

In the following, we consider the case where HG allows
us to simulate a dissipative n-boson quantum Rabi model,
nQRM, whose Hamiltonian has been introduced in Eq. (34).
We emphasize again that our starting point consists in a
weakly coupled linear QRM, which allows strongly coupled
spin-boson systems with n-boson exchange terms. In Fig. 3
we present numerical results in which a H1QRM is simulated in
different regimes, even in the deep-strong coupling [13] where
HG features a small coupling constant to bosonic frequency
ratio 0.025 (since η = 0.05 to attain g̃1/ν̃ = 5

4 ). The parame-
ters of the simulated 1QRM are ω̃ = 0 with coupling g̃1/ν̃ =
1
4 , 3

4 , and 5
4 , while ν = 5 × 103ν̃ and �0 = �1 = 50ν̃. The

considered dissipative channels in L[ρG] are boson leak-
age and spin dephasing with rates γbl = 2γsd = ν̃/50, while
the chosen initial state is |ψ (0)〉1QRM = |α = 1/2〉|e〉 where
|α〉 = D(α)|0〉 denotes a coherent state, whose mean boson
population amounts to |α|2. Notice that, as η and the boson
population are small, the approximation D̃sd[ρ] ≈ Dσx [ρ] is
expected to hold. As shown in Figs. 3(a) and 3(c), as one
increases the coupling g̃1/ν̃ one retrieves the main hallmark
of the deep-strong coupling regime, namely, the structured
collapses and revivals [13], which are damped here due to the
dissipation. Although the agreement between the simulated
dynamics and the targeted one is reasonably good [F � 0.9
or 0.99, depending on the case, cf. Fig. 3(e)], we stress that
tweaking the parameters may enhance further the attained
fidelities.

In addition to the simulation of a 1QRM, we show that one
can obtain good fidelities even for the realization of a 2QRM.
For that, we select an initial state ρ2QRM(0) = ρ th

b (〈a†a〉) ⊗
ρs where ρ th

b (〈a†a〉) stands for a thermal state with aver-
age boson population 〈a†a〉, such that ρ th

b (n) = �
k=0 nk (n +

1)−k−1|k〉〈k|. For the results plotted in Fig. 3 we have consid-
ered ρ th

b (0.25) while ρs = |+〉〈+| where |±〉 = 1/
√

2(|e〉 ±
|g〉). The parameters of the 2QRM are ω̃ = 2ν̃ and a cou-
pling constant g̃2 = ν̃/10, while for HG we selected ν = 5 ×
103ν̃ = 100�0,1, which leads to η ≈ 0.09. As in the previous
cases, we consider boson losses and spin dephasing, where the
latter can be still approximated as in Eq. (23). The dynamics
of this model is well reproduced in different cases, as shown in
Figs. 3(b), 3(d), and 3(f). Note that when boson losses domi-
nate the dynamics, the state ρ2QRM(t ) is pushed to the vacuum
|0〉〈0| ⊗ |g〉〈g|, which becomes the steady state. The attain-
ment of steady states upon different dissipative processes (and
the correct functioning of their simulation) will be further
inspected in the following, and illustrated in Figs. 4 and 5.

As commented in Sec. II A and, for the specific case of
the simulation of HnaJCM,η, in Sec. III B 3, a generalized QRM
allows for the implementation of nonlinear, yet with n-boson
exchange interactions, (anti-)JCMs. The main feature of this
class of models is the strong dependence of transition rates
between the states |e, m〉 ↔ |g, m + n〉 for different |m〉 Fock
states [cf. Fig. 1(c) and Sec. II A]. We illustrate the realization
of a H1aJCM,η in Fig. 4, where the steady state is achieved
within the simulated evolution time. We take as initial state
ρG(0) = ρ th

b (0.75) ⊗ ρs with ρs = |g〉〈g|, η = 0.8 and bo-
son leakage with different rates, while the parameters are

