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Abstract—Machine-learning based network intrusion detection
systems (ML-NIDS) are increasingly popular in the fight against
network attacks. In particular, promising detection results have
been demonstrated in conjunction with Software-Defined Net-
works (SDN), in which the logically centralized control plane
provides access to data from across the network. However,
research into adversarial attacks against machine learning clas-
sifiers has highlighted vulnerabilities in a number of fields.
These vulnerabilities raise concerns about the implementation
of similar classifiers in anomaly-based NIDSs within SDNs. In
this work, we investigate the viability of adversarial attacks
against classifiers in this field. We implement an anomaly-based
NIDS, Neptune, as a target platform that utilises a number of
different machine learning classifiers and traffic flow features. We
develop an adversarial test tool, Hydra, to evaluate the impact
of adversarial evasion classifier attacks against Neptune with
the goal of lowering the detection rate of malicious network
traffic. The results demonstrate that with the perturbation of
a few features, the detection accuracy of a specific SYN flood
Distributed Denial of Service (DDoS) attack by Neptune decreases
from 100% to 0% across a number of classifiers. Based on these
results, recommendations are made as to how to increase the
robustness of classifiers against the demonstrated attacks.

Index Terms—Network Security, Software-Defined Networks,
Intrusion Detection Systems, Machine Learning, Adversarial
Attacks.

I. INTRODUCTION

Networks are an essential part of modern society’s infras-
tructure and are constantly under threat from malicious attacks,
resulting in preventative measures being employed to provide
security. New technologies changing the way networks are
architected, particularly software-defined networks (SDN) and
network function virtualization (NFV), have resulted in the
implementation of new physical and software-based security
measures specific to these architectures. Research into the
deployment of network intrusion detection systems (NIDS)
within SDNs has been promising [1] . The reason for this
is that the centralised control plane within an SDN provides
support for network-wide traffic monitoring. Machine learning
(ML) is a technology that is becoming increasingly widespread
and has enabled anomaly-based network intrusion detection
based on the global network data available in the SDN. Despite
this, recent research in areas such as image classification and
malware detection have demonstrated that machine learning
classifiers can be susceptible to adversarial attacks, negatively
affecting their detection abilities.

Poisoning is defined as corruption of the training data
of the classifier by an adversary, consequently reducing the

likelihood of detection. Overstimulaton, as theorised in [2],
bombards the classifier with benign data (network traffic), to
overwhelm it, which results in misclassifications. This research
focuses on the evasion classifier attack. An evasion attack
allows attackers to evade detection by making small pertur-
bations to observed features. These attacks are particularly
important within a SDN setting, as, if successful, they would
allow attackers to break or circumvent the NIDS. As ML
classifiers become the default method of implementing NIDSs,
the objective of this work is to bring to light the vulnerabilities
within such security systems in SDNs.

For this research, Neptune is developed as a target NIDS
platform. Neptune is used to determine the viability of evasion
attacks against ML classifiers within a NIDS by performing
classification on flow statistics between devices. This applica-
tion implements traffic flow feature extraction and a selection
of classification algorithms (Logistic Regression (LR), Ran-
dom Forest (RF), Support Vector Machine (SVM), and K-
Nearest Neighbours (KNN)).

An adversarial testing tool named Hydra has been developed
to analyse the impact of evasion techniques on the accuracy of
detecting SYN floods with Neptune. A SYN flood is a type of
Distributed Denial of Service (DDoS) attack in which initial
connection request (SYN) packets are sent to overwhelm all
available ports on a target (victim) so that it is unavailable to
legitimate traffic. Our attacks are created and performed with
the same real-world capabilities of a malicious user i.e. with
no knowledge of the classifier or system, operating from a
node within a network.

