Draft Genome Sequence of a Pseudomonas aeruginosa Sequence Type 3351 Strain Exhibiting High-Level Resistance to Polymyxins in a Pediatric Patient with Cystic Fibrosis in Mexico

Published in:
Microbiology resource announcements

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
[Link to publication record in Queen's University Belfast Research Portal](https://www.qub.ac.uk/research/)

Publisher rights
Copyright 2020 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Draft Genome Sequence of a *Pseudomonas aeruginosa* Sequence Type 3351 Strain Exhibiting High-Level Resistance to Polymyxins in a Pediatric Patient with Cystic Fibrosis in Mexico

Roberto Rosales-Reyes,a,b Fernanda Esposito,b,c Bruna Fuga,c,d Louise Cerdeira,d Catalina Gayosso-Vázquez,a José L. Lezana-Fernández,e Ricardo Lascuain,f Miguel A. Valvano,g Nilton Lincopan,b,c,d José I. Santos-Preciado,a,b

aUnidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
bIberoamerican Network for Combating Antimicrobial Resistance (INCAR)‡
cDepartment of Clinical Analysis, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
dDepartment of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
eLaboratorio de Fisiología Pulmonar, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
fDepartamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
gThe Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom

ABSTRACT Here, we present the draft genome sequence of a *Pseudomonas aeruginosa* isolate (strain CF16053) belonging to a novel sequence type (ST), ST3351, isolated from a pediatric patient with cystic fibrosis (CF). CF16053 shows high-level resistance to polymyxins associated with mutations in the pmrB gene. Biofilm, pyoverdine, exotoxin A, and type III secretion system (T3SS) genes were identified.

Respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF), in whom *Pseudomonas aeruginosa* remains a leading pathogen (1, 2). Genomic investigation of antibiotic-resistant *P. aeruginosa* strains is essential for better understanding the molecular epidemiology and evolution of this pathogen, as well as for improving clinical outcomes in CF patients (3, 4). In this study, we report the draft genome sequence of a *P. aeruginosa* strain exhibiting high-level resistance to polymyxins in a pediatric patient with CF in Mexico.

P. aeruginosa strain CF16053 was isolated from a sputum culture from a 5-year-old male with CF. The sputum was inoculated onto MacConkey, chocolate, blood (Dibico), and cetrimide (Becton, Dickinson) agar plates. Inoculated plates were incubated aerobically at 37°C for up to 48 h. Initial bacterial identification was performed using standard microbiological methods, and the species were confirmed with the API 20NE (bioMérieux SA) system. All samples were stored at −70°C until they were analyzed. Strain CF16053 was subcultured once before genomic analysis was performed. Identification and antibiotic susceptibility were determined by the Vitek 2 platform, whereas colistin and polymyxin B MICs were determined by microdilution following 2019 CLSI guidelines (5). The strain showed resistance to piperacillin-tazobactam (MIC > 128 μg/ml), colistin (MIC > 128 μg/ml), and polymyxin B (MIC > 128 μg/ml).

Total DNA from an isolated colony was extracted using the PureLink quick gel extraction kit (Life Technologies, CA). DNA quality and quantity were evaluated by agarose gel electrophoresis and by using a Qubit 2.0 fluorometer (Life Technologies). A genomic library was constructed using a Nextera DNA Flex library preparation kit, with subsequent sequencing by the MiSeq platform (300-bp paired-end reads; Illumina, Inc., San Diego, CA). The resistome and virulome were obtained using ResFinder version 3.2.
CF16053 has been deposited in GenBank under accession number VTFM00000000 (SRA contribute to a better understanding of acquired resistance in polymyxins that was obtained from a child with CF in Mexico. These data could also identified.

pvdA pyoverdine synthesis, **pvdS**, exotoxin A, and type III secretion system (T3SS) toxA lasA algX algA, prsA4 trpE10 ppsA4, and trpE10; it was therefore assigned to sequence type 3351 (ST3351) (12). Resistome analysis revealed that CF16053 harbored resistance genes to β-lactams (bla/OXA-48 and bla_PAO1), phenics (catB7), fosfomycin (fosA), and aminoglycosides [aph(3’)-llb]. Additionally, mutations in \[\text{J usu}_0\] 50 value obtained was 425,394 bp. The genome size was calculated as 6,174,571 bp with a GC content of 66.4%, and the genome comprised 5,780 protein-coding sequences. In addition, 5,905 complete genes, 57 tRNAs, 3 rRNAs, 4 noncoding RNAs (ncRNAs), and 61 pseudogenes were identified.

The P. aeruginosa MLST database indicated a novel sequence type, where the different alleles of each gene were numbered acsA17, aroE5, guaA11, mutL3, nuoD3, ppsA4, and trpE10; it was therefore assigned to sequence type 3351 (ST3351) (12). Resistome analysis revealed that CF16053 harbored resistance genes to β-lactams (bla/OXA-48 and bla_PAO1), phenics (catB7), fosfomycin (fosA), and aminoglycosides [aph(3’)-llb]. Additionally, mutations in pmrB (T90A, H140Y, G211R, G213S, T215A, N250D, and V344A) and pmra (L71A) genes that contribute to high-level polymyxins resistance (13, 14) were also identified.

Virulome analysis identified genes related to biofilm formation (quorum sensing genes lasA and ptxR) and genes associated with alginate synthesis (algG, algI, algB, algE, algA, algX, algK, algF, algD, and algL). Furthermore, siderophore pyoverdine synthesis (pvdA, pvdD, pvdE, pvdF, pvdG, pvdI, pvdN, pvdO, pvdP, and pvdS), exotoxin A (toxA), and type III secretion system (T3SS) (exoS and exoT) genes were also identified.

In summary, we report for the first time the draft genome sequence of a novel ST3351 (determined by MLST) P. aeruginosa strain displaying high-level resistance to polymyxins that was obtained from a child with CF in Mexico. These data could contribute to a better understanding of acquired resistance in P. aeruginosa lineages infecting people with CF.

Data availability. The genome sequence of Pseudomonas aeruginosa strain CF16053 has been deposited in GenBank under accession number VTFM00000000 (SRA accession number PRJNA562177).

ACKNOWLEDGMENTS

We thank Martha J. Arredondo-Mercado for her help with the manuscript editing. This work was supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (grant number PAPIIT IN224491), Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant numbers AMR 443819/2018-1 and 433128/2018-6 and fellowship number 312249/2017-9), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant numbers 88887.358057/2019-00 and 1794306). N.L. is a research fellow of CNPq (fellowship number 312249/2017-9), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant numbers AMR 443819/2018-1 and fellowship number 312249/2017-9). F.E. is a research fellow of FAPESP (fellowship number 2019/15578-4).

REFERENCES

5. CLSI. 2019. Performance standards for antimicrobial susceptibility testing, 29th ed. CLSI supplement M100. CLSI, Wayne, PA.