ω̃ = ν̃ = �0 f1(0)/4. We stress, however, that for such a large-
η value, and thus large coupling constant in HG, considering
independent channels of dissipation may be no longer a
good approximation, and thus one may have to resort to a
dressed-basis description of the dissipation (see Appendix C).
Nevertheless, the difference in population may exhibit devia-
tions in the order of 10−2 for the computed observables [74].
In addition, note that the previous coupling constant would be
equivalent to having g̃1 = ν̃/2 in a standard H1aJCM. As shown
in Figs. 4(a) and 4(b), the steady state in HG is accompanied
by its transformed version in H1aJCM,η. As the states ρG(t )
and ρ1aJCM,η are related through a unitary transformation, the
purity Tr[ρ2(t )] is expected to be equal if the simulation of
this model works correctly. As we observe in Fig. 4(c), this
is indeed the case to a very good approximation. Note that
for γbl = ν̃/2, the state ρG tends to a pure, yet steady, state,
and so does ρ1aJCM,η. As a matter of fact, as the dissipative
dynamics for HnaJCM,η brings the states toward the steady
and pure state ρss

nAJCM,η = |0〉〈0||e〉〈e|, it is easy to see that
ρss

G = |α = −iη/2〉|−〉〈−|〈α = −iη/2| is also pure, where
|α = −iη/2〉 = D(−iη/2)|0〉 is a coherent state containing
|α|2 = η2/4 boson excitations. Finally, we comment that,
due to the large coupling in HG (η = 0.8), the Lamb-Dicke
condition breaks down and thus H1aJCM becomes a poor
approximation of HI

b,1 [Eq. (14)]. In Fig. 4(d) we show the
infidelity between �ρG(t )�† and the realized state ρ1aJCM,η(t )
(solid lines) and ρ1aJCM(t ) (dashed lines) for the same pa-
rameters. The significant difference among the fidelities,
and the very low values for 1 − F (ρ1aJCM,η(t ), �ρG(t )�†) �
10−4, pinpoints the correctness of the theory and the
good realization of this nonlinear anti-Jaynes-Cummings
model.

Finally, we provide a further example regarding the real-
ization of a nonlinear anti-Jaynes-Cummings model when its
nonlinearity is crucial, and thus H1aJCM,η differs fundamen-
tally from its linear counterpart H1aJCM. For that we consider
that spontaneous emission F̃ = σ− can be implemented in
L[ρn], which corresponds to a dissipation channel with F =
1
2 D(iη)(σz − iσy) in L[ρG] (cf. Sec. III A and Appendix B
for its derivation). As recently shown in Ref. [70], it is
thus possible to tune η such that fn(ms) = 0 for a certain
Fock state |ms〉 and, thus, spontaneous emission aids prepa-
ration of that precise Fock state |ms〉|g〉 since the transition
to |ms + n〉|e〉 is blocked. The numerical results regarding
this situation are plotted in Fig. 5, where the initial state
|ψ (0)〉1aJCM,η = |0〉|g〉 evolves towards |ψ〉ss

1aJCM,η = |ms〉|g〉
with η = 0.639 such that f1(ms = 8) = 0 [Fig. 5(b)], and
with parameters ω̃ = ν̃ = �0 f1(0) and dissipation rate γse =
4ν̃. It is worth highlighting that the condition ν̃ = �0 f1(0)
would correspond to ν̃ = 2g̃1 in the standard H1aJCM. The
dissipative preparation of the Fock state can be thus simulated
by HG, where instead |ψ〉ss

G = D(iη/2)|ms〉|+〉. As in the
previous case, the purity Tr[ρ2(t )] matches for both states and
the high fidelity F (ρ1aJCM,η(t ), �ρG(t )�†) � 0.999 [Figs. 5(c)
and 5(d)] indicate the good agreement between these models,
where the parameters of HG are ν = 103ν̃ and �0 ≈ ν/130.
In addition, we include in Fig. 5(c) the fidelity between the
evolved state ρG(t ) and the steady state |ψ〉ss

G, as well as
ρ1aJCM,η(t ) and |ψ〉ss

1aJCM,η, which evolves from 0 to 1 in a time
t ≈ 40π/ν̃.
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IV. CONCLUSIONS