The remainder of the paper is organised as follows. Section
II provides a systematic review of relevant literature and iden-
tifies the gap in research that is addressed in this work. Section
III introduces the NIDS, Neptune, with Section IV providing
an insight into the performance of this system. Section V
explains the adversarial attacks targeting Neptune, and Section
VI introduces the Hydra test tool and presents an analysis of
the test results. In Section VII, we provide recommendations
to address the demonstrated NIDS weaknesses. Section VIII
concludes the article.

II. LITERATURE REVIEW

Research into adversarial attacks against machine learning
classifiers is not a new research area. Vulnerabilities have
been documented in a number of different fields, most notably
in ML malware classification, image classification and email
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spam detection [3]–[10]. An adversarial attack generator [11]
has been developed to probe for vulnerabilities in image clas-
sifiers. With respect to IDSs, Corona et al. [2] present a survey
on adversarial attacks, and potential defensive techniques have
been discussed in [2], [4], [6]. In this work, we focus on
vulnerabilities and defensive strategies in ML classifiers within
SDN NIDSs.

ML has become prominent in the detection of android mal-
ware applications. Abaid et al. [8] demonstrated the vulnerabil-
ity of these ML classifiers against adversarial evasion attacks.
A systematic approach of generating an adversarial evasion
attack with different levels of adversarial knowledge of the
classifier is used to test the ability to avoid the detection of a
malicious application. The results demonstrate that regardless
of the level of attacker knowledge, there is potential to render
linear classifiers and most non-linear classifiers redundant. It
was proven that even a blind adversary was able to lower the
detection rate of linear classifiers from 100% to 12%.

The introduction of ML image classification into safety-
critical systems such as autonomous cars, and facial recog-
nition for access control purposes has also sparked concern
about potential vulnerabilities of these classifiers. Studies have
proven the viability of poisoning and evasion attacks against
image classification [3], [4]. In [4], Goodfellow et al. provide
an example of how an adversary can poison a classifier
resulting in an incorrect interpretation of road signs, thus
leading the autonomous vehicle to disobey road laws. Similar
to [8], Goodfellow et al. [4] prove that even with very limited
knowledge, these attacks can still be successful.

Adversarial attacks on email spam filters have also proven
successful across a range of ML classifiers, specifically using
an evasion technique of inserting benign words into text [5].

These evasion and poisoning attacks are equally applicable
in the domain of network security. An in-depth taxonomy on
adversarial attacks against IDSs was published in 2013 [2]. In
[2], Corona et al. present the broad scope of attacks against
the three key elements of both an anomaly-based and misuse-
based IDS – Measurement, Classification and Response. Fur-
thermore, defences against these attacks were also proposed.
The overstimulation attack noted in the introduction of this
article is theorised within this work.

More recently, ML-NIDSs have become popular in network
architectures such as SDNs. Lee et al. designed and tested a
ML-based anomaly detector for SDNs named Athena [12],
implementing a series of classifiers and reporting a DDoS
detection rate of 99.23% using a K-Means-based algorithm.
Given that this IDS is built upon the same classifiers used
in prior work, we propose that it is exposed to the same set
of vulnerabilities. Similarly, the ML-based IDSs presented in
[13]–[18] could be vulnerable to adversarial attacks. A high
flow rate of benign traffic against the ML classifier may allow
malicious traffic to pass in the network without detection – an
overstimulation attack. In the case of poisoning, with direct
access to the training data, an adversary could input malicious
traffic labelled as benign traffic thereby enabling malicious
traffic to flow freely in the SDN. Even in the case of limited

adversary knowledge or capability, perturbation of malicious
network traffic features to represent benign traffic has strong
potential to evade detection by the IDS.

In this work, we extend the existing research to investigate
and quantify the vulnerability of a range of classifiers to
adversarial attacks on NIDSs in SDNs. We demonstrate attack
generalisation i.e. the capability of the attack to work across
different classifiers.

III. INTRODUCTION TO NEPTUNE IDS DESIGN

Neptune, an anomaly-based NIDS for SDNs, was developed
to provide a target for adversarial attack experimentation. This
system uses supervised learning on network flow statistics to
train and classify live traffic. It was developed with the core
goal of detecting DDoS attacks, most notably SYN floods
to enable evaluation of adversarial evasion attacks based on
attack detection accuracy.

