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Two highly active short broad-spectrum AMPs (14D and 69D) with unknown 
mode of action have been investigated in regards to their effect against the Gram-
negative bacteria Escherichia coli and the Gram-positive bacteria methicillin-
resistant Staphylococcus aureus (MRSA). Minimal inhibitory concentration (MIC) 
measurements using a cell density of 108 cfu/ml resulted in values between 16 
and 32 µg/ml. Time-kill experiments using 108 cfu/ml revealed complete killing, 
except for 69D in combination with MRSA, where bacterial load was reduced a 
million times. Small-angle X-ray scattering of biological samples (BioSAXS) at 108 
cfu/ml was applied to investigate the ultrastructural changes in E. coli and MRSA in 
response to these two broad-spectrum AMPs. In addition, electron microscopy (EM) 
was performed to visualize the treated and non-treated bacteria. As expected, the 
scattering curves generated using BioSAXS show the ultrastructure of the Gram-
positive and Gram-negative bacteria to be very different (BioSAXS is not susceptible 
to the outer shape). After treatment with either peptide, the scattering curves of E. 
coli and MRSA cells are much more alike. Whereas in EM, it is notoriously difficult to 
observe changes for spherical Gram-positives; the BioSAXS results are superior and 
reveal strongly similar effects for both peptides induced in Gram-positive as well as 
Gram-negative bacteria. Given the high-throughput possibility and robust statistics, 
BioSAXS can support and speed up mode of action research in AMPs and other 
antimicrobial compounds, making a contribution toward the development of urgently 
needed drugs against resistant bacteria.
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INTRODUCTION

�e World Health Organization (WHO) has classi�ed 
antimicrobial resistance as one of the biggest threats to global 
health and food security. �e extent of the threat requires action 
not only from researchers, but from governments and society. For 
example, antibiotics are misused in ton scale in agriculture for 
growth promotion or prevention of disease, but actions are taken 
to reduce this�for example, the European Union has banned the 
use of antibiotics for growth promotion in 2006. Currently, about 
700,000 to 1,000,000 people die worldwide each year because 
of antibiotic-resistant infections. In the O�Neil Report, it is 
estimated that, by 2050, the numbers increase to 10,000,000 more 
people than are currently killed by cancer (https://amr-review.
org/Publications.html). In this report, it was estimated that the 
additional healthcare cost worldwide for antibiotic-resistant 
infections will reach US$100 trillion. �e situation might even 
intensify since the number of newly developed antibiotics is 
steadily declining. FDA approval of new antimicrobials has 
dropped to three new molecular entities (NME) in this decade.

Antimicrobial peptides (AMPs) are potential novel antimicrobial 
drugs with some much-desired features, including a low chance 
of developing drug resistance and fast acting, broad-spectrum 
activity including multi-drug resistant bacteria. So far, only a 
few have been investigated in clinical studies (Czaplewski et�al., 
2016; Greber and Dawgul, 2017). �ere are more than 3,000 
natural and arti�cial peptides described (http://aps.unmc.edu/
AP/main.php); the vast majority is cationic. Although they have 
an enormous variety of sequences and structures, they share 
certain common features. Cationic antimicrobial peptides are 
structurally diverse, typically between 5 and 50 amino acids 
in length with at least one excess positive charge due to lysine 
and arginine residues and contain hydrophobic amino acids. In 
the last decade, it became increasingly clear that antimicrobial 
peptides (natural and arti�cial) have very di�erent modes of 
action, and to make it even more complex, they may have not 
only one but multiple targets (Le et al., 2017) (Brogden, 2005; 
López-PØrez et al., 2017). Some AMPs are shown to solely act 
on the membrane; however, several studies have demonstrated 
that peptides can bind and interrupt the processes of intracellular 
components, for example, bind to ATP and inhibit ATP-
dependent enzymes (Ahmad and Laughlin, 2010; Hilpert et al., 
2010) and have the ability to bind DNA (Sim et al., 2017) and 
inhibit protein synthesis (Mardirossian et al., 2018). For drug 
development in the �eld of antimicrobials, it is important to focus 
on compounds with di�erent modes of action as compared with 
conventional antibiotics; otherwise, cross-resistance may occur 
very fast. With about 3,000 natural peptides available, selecting 
the right lead candidate is therefore important. In addition, 
for preclinical drug development, determination of the mode 
of action is an important part in order to move toward clinical 
trials. We have developed a new high-throughput method that 
can support the selection of new natural or arti�cial peptides and 
give �rst impression of possible mode of action (Von Gundlach 
et al., 2016a). In this study, we present for the �rst time that this 
method can be applied for Gram-positive and Gram-negative 
bacteria. In addition, we present for the �rst time that two 

broad-spectrum peptides induce very similar changes in both 
Gram-positive and Gram-negative bacteria. We have used two 
broad-spectrum peptides, peptide 69 and peptide 14. Peptide 
69 is a direct optimized linear variant of the natural-occurring 
bovine peptide bactenecin (Hilpert et al., 2005). Peptide 14 is 
an in silico�optimized peptide based on di�erent natural and 
arti�cial peptides (Ramón-García et al., 2013).