We have shown how the dynamics of a dissipative quantum
system comprising simultaneous exchanges of n-boson exci-
tations with a spin can be realized exploiting a system involv-
ing only linear spin-boson coupling and simple spin rotations,
i.e., without having access to the required n-boson interact-
ing terms. Moreover, we have demonstrate that spin-boson
models with further nonlinear effects, such as the dependence
of transition rates between Fock states on the actual Fock
state number, can be accessed only by bringing a linear QRM
into the ultrastrong coupling regime and with a spin bias.
Indeed, the simulation of these nonlinear and multiphoton
spin-boson models can be realized in distinct regimes, ranging
from weak to deep-strong coupling regimes. These models
include the well-known (anti-)JCMs and QRMs, both with
and without nonlinearities, as well as the so-called two-boson
QRM, among others. The developed theoretical framework
not only unveils a deep connection between these models,
but also offers the possibility for the simulation of nonlinear
models previously constrained mainly to optical trapped-ion
setups [34,70] and of multiboson spin-boson interaction terms
in platforms where those are otherwise unattainable, i.e.,
without relying on the developed theory.

Here, we have assumed that one has control onto a system
described as a generalized QRM, i.e., spin and boson linearly
coupled and with the ability of performing spin drivings, and
it is where the simulation of a nonlinear n-boson spin-boson
model is performed. The dissipative dynamics of the general-
ized QRM is assumed to be well described by a Lindblad term.
In this manner, the jump operators then take a transformed
form in the simulated model, which in general may become
time dependent and involve also nonlinear spin-boson terms,
thus mixing both degrees of freedom. For certain parameter
regimes, however, distinct dissipative processes can be well
approximated by standard dissipative channels. We provide,
in addition, a prescription of what jump operators would
be required to be implemented in the simulator to achieve
an arbitrary dissipative channel. We have then illustrated
the presented theoretical framework by showing examples in
which the dissipative dynamics of a generalized QRM corre-
sponds to that of different nonlinear models with customary
decoherence processes, such as spin and boson dephasing,
spontaneous spin emission and absorption, and boson leakage
and heating. The numerical simulations strongly support the
theoretical results, indicating that the simulation holds to
a very good approximation, as quantified in terms of the
resulting high fidelities, for paradigmatic examples as the
JCM and QRMs and their two-boson counterparts. These
include the deep-strong coupling regime of the quantum Rabi
model [13]. Moreover, we also illustrate the simulation of a
nonlinear anti-JCM, whose main trait consists in the block-
ade of propagation of quantum amplitudes along the Hilbert
space [70].

Our results indicate that the dissipative dynamics of a gen-
eralized QRM approximately corresponds to different nonlin-
ear models upon a suitable transformation, both of the coher-
ent and dissipative parts. Due to the ubiquity of a generalized
QRM in a variety of quantum platforms and its relevance in
different branches of modern science, our results might open

new avenues in the inspection of decoherence in different
fundamental quantum systems and in their simulation.
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APPENDIX A: IMPACT OF AN A2 TERM IN HG

As mentioned in the main text, our starting point consists
in considering a driven spin linearly coupled to a single
bosonic mode whose Hamiltonian HG is given in Eq. (1) and
Eqs. (2), (3), and (4). Although this description is wide since
it applies to different setups, one may have to introduce an
extra term HA2 when dealing, for example, with a cavity-QED
implementation as it can have a significant impact in the
ultrastrong coupling regime [64–66]. Note that this term stems
from the potential vector of the cavity field. In the following
lines we provide a discussion on how the results presented in
the main text would be modified when this term is considered.
In particular, when the A2 term is included, our starting Hamil-
tonian becomes HG = Hspin + Hboson + Hint + HA2 , where the
latter term reads as

HA2 = D(a + a†)2. (A1)

Now, we consider an interaction Hint = ην/2σx(a + a†),
which results from a trivial rotation of a and a† in Eq. (4). The
previous Hamiltonian can be transformed back to the original
form, i.e., without an A2 term, by making a unitary trans-
formation using the squeezing operator S[z] = ez/2[(a† )2−a2]

with z ∈ R. Then, calculating S†[z]HGS[z] one can find the
value zs that brings the previous expression into the form
of HG without HA2 . Indeed, for zs = −1/4 log(1 + 4D/ν) the
transformed Hamiltonian reads as

S†[zs]HGS[zs] = Hspin + η̃ν̃

2
σx(a + a†)

+ ν̃e−2zs a†a − νe−zs sinh zs, (A2)

which is identical to the original Hamiltonian HG up to con-
stant values [see Eqs. (2)–(4)], with renormalized parameters
η̃ = ηe3zs and ν̃ = νe−2zs . Hence, one can follow the rest of
the theoretical derivation to find the nonlinear and multibo-
son models as explained in Sec. II. Note, however, that the
corresponding master equation describing the dynamics for
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HG including the HA2 term may have to be transformed too
according to S[zs] · S†[zs].