In order to demonstrate the feasibility of adversarial attacks
in state-of-the-art systems, Neptune was inspired by Athena
[12]. Athena is a SDN-based anomaly detection system,
providing a development framework that scales to larger
networks. The application consists of 125 network features
available to a developer to implement classification. The
authors provide an example of one detection model for SYN
floods using a K-Means clustering algorithm, highlighting 9
key features used for attack detection. With Athena achieving
a 99.23% detection rate, the goal of Neptune is to use similar
features in order to achieve a comparable detection accuracy.

A. Flow Statistic Collection

Neptune acquires live flow statistics from the network by
listening to a dedicated traffic mirror host. The open-source
SDN controller, Faucet [19], is used, enabling flexible flow
rule implementations, to forward all network traffic to a
specialised mirror host, as shown in Figure 1.

Fig. 1. Example topology highlighting the mirror host from which Neptune
gathers flow statistics

Argus [20] is an open source layer 2+ auditing tool that
Neptune commands to listen to the mirror host and record all
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flow statistics being mirrored. These flow statistics are read
by Neptune in time-based batches before being pre-processed
based on unique flows between devices on the network to
extract/construct relevant features and passed through the
IDS. The choice of Argus was influenced by the quality
of flow statistics obtained1, in addition to the high level of
performance with respect to speed and storage space. We
acknowledge that the flow statistics mirroring technique would
require further development to scale to larger networks with
multiple switches.

B. ML Classifiers

A range of ML classifiers are implemented for intrusion
detection, as shown in Table I. This enables comparisons
to be made across different classifiers to evaluate individual
classifier detection of SYN floods, and responses to adversarial
attacks.

TABLE I
MACHINE LEARNING CLASSIFIERS AVAILABLE WITHIN Neptune

Category Classifier

Classification
Random Forest (RF)

Support Vector Machine (SVM)
Logistic Regression (LR)

K-Nearest Neighbour (KNN)

These models are trained on a number of key flow-based
traffic statistics generated from Argus that are further pro-
cessed by Neptune. The Argus features include the quantities
of packets and bytes within specific flows, as well as state flags
of different types of connections. For the classification of SYN
floods, Neptune generates new features from the acquired flow
statistics and discards those that are not required. The final
features used for classification reflect the features identified
as important for SYN flood DDoS detection in similar works
e.g. [12], [13], [15], [18]. The features are listed in Table II.

TABLE II
SELECTION OF TRAFFIC FLOW FEATURES AVAILABLE FOR EACH FLOW

Feature Category Feature
Packet header eth src,eth dst,ip proto,state flags

Stateful

pkt count,src pkts,dst pkts,bytes,src bytes,
dst bytes,pkts per second,

bytes per second,bytes per packet,
packet pair ratio,pair flow

The calculation of values for the stateful features listed
in Table II is based on a dictionary lookup implementation
to avoid polynomial time complexity, which would not scale
well with increased traffic flow counts, which is a particular
consideration for DDoS attacks. The full process flow of
Neptune is illustrated in Figure 2.

1An initial implementation based on the SDN controller polling the switch
for flow statistics demonstrated unreliable detection performance (as low as
40%) due to missing flow information.

Fig. 2. Main process flow of Neptune

C. Traffic Dataset

While the KDD99 [21] dataset is a prominent dataset for
the testing of IDSs, it has known limitations [22]. Newer and
more relevant datasets are surfacing, including the CICIDS
dataset [23] generated in 2017, which contains various types
of malicious and benign traffic. In this work, we use the benign
traffic from the CICIDS dataset. For malicious traffic, we use
the DARPA SYN flood set [24] and a range of generated SYN
floods. The DARPA flood exhibits a gradually increasing rate
of SYN packets and the generated attacks consist of floods
of varying speeds from 10 to 1,000,000 packets per second
(pps), ensuring that the malicious dataset consisted of a wide
range of intensities. The total dataset consists of 5 million
packets. The ratio of benign to malicious traffic in the dataset
is approximately 60/40, with 80/20 train/test splits taken from
both sets to train and evaluate the system.