�e overall peptide drug market for many di�erent diseases 
and diagnostics is steadily growing; about 60 peptide drugs were 
approved, with 150 in active clinical trials; and it expected to 
further grow from US$14.1 billion in 2011 to US$25.4 billion 
in 2018 (Fosgerau and Ho�mann, 2015; Lau and Dunn, 2018). 
Demands for peptide drugs have led to (A) improved scale-up 
technologies, (B) new large-scale GMP certi�ed manufacturing 
facilities, and (C) innovative drug administration regimes. �ese 
recent developments in peptide drugs have coincided with an 
increasing cost of novel non-peptide antibiotics, meaning that 
AMPs might soon become a viable economic option for urgently 
needed new antimicrobial drugs.

Small-angle X-ray scattering of biological samples (BioSAXS)�
for example, proteins, is a powerful method for the characterization 
of both ordered and disordered structures in biological samples 
that provides information about the sizes and shapes ranging 
from a few kDa to GDa (Kikhney and Svergun, 2015; Chen 
et�al., 2018). In the last decades, X-ray technology has matured 
to allow the study of protein crystals and proteins in solution 
down to atomic resolution. �e short wavelength of the X-rays 
(<1¯) is the key for the success as it enables the probing of 
small structures. �ird-generation synchrotron facilities and the 
advent of di�raction limited fourth-generation storage rings in 
the near future will provide exceptional brilliance that enables 
rapid data acquisition (Schroer et al., 2018). In conjunction 
with the latest generation of single photon-counting detectors 
and autosampler-based sample delivery systems, hundreds of 
samples can be measured per hour (Hajizadeh et al., 2018; Pernot 
et al., 2018).

Four years ago, we hypothesized that BioSAXS could be useful 
to discriminate the mode of action of antimicrobial compounds. 
Five conventional antibiotics with di�erent modes of action, 
polymyxin B, and an antimicrobial peptide consisting of L-amino 
acids were selected. Using BioSAXS, changes in structures on 
the length scale between 3 nm and 120 nm within bacteria as 
consequence of treatment with antimicrobial substances were 
monitored. For this study, a Gram-negative bacteria (E. coli) 
was used and for comparison transmission EM was performed 
(Von Gundlach et al., 2016a). In conclusion, subtle structural 
intracellular rearrangements in the bacteria can accurately be 
probed across large bacterial populations (hundreds of thousands 
of bacteria) within seconds (Von Gundlach et al., 2016a, Von 
Gundlach et al., 2016b). �us, in case of E. coli, novel compounds 
with unknown modes of action can be grouped according to 
their e�ect on the bacterial morphology, and new responses can 
be identi�ed.

�e aims of this study are (1) demonstrating that BioSAXS 
can be used for Gram-positive bacteria and (2) a comparison of 
modes of action of two antimicrobial peptides against Gram-
positive and Gram-negative bacteria. An application of BioSAXS 
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for Gram-positive bacteria would widen the usefulness of the 
method, especially given the harder to interpret EM images 
for spherical Gram-positive bacteria. �e two selected peptides 
show broad-spectrum activity, and we wanted to compare their 
mode of action when killing Gram-positive and Gram-negative 
bacteria. Do the peptides have one mode of action for both 
classes of bacteria or one mode of action for each class? Since this 
is the �rst study of its kind, variability between treatments was 
kept to a minimum. �ere could be di�erent expression level or 
di�erent kinds of proteases that might lead to change in peptide 
concentration, and various fragments might possess di�erent 
activities. In order to achieve proteolytic stability in high bacteria 
numbers, stereoisomers were used. D-peptide forms (14D and 
69D) also showed broad-spectrum activity, and the time-kill 
experiments using the D-peptides demonstrated a fast-acting 
mode of action even with a high number of bacteria present.