APPENDIX B: TRANSFORMED JUMP OPERATORS FOR
SPONTANEOUS EMISSION AND ABSORPTION

As given in the main text [Eq. (24)], the jump operator
associated with spontaneous absorption (emission) acting in
the frame of HG, F = σ±, transforms into the frame Hn

as F̃ = �F�†, where � = U †
b,0T †Ua,0. The time-evolution

propagators are Ua,0 = eitδ0σx/2 and Ub,0 = e−it[(ν−ν̃ )a†a−ω̃σz]

considering t0 = 0, and T = 2−1/2[D(α)(|e〉〈g| + |g〉〈g|) +
D†(α)(|e〉〈e| − |g〉〈e|)] given in Eq. (7). Thus, the trans-
formed jump operator F̃ can be calculated as follows. We first
need

Ua,0 σ±U †
a,0 = cos2 (δ0t/2)σ± + sin2 (δ0t/2)σ∓

∓ i

2
sin(δ0t )σz, (B1)

and then using the expressions

T †σzT = D2(α)σ+ + D†2(α)σ−, (B2)

T †σ±T = 1
2 [−σz ± D2(α)σ+ ∓ D†2(α)σ−], (B3)

we obtain

T †Ua,0 σ+U †
a,0T = − 1

2σz + 1
2 D2(α)e−itδ0σ+

− 1
2 D†2(α)eitδ0σ−, (B4)

so that finally we arrive to

�σ±�† = U †
b,0T †Ua,0 σ±U †

a,0TUb,0

= − 1
2σz ± 1

2 eit (ν−ν̃ )a†aD(2α)e−it (ν−ν̃ )a†ae−it (δ0+ω̃)σ+

∓ 1
2 eit (ν−ν̃ )a†aD†(2α)e−it (ν−ν̃ )a†aeit (δ0+ω̃)σ− (B5)

which for α = iη/2, D(iη) = eiη(a†+a), and therefore

�σ+�† = − 1
2σz ± 1

2 eiη[a(t )+a†(t )]e−it (δ0+ω̃)σ±

∓ 1
2 e−iη[a(t )+a†(t )]eit (δ0+ω̃)σ− (B6)

with a(t ) = ae−it (ν−ν̃ ). The previous expression corresponds
to Eq. (24) given in the main text.

In a straightforward manner, for F̃ = σ− the correspond-
ing jump operator in the frame of HG follows from F =
�†F̃�:

�†F̃� = U †
a,0TUb,0σ

−U †
b,0T †Ua,0 (B7)

= e−itω̃U †
a,0T σ−T †Ua,0 (B8)

= 1
2 D(2α)e−itω̃U †

a,0[σz − iσy]Ua,0 (B9)

= 1
2 D(2α)e−it (ω̃+δ0 )[σz − iσy]. (B10)

Since e−it (ω̃+δ0 ) is just a global phase, it can be dropped out,
so a dissipative channel F = 1

2 D(iη)[σz − iσy] in HG leads to
spontaneous emission in Hn.

APPENDIX C: DRESSED-BASIS TREATMENT OF
DISSIPATION

As acknowledged in Ref. [74], the master equation consid-
ering independent channels of dissipation leads into nonphysi-
cal results as the coupling constant becomes comparable to the
bosonic frequency. Instead, one needs to describe dissipation
in the dressed basis of the spin mode. In the case of a time
independent HG = �

k Ek|k〉〈k| where |k〉 denotes here the kth
eigenstate of the spin-boson system. Then, the correct master
equation at zero temperature involving spin dephasing and
boson leakage results in

L[ρG] = DA[ρG] +
�

j,k �= j

γsd, jkDBjk [ρG]