IV. NEPTUNE PERFORMANCE

The ML classifiers within Neptune were tuned using ran-
domised search cross validation on the training dataset to
find the optimum hyperparameters. Performing classification
on the testing dataset, Neptune achieved the highest overall
classification accuracy using the LR and RF algorithms, with
an accuracy of 99.79%. These models generalised very well
across the testing set. SVM achieved a similarly high accuracy
of 99.59% with KNN less accurate at 97.45%. All classifiers
obtained above 90% true positive rates for SYN flood detec-
tion. These results are illustrated in Table III and Figure 3.
The metrics are formally defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
Pr =

TP

TP + FP

Re =
TP

TP + FN
F1 = 2 · Pr ·Re

Pr +Re

where Acc=Accuracy, Pr=Precision, Re=Recall, F1=F1 Score
TP=True Positives, FP=False Positives, FN=False Negatives.

In order to identify the influence of each feature on the
classification process, we use recursive feature elimination
(RFE) [25] to rank feature importance. The RFE results
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identify that pair flow ratio and other stateful features rank
highest. This reflects the expected response based on the attack
behaviour. For example, the pair flow feature is the ratio of the
number of unique flows travelling between a pair of network
hosts. This feature would produce extreme values during a
DDoS as the majority of the traffic will be unidirectional. The
set of highest ranked features is consistent across the different
classifiers, as illustrated in Table IV. (Note that KNN does
not support feature importance.) These results suggest that
perturbation of these features will result in the highest impact
of an evasion adversarial attack.

TABLE III
NEPTUNE CLASSIFICATION RESULTS

Classifier Accuracy TP FP F1
RF 99.79 98.4 1.6 98.97
LR 99.79 98.4 1.6 99.18
SVM 99.59 97.1 2.9 98.35
KNN 97.45 92.2 7.8 89.86
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Fig. 3. Graph showing both the overall classification accuracy over the test
dataset, and the true positive rate for SYN flood detection across each classifier

TABLE IV
FEATURE IMPORTANCE RANKING SHOWCASING TOP 5 FEATURES USING

RFE FOR RF, LR, AND SVM CLASSIFIERS

Rank RF Features LR Features SVM Features
1 pair flow bytes per pkt bytes per pkt
2 bytes per pkt state flag pair flow
3 state flag pair flow state flag
4 packet pair ratio dst bytes dst bytes
5 pkts per sec ip proto pkts

The objective of this work is not to optimize the NIDS
but to implement a suitable target platform for the adversarial
attack analysis. The classification accuracy results presented
are comparable with similar works [12], [13], [15], [16], [18]
confirming that Neptune provides an appropriate baseline for
adversarial testing. The feature importance ranking provides
input to the adversarial attack analysis presented in Section
V.

V. ADVERSARIAL ATTACKS

This research focuses on the adversarial evasion attack, with
the goal of quantifying the impact it has against Neptune’s
detection accuracy. The success of adversarial attacks depends
on both the adversary’s knowledge of the target system [8],
[10] and their physical access to the network/system. It is
understood that with more knowledge of the system e.g.
knowledge of features used for classification, the task of
crafting a successful attack is simplified. In order to produce
meaningful results, the adversary’s goals and knowledge must
be defined.
A. Adversary Profile

The general adversary model proposed by [10] is used to
disclose assumptions about the adversary in relation to their
goal, knowledge and capability.