MATERIALS AND METHODS

Bacterial Strains
Bacterial strains used for antimicrobial activity testing in this project 
were methicillin-resistant Staphylococcus aureus (S. aureus) HO 
5096 0412 (a neonatal infection isolate, isolated in Ipswich, England 
in 2005); a methicillin-sensitive S. aureus (ATCC 29213); Escherichia 
coli (E. coli, UB1005, F-, LAM-, gyrA37, relA1, spoT1, metB1, 
LAMR); E. coli (ATCC 25922); E. coli (68610Y); a clinical isolate 
from St. George�s University Hospitals NHS Foundation Trust, 
London, UK, resistant to gentamicin, cipro�oxacin, and ce�azidime, 
obtained from Timothy Planche; Enterococcus faecalis (E. faecalis 
ATCC 29212); a clinical isolate of Staphylococcus epidermidis (S. 
epidermidis) obtained from Dr. Robert E.W. Hancock (Department 
of Microbiology and Immunology, University of British Columbia); 
and vancomycin-resistant E. faecalis (NCTC 12203).

Peptides
Antimicrobial peptides were synthesized by automated solid-
phase peptide synthesis (SPPS) on a MultiPep RSI Peptide 
Synthesizer (INTAVIS, Tuebingen, Germany) using the 9-�uorenyl-
methoxycarbonyl-tert-butyl (Fmoc/tBu) strategy. Reactive side 
chains were protected by tBu (Tyr and Asp), trityl (Trt, for Asn, 
Cys, Gln, and His), 2,2,4,6,7 pentamethyldihydrobenzofuran-5-
sulfonyl (Pbf, for Arg), and tert-butoxycarbonyl (Boc, for Lys and 
Trp). For automated SPPS, four equivalents of Fmoc amino acids 
(Bachem, Bubendorf, Switzerland) were coupled on TentaGelfi 

HL RAM resin (25-�mol scale, loading 0.3�0.4 mmol/g; Rapp 
Polymere, Tuebingen, Germany) a�er in situ activation with four 
equivalents of N,N,N�,N�-tetramethyl-O-(1H-benzotriazol-1-yl)
uronium hexa�uorophosphate (HBTU; Carbosynth, Berkshire, 
United Kingdom) and eight equivalents of N-methylmorpholine 
(NMM, Sigma, Dorset, United Kingdom). A�er double-coupling 
procedure (2x30 min), the Fmoc group was cleaved using 20% 
(v/v) piperidine (�ermo Fisher Acros Organics, Geel, Belgium) 
in dimethylformamide (DMF, Jencons-VWR, Leicestershire, 
United Kingdom). Peptide amides were cleaved from the resin 
with 95% (v/v) aqueous tri�uoroacetic acid solution (TFA, Fisher 
Scienti�c, Loughborough, United Kingdom) containing 5% (v/v) 

triisopropylsilane (TIPS, �ermo Fisher Acros Organics, Geel, 
Belgium)/water (1:1) scavenger mixture within 3 h. Cleaved peptides 
were precipitated from ice-cold methyl tert-butyl ether (MTBE; 
�ermo Fisher Acros Organics, Geel, Belgium). A�er washing 
and collection by centrifugation, crude peptides were dissolved 
in 20% (v/v) acetonitrile (ACN, Jencons-VWR, Leicestershire, 
United Kingdom)/80% (v/v) water containing 1% (v/v) TFA to a 
concentration of 15 mg/ml and analyzed by analytical reversed-
phase (RP) HPLC on a Shim-pack VP-ODS (120 ¯, 150x4.6 mm, 
Shimadzu, Milton Keynes, United Kingdom) using a Shimadzu 
LC2010AHT system. �e binary solvent system contained 0.1% 
(v/v) TFA in H2O (solvent A) and 0.1% (v/v) TFA in acetonitrile 
(solvent B). �e identity was veri�ed by a liquid chromatography 
electrospray ionization mass spectrometry (LC-ESI-MS) Shimadzu 
LC2020 system equipped with a Jupiter 4� Proteo C18 column 
(90�¯, 250x4.6 mm, Phenomenex, Cheshire, United Kingdom). �e 
binary solvent system contained 0.01% (v/v) TFA in H2O (solvent A) 
and 0.01% (v/v) TFA in acetonitrile (solvent B).

Crude peptides were puri�ed to homogeneity of >92% by 
preparative RP HPLC on a Shimadzu LC2020 system equipped 
with a Jupiter 10� Proteo C18 column (90 ¯, 250x21.2 mm, 
Phenomenex) using a linear gradient system containing 0.01% 
(v/v) TFA in H2O (solvent A) and 0.01% (v/v) TFA in acetonitrile 
(solvent B). Pure products were �nally characterized by analytical 
reverse phase high performance liquid chromatography 
(RP-HPLC) and liquid chromatography�mass spectrometry 
(LC-MS).

Bacteriological Media and  
Culture Conditions
Mueller Hinton broth (MHb) (Merck) was used for all bacterial 
cultures. Media were prepared and sterilized according to the 
manufacturer�s� instructions. Cultures were incubated at 37°C 
for 18�20 h with aeration, and cultures on solid media were 
incubated at 37°C for 18�24 h.