+
�

j,k> j

γbl, jkDBjk [ρG], (C1)

with the operators A = �
k

√
γsd(0)〈k|σz|k〉|k〉〈k| and Bjk =

| j〉〈k| with γsd, jk = γsd(Ek − Ej )|〈 j|σz|k〉|2 and γbl, jk =
γbl(Ek − Ej )|〈 j|(a + a†)|k〉|2, where the rates are now eval-
uated at different frequencies. Performing the transformation
described in Sec. II, one would find the correct master equa-
tion describing the dynamics of the simulated multiboson and
nonlinear models. In particular, one would have to transform

FIG. 6. Dissipative dynamics when D̃sd[ρ] (top) and D̃se[ρ] (bot-
tom) can not be approximated by the simple equations (23) and
(25), respectively. In (a) we show the time evolution of 〈a†a〉1JCM,η

(lines) and its reconstruction using ρG (points), when D̃sd[ρ] is taken
as in Eq. (22) (solid lines) or approximated as in Eq. (23) (dashed
lines), for different parameters, namely, η = 0.5 with γsd = γbl/2 =
5ν̃ (blue) and η = 0.4 and 0.8 with γsd = 2γbl = ν̃ (red and green).
The rest of the parameters are ω̃ = ν̃ = f1(0)�0/2 with ν̃ = 10−2ν,
and initial state |ψ (0)〉G = |0〉|+〉. With the same format, in (b) we
show the infidelity 1 − F between the ρG and ρ1JCM,η considering
D̃sd[ρ] as in Eq. (22) or (23). The same is plotted in the bottom panels
(c) and (d), but with D̃se[ρ] and γse instead of D̃sd[ρ] and γsd and
|ψ (0)〉G = |0〉|e〉.

032303-11



R. PUEBLA et al. PHYSICAL REVIEW A 99, 032303 (2019)

the operators A and Bjk as �A�† and �Bjk�
†. Recall that since

A and Bjk depend on the dressed basis |k〉 of the spin and
bosonic modes, they need to be computed numerically.

APPENDIX D: BREAKDOWN OF LAMB-DICKE REGIME
IN DISSIPATIVE PROCESSES

In this Appendix we provide additional numerical results to
illustrate that, under certain circumstances, some dissipative
processes, such as spin dephasing and spontaneous emission
and absorption, cannot be approximated as D̃sd[ρ] ≈ D̃σx [ρ]
[Eqs. (23), and (25), respectively], as explained in the main
text. Indeed, when the Lamb-Dicke condition breaks down,
a correct description of dissipation demands the full trans-
formed dissipators as given in Eqs. (22) and (24). In order
to illustrate this, we choose HG such that it allows to realize
H1JCM,η, although the rates are taken to be much larger than
the frequencies of H1JCM,η so that the dynamics is essentially
governed by D̃sd or D̃se. Note that we take H1JCM,η, which
together with the large dissipation rates, allows us to analyze
better how the approximations performed in the dissipative

part spoil the correct functioning of the correspondence be-
tween these models.

To inspect the effect of spin dephasing, we consider
|ψ (0)〉G = |0〉|+〉 as initial state for HG evolving under the
presence of spin dephasing and boson losses, with rates γsd

and γbl. As we show in Figs. 6(a) and 6(b), approximating
D̃sd[ρ] ≈ Dσx [ρ] fails to capture the correct equilibrium state
for η � 0.4. Indeed, upon taking into account the full D̃sd[ρ]
[Eq. (22)], the dynamics is correctly reproduced, as indicated
by the low infidelities obtained for the cases plotted in Fig. 6.
As expected, the crude approximation performed in Eq. (23)
breaks down as η increases, and thus resulting fidelities drop
significantly (e.g., F � 0.8 for η = 0.8).

In addition, we also provide results regarding the validity
of Eq. (25). We proceed as before, now choosing |ψ (0)〉G =
|0〉|e〉 as initial state. As one can observe in Figs. 6(c) and 6(d),
the breakdown of the Lamb-Dicke condition has a lesser im-
pact in D̃se[ρ] for intermediate η values (0.4 or 0.5) compared
to spin dephasing. However, for η = 0.8, a correct functioning
of the simulation crucially depends on the inclusion of higher-
order terms, such as anσ±, which are present in Eq. (24).
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