1) The Goal of the Adversary: The aim of an adversary
with the intent to carry out a network attack such as a DDoS is
to enable the attack to pass unnoticed. This inflicts the highest
possible damage on resource availability. To counteract this,
a NIDS must detect the attack with minimal false negatives,
enabling further action to be taken based on the detection. A
malicious user utilising adversarial techniques aims to subvert
the classifier detection and increase false negatives in order to
maximise the attack duration prior to detection.

2) The Knowledge of the Adversary: In this work, we make
the assumption that an attacker has access to a single host
within a network, with no direct access to the NIDS itself, or
the classifiers used. This can be considered a blind attack.
The adversary can make assumptions about the classifiers
used as IDSs are well researched and generally use similar
classifiers. [26] reports how attacks can generalise across a
variety of classifiers. Therefore, with the correct perturbation
of highly important features in DDoS detection, evasion should
be apparent regardless of the ML algorithm.

As previously noted, the DDoS attack focused on within this
research is a SYN flood. The characteristics of such an attack
are known and documented, and influence the type of features
used for detection. SYN floods have typically unidirectional
communications with large packet counts and fast packet rates.
As a result, the adversary will have the goal of crafting an
evasion attack that perturbs these features to resemble those
of benign traffic.

3) The Capability of the Adversary: An adversary can take
advantage of altering a number of attack parameters in order
to change the appearance of the attack to the NIDS. Without
explicitly knowing the features used by the classifier, the
adversary can still make assumptions as to what is typically
measured for detection. The parameters that can be directly
altered by an attacker when sending packets across a network
are packet payload sizes, packet rates and packet counts.
Moreover, the technique of forging additional traffic may
influence flow features, disguising attacks.

B. Attack Profile
This paper proposes the development of evasion attacks

by perturbing a combination of three fundamental SYN flood
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characteristics. Considering the results from Table IV, the most
important features can be perturbed by altering packet rates
and payload sizes. The state flag cannot be altered as this
would change the attack from a SYN flood. However, the
pair flow can be perturbed with forged bidirectional traffic.
While using much smaller packet counts may evade detection,
this would significantly weaken an attack. Therefore, packet
counts will be maintained at appropriate levels.

Drawing from the knowledge and capabilities of the adver-
sary as described in this section, three perturbation models are
proposed to enable the evasion of a classifier:

1. Payload Size
Zhou et al. demonstrate in [27] that benign and attack SYN

packet sizes can differ greatly with attack packets generally
having much smaller payloads than their benign counterparts.
This provides a distinctive characteristic to aid DDoS detec-
tion. This adversarial technique proposes the adjustment of the
SYN packet payload size in order to appear more similar to
benign traffic. Therefore, by increasing the packet payloads in
an attack, detection confidence may be decreased.

2. Packet Rate
With the ability to control the packet rates of an attack,

a low and slow technique may be used which is common
in both HTTP-based DDoS attacks such as Slowloris, and
TCP. This involves sending the packets of the SYN flood at
a slower rate but still fast enough to have the desired effect
of a DDoS. If packets are sent too slowly, a real-world target
may be able to handle incomplete connections with timeouts
as it is never overwhelmed completely, which would weaken
the DDoS attack.

3. Bidirectional Traffic
A prominent sign of a DDoS attack is concentrated volumes

of unidirectional traffic to one destination. An attacker can
assume that an IDS uses high unidirectional packet counts to
detect a SYN flood, similar to Athena’s pair flow feature. By
forging traffic with the reversed source and destination to that
of the attack packets, this perturbation has the aim of assuming
the appearance of benign bidirectional communications. This
introduces an increased number of attack flows into the
network and therefore carries higher risk.

The adversarial attack surface available to an attacker per-
forming a SYN flood against Athena and Neptune is not large,
with a few important features and attack characteristics used
for detection. Despite this, with the capability to perturb such
important features, the potential for evasion is real.

VI. RESULTS AND ANALYSIS

This section presents the analysis of the proposed per-
turbation attack models including their individual effect on
classification confidence, and a comprehensive set of live
detection results corresponding to varying combinations of
perturbations.