Minimal Inhibitory Concentration 
Determination
Minimum inhibitory concentrations (MIC) were determined using 
a broth microdilution assay as previously described (Wiegand et�al., 
2008). Bacteria from an overnight culture grown at 37°C were 
diluted in fresh MHb to achieve a concentration of 1 x 106 CFU/
ml. A bacterial suspension (100 µl) was added to wells in a 96-well 
polypropylene microtiter plate that had been preloaded with serial 
dilutions of antimicrobial peptides in MHb (100 µl) giving a �nal 
bacterial concentration of 5 x 105 CFU/ml. Microtiter plates were 
incubated at 37°C for 18�20 h before the MIC was determined as the 
lowest concentration of antimicrobial able to inhibit visible growth.

To determine the MIC toward 108 CFU/ml (MIC10^8), which 
was the bacterial concentration used in BioSAXS experiments, 
bacteria from an overnight culture were diluted 1:100 in fresh MHb 
and incubated in a shaking incubator at 37°C and 250 RPM until 
an OD600 of 0.25 was reached, which equated to approximately 2 x 
108 logarithmically growing CFU/ml. �e MIC was then performed 
as above without a further dilution of the culture. A�er 18�20-h 
incubations, 10 µl of a 500 µM resazurin solution (Sigma�Aldrich) 
were added to each well of the microtiter plate, and the cell viability 
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was determined a�er a further 1-h incubation by the colorimetric 
reaction that occurs in the presence of viable cells.

Time-Kill Curves
Overnight cultures of MRSA and E. coli UB1005 were diluted 
1:100 in MHb and placed in a shaking incubator at 37°C until 
an OD600 of 0.25 was reached. �e culture was then diluted in 
MHb to achieve a concentration of ~1 x 108 CFU/ml; this culture 
was split into 1.5-ml tubes. Antimicrobial peptides were added at 
concentrations of 2 x MIC, and sterile water was used as a negative 
control. Samples were then placed in a shaking incubator set to 
37°C. A�er 0, 10, 20, 40, 60, and 240 min, 20 µl of the sample 
was removed and 10-fold serial dilutions in 10-mM Tris bu�er 
were performed to 10�6. From each of the dilutions, 5 x 5 µl was 
plated onto Mueller Hinton agar. Agar plates were placed in a 
37°C incubator, and colony-forming units (CFUs) were counted 
a�er 24-h incubation.

Sample Preparation for Biosaxs
A 300-µl aliquot of an overnight culture of MRSA or E. coli 
UB1005 culture was diluted 1:100 in MHb and placed in 
a shaking incubator set to 37°C until an OD600 of 0.25 was 
reached. �e cultures were then aliquoted into several 2-ml 
clear plastic vials, and doses of peptide were added to achieve 
a �nal concentration 2 x MIC10^8 (MIC determined for 108 
CFU/ml). Additional vials containing culture, but no drug, 
were included as negative controls. �e vials were placed in a 
shaking incubator (250 rpm) at 37°C and incubated for 40 min. 
Each sample was then washed twice by centrifugation (SciQuip 
Ltd., UK) at 10,000 RPM for 5 min. Each wash involved the 
supernatant being removed and pellet resuspended in 1 ml 
0.1 M PIPES bu�er (pH 7). Samples were then centrifuged for 
a third time, and the pellet was resuspended in 1 ml of 2.5% 
glutaraldehyde v/v in PIPES bu�er. �e samples were then 
shaken at room temperature for 1 h and then washed three 
times in PBS bu�er; at the end of the �nal washing, step the 
pellet was resuspended in 100 µl of PBS. All samples were then 
refrigerated at 5°C before analysis.

Small-Angle X-Ray Scattering
The small-angle scattering experiments were performed 
at the BioSAXS beamline P12 at PETRA III (EMBL/DESY) 
in Hamburg, Germany as in previous experiments. A 
photon flux of 5 x 1012 s�1 focused to a spot size of 0.2 mm x 
0.1� mm (horizontal x vertical) and the resulting diffraction 
pattern were recorded with a Pilatus 2M detector (Dectris, 
Switzerland). The sample (20 µl) was delivered into a cooled 
glass capillary (20°C) by an automated sample robot. For each 
sample, 20 diffraction patterns were recorded with an exposure 
time of 0.05 s. Before and after every sample, the background 
was measured. After angular integration to obtain one-
dimensional scattering curves, the background subtraction 
was performed. To avoid introduction of artifacts by radiation 
damage, curves collected in subsequent illuminations are 
compared by a standard F-test (Franke et al., 2012). Only 
curves collected before the occurrence of radiation damage 

were further processed. This primary data processing steps 
were performed using the automated data pipeline SASFLOW.