A. Hydra Adversarial Test Tool

An adversarial evaluation tool, Hydra has been developed to
provide a user with an interface and platform to test their ML-
NIDS’s resistance to adversarial attacks. This system performs
network attacks within a SDN environment, applying different
adversarial techniques to the attacks in order to subvert attack
classification. Hydra launches its own emulated SDN (using
Mininet) within which it performs attacks against a running
NIDS providing live traffic flow classification. In the case
of this research, the NIDS is Neptune. The test framework
is illustrated in Figure 4. Hydra and Neptune will be made
available open-source.

Fig. 4. Overview process flow of the full interaction between Hydra and
Neptune for adversarial attack testing

The three main features an adversary has the potential
to perturb were outlined in Section V. To investigate the
impact of each individual perturbation, tests were carried out
to observe the classification confidence of each algorithm
detecting a perturbed SYN flood. The investigated feature
was altered while maintaining all other features constant.
Each test comprised of 20 attacks per perturbed value e.g.
20 attacks per payload size per classifier. The constant values
are the default hping payload size (0 bytes) with approximately
650 pps for the packet rate and bidirectional packet rate. The
confidence results for varying feature values are displayed in
the graphs in Figure 5. A confidence level below 50% is a mis-
classification. Note that the SVM classifier confidences are not
available due to the classifier design; SVM class assignments
(benign/malicious) cannot be transformed into probabilities.

As illustrated in Figure 5, the LR classifier displays little
change in confidence levels when one feature is perturbed
at a time. On the other hand, the variation in RF and KNN
results provide an insight into potential weaknesses in these
classifiers. Payload size perturbation is shown to reduce the
confidence of the RF classifier. Lower SYN flood packet
rates decrease the classification confidence noticeably for both
RF and KNN, while slightly decreasing the LR confidence.
This indicates that the classifiers have generally been trained
on DDoS attacks with a higher flow rate than those tested
in Figure 5. Furthermore, as the bidirectional packet rate
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increases, RF and KNN confidences decrease, indicating that
matching the constant SYN flood packet rate may have the
effect of disguising the attack flood.
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Fig. 5. Graphs showing SYN flood classification confidence with varied
feature perturbation for RF, LR, and KNN. Below 50% confidence is a
misclassification

TABLE V
PERTURBATION TEST SETTINGS (TABLE VI AND FIGURE 6)

Payload Rate Pairflow
Constant Values 0 B 650 pps 650 pps

Perturbation Values 90 B 22 pps 22 pps
Payload+PairFlow 90 B 650 pps 22 pps

Rate+PairFlow 0 B 22 pps 22 pps
Payload+Rate+PairFlow 90 B 22 pps 22 pps

Based on these results, optimum perturbation values for
each of the three features are determined. These values are
detailed in Table V. An increased payload size perturbation
value is based on the RF confidence trend. The packet rate
is set as a compromise to ensure that the DDoS attack can
still be effective. The bidirectional packet rate perturbation
value is chosen to match the attack flow rate. Perturbing one
feature, as shown in Figure 5, does not necessarily have the
impact of evasion. However, combining perturbations should
theoretically further reduce the classifier confidence. To quan-
tify the impact of these perturbations, a base SYN flood was
chosen that all classifiers could detect with 100% accuracy. For
each classifier and combination of feature perturbations, 20
perturbed SYN floods were executed and an overall detection
accuracy calculated by Hydra based on the detection results
from Neptune. Similar to the initial confidence tests, any
features that were not perturbed in a test were kept constant.
The results are presented in Table VI and Figure 6.

The results in Table VI reflect the confidence results pre-
sented in Figure 5 demonstrating that by perturbing only one
feature, the other two features are weighted high enough by
all classifiers to outweigh the anomalous feature thus proving
robust to evasion. Introducing the payload+rate perturbation

combination does not affect the accuracy either. However, in-
troducing pairflow perturbation, combined with another feature
has a very strong influence on the success of the evasion attack.
As identified in Table IV, the pair flow feature is ranked as
one of the highest across all classifiers. The evasion results
for payload+pairflow, rate+pairflow, and the combination of
all three feature perturbations are presented in Figure 6.

TABLE VI
UNSUCCESSFUL PERTURBATION TECHNIQUES ACROSS ALL CLASSIFIERS,

RESULTING IN NO DECREASE IN DETECTION ACCURACY

Perturbation Payload Rate Pairflow Payload+Rate
Detection % 100 100 100 100
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Fig. 6. Graphs for each combination of perturbed features, displaying the
detection accuracy for each classifier

RF and LR both appear weak to pairflow perturbation
coupled with payload perturbation, but are robust when the
payload is not changed (in the case of rate+pairflow). This
confirms the theory regarding distinguishable payload sizes
between benign and malicious traffic [27]. The Neptune NIDS
was trained with malicious DDoS packets with a lower payload
size in relation to the CICIDS benign traffic. Therefore,
increasing the payload size of the attack packets begins to
resemble benign traffic. As presented in Section IV, SVM
recorded one of the lowest true positive rates and the results
presented in Figure 6 confirm that it is weak against pairflow
combined with any other feature perturbation. KNN, however,
shows a different trend to the other classifiers, with successful
evasion only brought about by a rate+pairflow perturbation.

The trend of the RF, LR, and SVM classifiers prove that
evasion attacks generalise across different algorithms provided
that the correct, highly important features are perturbed. Fur-
thermore, the KNN classifier appears to be the most robust
classifier against the proposed evasion attacks although it
achieved the lowest classification accuracy for SYN flood
detection out of all the tested classifiers.
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VII. RECOMMENDATIONS

The results presented in Section VI confirm that, similar to
other domains, adversarial attacks are applicable to anomaly-
based NIDSs in SDNs. It is, therefore, important to investigate
preventative measures to limit the impact of such attacks.

In the development of ML-based NIDSs, it is common to
undertake a feature selection/engineering phase to tune the
algorithm to achieve the highest possible detection accuracy.
We propose that this phase include adversarial robustness.
For example, a multi-objective optimization formulation would
target maximum detection accuracy and adversarial robustness
of the ML-based NIDS. The Hydra tool presented in this work
provides a platform to evaluate a classifier to ensure that it is
adequately robust against adversarial attacks.

Secondly, despite the high detection accuracy of many
classifiers (as evidenced here and in similar works [12]),
it is clear that the classifiers rely heavily on features with
perturbation potential suitable for blind knowledge attacks. In
order to increase the effort required by the attacker, consid-
eration should be made of introducing ensemble methods to
the machine learning element such as combining the results of
multiple classifiers in decision-making. Our future work will
explore this along with further attack types.

VIII. CONCLUSION

The motivation for this work is the increasing deployment
of ML-based NIDSs leveraging the global network visibility
offered by SDNs. These solutions prioritise detection accuracy
neglecting to consider the potential vulnerability of the ML
algorithms to adversarial attacks. For an example use-case
of a SYN Flood DDoS attack, we have demonstrated the
ability to reduce the NIDS detection accuracy from 100% to
0% on multiple classifiers using evasion attacks. To support
this research, we have developed the Hydra adversarial testing
tool, a first of its kind in providing execution and evaluation
of adversarial attacks against ML-based NIDSs in SDNs.
Neptune was developed as the adversarial target and imple-
ments multiple classifiers demonstrating the concept of attack
generalisation. KNN proved to be the most robust classifier
against the adversarial attacks performed within this research,
with only one combination of feature perturbations halving the
detection accuracy from 100% to 50%. In contrast, RF, LR,
and SVM were generally vulnerable to the same perturbations
resulting in similar detection accuracy reductions. We propose
that both research and industry adopt adversarial testing and
integrate adversarial robustness as a performance measure in
the development of ML-based NIDSs.
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