Data Evaluation
Scattering data was analyzed using the open-source data mining 
MATLABfi Toolbox Gait-CAD and its successor SciXMiner, 
using the �Peptide Extension� tool (Mikut, 2010; Mikut et al., 
2017). At �rst, the �rst data points a�icted by beamstop were 
removed. To compensate for the experimental variation of the 
cell density, the data was normalized to the initial region (0.04 
to 0.05 nm�1). In order to be consistent with our former data, 
we decided to perform a PCA even with fewer data from these 
experiments. For the principal component analysis (PCA), 
the log of the scattering data was used and the range had to 
be restricted (0.055 to 0.2869 nm�1) due to low intensity of 
several scattering curves. �e PCA is an easy visualization that 
preserves the main di�erences of the investigated scattering 
curves. �e sample points are projected to a lower dimensional 
parameter space, built by so-called principal components. �ese 
principal components are orthogonal to each other and remove 
the redundancies caused by correlations of the sample points. 
�ey are computed by �nding the eigenvalues of the covariance 
matrix of the 94 data points per scattering curve. �e SAXS 
data were measured in the q-range of 0.02 and 4.8 nm�1. �e 
94 data points are contained in the q-range between 0.055 and 
0.2869�nm�1 which was used in PCA analysis (Figure 3). �e �rst 
two principal components were found to describe the variations 
due to antibiotic treatments. For reasons of better visualization, 
a centered PCA starting from the mean of all scattering curves 
Im(q) was used: I(q) = Im(q)+A•PC1(q)+B•PC2(q). Consequently, 
each scattering curve can be approximated by two linear 
coe�cients (A, B). To provide evidence of reproducibility 
between two measurements, we measured duplicates of a subset 
of samples. �e mean of the two measurements was used for 
further analysis. �e experimental error estimate given was 
calculated as average standard deviation of all repeats.

Electron Microscopy
MRSA and E. coli, untreated and treated with 14D and 69D for 
40 min, were subjected to an ethanol series of 30, 50, 70, and 
95% and three changes of 100% for at least an hour. �e samples 
were transferred to a 1:2 mixture of ethanol to LR White�Hard 
Grade (London Resin Company, UK) resin then a 2:1 mixture of 
ethanol to resin and �nally 100% resin overnight at 4°C. �e next 
morning, the resin was removed and replaced with fresh resin, 
and later that day, the samples were placed in size four gelatine 
moulds (Agar Scienti�c), �lled with fresh resin, and polymerized 
overnight in an oven at 60°C. Two-micrometer thick sections 
were cut which contained the bacteria, and these were dried 
in drops of 10% ethanol on glass microscope slides. �ey were 
stained with AMB stain (azur II and methylene blue, both Sigma-
Aldrich Ltd., UK) and photographed using a Leica DM6000B 
microscope. Ultrathin 60�80-nm sections were then cut on 
a Reichert-Jung Ultracut E Ultramicrotome with a Diatome 
Ultra 45 diamond knife and collected on Gilder GS2X0.5 3.05-
mm diameter nickel slot grids (Gilder Grids, Grantham, UK) 
�oat-coated with Butvar B98 polymer (Agar Scienti�c) �lms. 
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All sections were double-stained with uranyl acetate (Agar 
Scienti�c) and Reynold�s lead citrate (TAAB Laboratories 
Equipment Ltd., Aldermaston, UK) and observed using a JEOL 
JEM1010 Transmission Electron Microscope (JEOL Ltd., Tokyo, 
Japan) at 80 kV. �e resulting images were photographed using 
Carestream 4489 Electron Microscope Film (Agar Scienti�c, 
UK) developed in Kodak D-19 developer for 4 min at 20°C �xed, 
washed, and dried according to the manufacturer�s instructions. 
�e negatives were scanned with an Epson Perfection V800 �lm 
scanner and converted to positive images. 

RESULTS

For this experiment, two broad-spectrum short antimicrobial 
peptides were selected, which were previously described (Hilpert 
et al., 2005; Ramón-García et al., 2013) (see Figure 1).

Peptide 69L (RRWRIVVIRVRR-CONH2) is an all-L 
amino acid peptide comprising of 12 amino acids. Peptide 
69L is an optimized variant of bactenecin (RLCRIVVIRVCR-
CONH2), which is produced in bovine neutrophils as a 
155-mer precursor polypeptide, containing a pro-region 
responsible for translocation of the peptide into granules, 
in which the mature bactenecin concentration is estimated 
to reach ~12mg/ml (Romeo et al., 1988; Storici et al., 1992). 
�e peptide demonstrated modest antibacterial activities 

against the human Gram-negative E. coli and Gram-positive 
S. aureus pathogens (Gallis et al., 1989�1990; Romeo et� al., 
1988; Wu and Hancock, 1999). Linear variants of bactenecin 
were synthesized, and especially Bac2A (RLARIVVIRVAR-
CONH2) showed promises for further development since it 
demonstrated antimicrobial activity and very low hemolytic 
activity (Wu and Hancock, 1999). �e peptide Bac2A was 
further optimized by creating a substitutional analysis using 
the SPOT synthesis method (Frank, 2002; Hilpert et al., 
2005; Hilpert et al., 2007), creating the peptide 69L. Peptide 
14L (WKIVFWWRR-CONH2) is an all-L amino acid peptide 
comprising of nine amino acids and was predicted in silico based 
on di�erent natural and arti�cial peptides (Ramón-García et 
al., 2013). Both peptides are amidated at their C-terminus. MIC 
values for these peptides against a series of human pathogens 
are given in Table 1. �at includes methicillin-sensitive and 
methicillin-resistant S. aureus (Gram-positive), vancomycin-
sensitive (ATCC 29212) and vancomycin-resistant (NCTC 
12203) E. faecalis (Gram-positive), Staphylococcus epidermitis 
(Gram-positive), and three E. coli (Gram-negative) strains�a 
recommended reference strain for antibiotic susceptibility 
testing (ATCC 25922), a typical laboratory strain (UB 1005), 
and a highly resistant clinical isolate (68610Y). Both L-peptides 
show a broad-spectrum activity against these strains. �ere 
is no di�erence between the resistant and sensitive variants, 

FIGURE 1 | Schematic representation of the peptides 14L and 69L using the program PEPDRAW (http://pepdraw.com/).
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showing that the enquired mechanism of resistance is not 
e�ective against these antimicrobial peptides, indicating a 
di�erent mode of action as the clinically used antibiotics. Since 
the BioSAXS experiment requires 1,000 times higher bacterial 
concentrations than are used in classical MIC tests, we decided 
for this particular experiment to use the all-D peptides in order 
to avoid problems with fast proteolytic attack by bacterial 
proteases. �ese all-D peptides are called 14D and 69D. �e 
transformation of an all L-peptide into an all D-peptide did 
not a�ect the MIC, indicating the same mode of action is still 
conserved. Since the activity was very similar against these 
various strains, and in order to keep the comparison simple, 
one Gram-positive (MRSA) and one Gram-negative bacteria 
(E. coli UB1005) were selected for further investigation.

For a MIC determination, an inoculum of about 2�5x105 
bacterial cells is used; however, for the BioSAXS, a bacterial 
density of about 1x108 cells is required, and in consequence, 
more peptide molecules are needed in order to kill or inhibit 
bacterial growth. �e MIC for both peptides with an inoculum 
size of 108 was determined with 26 µg/ml for 14D and 32 
µg/ml for 69D against E. coli, and 16 µg/ml for 14D and 32 
µg/ml 69D against MRSA. For the time-kill assay, twice the 
MIC10^8 concentration was used. Both the peptides were 
able to kill 1x108 bacterial cells completely, except for 69D 
against MRSA, where the bacterial load was reduced a million 
times (see Figure 2). In case of MRSA, peptide 14D killed all 
bacteria a�er 40 min, indicating an �end point� to the mode 
of action. In consequence, 40 min was used as a time point 
for BioSAXS as well as EM. �e BioSAXS method will detect 
all ultra-structural changes, stemming directly from the action 
of the antimicrobial compound as well as from the bacterial 
response to the compound. For both peptides, a signi�cant 
killing occurs in the �rst 10 min, and structural changes 
induced by the bacteria might be still minimal. �erefore, 10 
min of incubation time was used as an additional time point 
for the BioSAXS experiment. In the BioSAXS experiment, 
hundreds of thousands of bacteria can accurately be probed 
across large bacterial populations resulting in a robust 
statistic. Independent samples were used to perform double 
measurements to exclude artifacts. �e sample size for each 
condition was n = 2.

Using two times the MIC10^8 (required to inhibit the growth 
of 1 x 108 CFU/ml) and 108 cells, peptides 14D and 69D were 
incubated with the bacteria, and a�er 10 and 40 min, samples 

were taken to be processed for BioSAXS measurement and at 
40 min for EM (see Materials and Methods). �e results of the 
scattering are shown in Figure 3.

With respect to the size range covered by the small-angle X-ray 
scattering experiments, untreated cells of E. coli and MRSA di�er 
mainly between a size range of 20 to 60 nm, with higher contribution 
from the Gram-negative cell. �e measurement is only susceptible 
to the internal structure and not the outer shape of the bacteria. 
A�er treatment with either peptide, the scattering curves of E. coli 
and MRSA cells are much more alike�smoother with a constant 
slope. In order to better visualize the di�erences in the scattering 

TABLE 1 | Minimal inhibitory concentration (MIC) in µg/ml for four peptides against several Gram-positive and Gram-negative bacteria. All MICs were performed 
in Mueller–Hinton bouillon at least three times, and data are stated as the modal value. MRSA stands for methicillin-resistant Staphylococcus aureus and VRE for 
vancomycin-resistant Enterococcus faecalis.

Peptide/bacteria Staphylococcus 
aureus
ATCC
29213

MRSA Escherichia coli
ATCC
25922

Escherichia coli
UB1005

Escherichia coli
68610Y

VRE
NCTC
12203

Enterococcus 
faecalis
ATCC
29212

Staphylococcus 
epidermidis

T14L 0.5 0.5 2 4 2 1 1 <0.25
T14D 1 1 2 2 2 1 1 <0.25
T69L 2 2 2 2 2 2 4 0.5
T69D 2 1 2 2 2 2 2 0.5

FIGURE 2 | Time-kill curves of (A) MRSA and (B) E. coli following incubation 
with the antimicrobial peptides 14D and 69D in Mueller Hinton broth. 
Peptides were used at twice the MIC required to inhibit the growth of 1 x 108 
CFU/ml for each organism.
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curves, a principle component analysis was performed using the 
curve section shown in Figure 3. �e result of this analysis and the 
EM images of E. coli and MRSA at 40 min are presented in Figure 4.

At the PCA plot, untreated MRSA (le� side and middle of 
the plot) occupies a very di�erent space than untreated E. coli 
(right side, upper part) with PC 1 as the main discriminator. 
Already a�er 10 min of treatment, data from both MRSA 
and E. coli are more similar. Especially MRSA data is very 
similar to each other and does only change slightly when 
comparing 10 and 40 min. For E. coli, where a slower killing 
kinetic was observed, changes between 10 and 40 min are 
more pronounced. For more information, see Discussion. 
�e transmission electron microscopy (TEM) images of E. 
coli a�er 40 min show a clear di�erence between treated and 
untreated cells. In particular, the cytosol is less structured, 
and the nucleoid is collapsed into the center and enlarged (see 
Discussion). TEM images of MRSA also show di�erences in the 
structure of the cytosol.

DISCUSSION

Antimicrobial peptides are potential novel antimicrobial drugs 
with some much-desired features�for example, a low chance 
for the development of resistance, fast-acting, broad-spectrum 
of activity and activity against multidrug resistant bacteria. 
�ere is a large variety of structures and sequences of AMPs 
and, in recent years, it has become clear that there are also a 
variety of targets (Le et al., 2017). Today, there is a huge body 

of literature regarding AMPs; however, there is only few articles 
published on target validation and pharmacological and safety 
studies (Schmitt et al., 2010; Czaplewski et al., 2016; Greber and 
Dawgul, 2017; Mardirossian et al., 2018). �is contributes to 
the fact that only a few AMPs are enrolled in clinical studies. 
We have already shown that BioSAXS can support research on 
antimicrobials to select compounds with possible new modes of 
action and therefore select compounds with alternative mode 
compared with mechanisms of action of failing conventional 
antibiotics (Von Gundlach et al., 2016a). In this study, we 
compared the e�ects on Gram-positive and Gram-negative 
bacteria to further understand the broad-spectrum activity of 
two antimicrobial peptides.

�e e�ect of an antimicrobial compound on bacteria can be 
quite complex. �e compound will act on their target(s) and 
induces changes at this site which can lead to secondary e�ects 
at the same, or at di�erent sites. In case the target(s) are inside 
the bacteria, the compounds will cross the outer envelopment 
and the membrane and could therefore cause additional 
changes. At the same time, the bacteria react to the compound 
and induce several stress responses and coping mechanism in 
order to survive. �e observed e�ect is consequently a mixture 
of ultrastructural changes on the bacterial level caused by direct 
and indirect e�ects of the antimicrobial compound as well as 
direct and indirect e�ects of the stress response of the bacteria. 
For each compound, these e�ects will be concentration and time-
dependent (Von Gundlach et al., 2016a).

�e BioSAXS measurements require a high bacterial 
density, and therefore, higher amounts of proteases are present 
as compared to a conventional MIC test. �e proteases could 
cleave the L-peptides into many di�erent fragments which 
may render inactive or also interact with the bacteria and 
prompt a detectable alteration in ultrastructure. To restrict 
this, the L-peptide sequences were synthesized as complete 
D-versions that will be extremely stable in the presence of 
the proteases for the time frame of the experiment. For the 
BioSAXS experiment, only the complete D-versions were used; 
therefore, MIC values and time-kill assays were performed 
using complete D-peptides.

�e EM images show that the treatment of E. coli with either 
peptide results in a separation of the cytoplasm and the nucleoid, 
which appears to be in the center of the cell. In addition, the 
cytoplasm becomes much more homogenous as compared to 
the control. Interestingly, the peptides in this study result in a 
very di�erent response compared to a peptide (RLKRWWKFL) 
described in our previous studies, indicating di�erent modes 
of action (Von Gundlach et al., 2016a). In addition, we could 
not detect any similarities, for example, damages to the cell 
wall or membrane and dramatic changes in the inside of the 
cells, typically seen with polymyxin B, a cyclic lipopeptide with 
detergent-like mode of action (Von Gundlach et al., 2016a). 
�e type of nucleoid separation observed a�er a treatment with 
peptide 14D and 69D are similar to the ribosome-acting drugs 
such as chloramphenicol or tetracycline which may indicate 
a similar target or cell response (Von Gundlach et al., 2016a). 
From studies on living cells, it is known that an inhibition of the 
peptide synthesis leads to a compaction of the bacterial nucleoid 

FIGURE 3 | Scattering data as measured at the P12 BioSAXS beamline at 
PETRA III (Hamburg, Germany) at a photon energy of 10 keV. Scattering data 
from Escherichia coli, MRSA untreated (Cont. E. coli and Cont. MRSA) and 
treated with peptides 14D and 69D (in color code) at 40 min measured in 
duplicate (shown as separate curves). The box indicates the range that was 
used to calculate the PCA.
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while an inhibition of the RNA synthesis by rifampicin expands 
the bacterial nucleoid (Chai et al., 2014). �e mechanism for 
the condensation of the nucleoid is described as the absence 
of �transertion,� the synthesis of membrane proteins in close 
proximity to the cell wall. When the protein synthesis is 
inhibited, the DNA/RNA complexes are no longer tethered to 
the cell wall which leads to a collapse of the nucleoid in the 
cell centre (Cabrera et al., 2009). Due to the spherical structure 
and high cell wall density of S. aureus, changes in the EM 
images between treated and untreated cells are harder to detect, 
although treatment with the peptides does also seem to lead to 
a more homogenous cytoplasm.

�e scattering curves generated using BioSAXS show the 
ultrastructure of the Gram-positive and Gram-negative bacteria 
to be very di�erent as expected. However, following treatment 
with both antimicrobial peptides 14D and 69D, the ultrastructure 
of the MRSA and the E. coli became more similar to each other. 
Drastic change occurs in the range of 20 to 45 nm. �e average 
protein is between 2 and 10nm (large proteins like IgG about 
10 nm), large protein complexes like ribosomes are about 
20�30nm, and compacted protein/DNA complexes are about 
30nm. �is data in conjunction with the EM also indicates that 
ribosomes can be a�ected by the treatment as well as changes in 

the nucleoid. �e ultracellular e�ect of 14D and 69D on E. coli 
is similar direction although not the same. �e SAXS data reveal 
a structural di�erence in the �rst principle component. While 
both feature a condensed nucleoid, 69D also seems to a�ect the 
cellular wall. In MRSA, both 14D and 69D initiate very similar 
changes even a�er 10 min, which remain unchanged a�er 40 
min. In E. coli, the strong morphological e�ect of the peptide 
already comes into play a�er 10 min. A�er 40 min, the alteration 
does not increase, rather reaching an equilibrium state.

In conclusion, so far, we had only shown that BioSAXS can 
be used as a method to study e�ects of antimicrobials on Gram-
negative bacteria; here, for the �rst time, we show that Gram-
positive bacteria can also be used to detect changes a�er peptide 
treatment. Whereas in EM, it is notoriously di�cult to observe 
changes for spherical Gram-positives; the BioSAXS results are 
superior and reveal strongly similar e�ects for both peptides 
induced in Gram-positive as well as Gram-negative bacteria. 
Given the high-throughput possibility and robust statistics, we 
believe that BioSAXS can support and speed up mode of action 
research in AMPs and other antimicrobial compounds, making 
a contribution toward the development of urgently needed 
drugs against MDR bacteria.

FIGURE 4 | The linear coefficients of the first two principle components discriminate morphological changes and modes of action. The color decodes the bacterial 
species, the symbol the applied treatment, and the symbol thickness the incubation time. The error estimate is calculated from duplicate measurements and found 
to be 0.24 for the coefficient of PC1 and 0.10 for the coefficient of PC2. The transmission electron micrographs at a 15,000 times magnification show MRSA left 
and Escherichia coli right hand side. Top row shows untreated cells; middle row, treatment with 14D; and lower row, treatment with 69D. Peptide treatment time 
was 40min.
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