Combined Mesenchymal Stromal Cell Therapy and ECMO in ARDS: A Controlled Experimental Study in Sheep

Published in:
American Journal of Respiratory and Critical Care Medicine

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 American Thoracic Society. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Combined mesenchymal stromal cell therapy and ECMO in ARDS: A controlled experimental study in sheep

Jonathan E Millar¹,²,³, Nicole Bartnikowski¹,⁴, Margaret R Passmore¹,², Nhafatso G Obonyo¹,⁵, Maximillian V Malfertheiner¹,⁶, Viktor von Bahr¹,⁷, Meredith A Redd⁸, Louise See Hoe¹,², Katrina K Ki¹,², Sanne Pedersen¹,⁴, Andrew J Boyle³, J Kenneth Baillie⁹, Kiran Shekar¹,², Nathan Palpant⁸, Jacky Y Suen¹,², Michael A Matthay¹⁰, Daniel F McAuley³, John F Fraser¹,² on behalf of the Combining Extracorporeal Life Support and Cell Therapy in Critical Illness (CELTIC) investigators.

¹ Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.

² Faculty of Medicine, University of Queensland, Australia.

³ Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, United Kingdom.

⁴ Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia.

⁵ Wellcome Trust Centre for Global Health Research, Imperial College London, United Kingdom.

⁶ Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Germany.

⁷ Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.

⁸ Institute for Molecular Bioscience, University of Queensland, Australia.
Roslin Institute, University of Edinburgh, United Kingdom

Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, United States of America.

Corresponding author

Dr Jonathan E. Millar

Critical Care Research Group

The Prince Charles Hospital,

Chermside, Brisbane, Queensland, Australia, 4032

Telephone: +44 (0) 7545579065

Email: j.millar@doctors.org.uk

Authors contributions

J.E.M. – study conception, model development, study design and conduct, animal surgery, data collection and analyses, manuscript preparation.

N.B., J.Y.S. – model development, study design and conduct, data collection and analyses, manuscript review.

N.G.O., M.V.M., V.vB. – model development, study design and conduct, animal surgery, manuscript review.

S.P. - model development, study design and conduct, animal surgery, manuscript review.

J.K.B. – data analysis, manuscript review.

N.P., A.J.B, M.A.M. - study design, data interpretation, manuscript review.
D.F.M., J.F.F. - study conception, model development, study design, data interpretation, manuscript review.

Funding sources

We gratefully acknowledge funding from the Intensive Care Society (UK), The Prince Charles Hospital Foundation, the Queensland Government, and the National Health and Medical Research Council (Australia). We also acknowledge the endorsement of this study by the International ECMO Network (ECMONet). Mesenchymal stromal cells were donated in-kind, under a material transfer agreement, by Cynata Therapeutics Ltd., Melbourne, Australia. Cynata Therapeutics Ltd. was not involved in the conception, design, or analysis of the study. Prof. Matthay is supported by NHLBI HL123004, HL140026, HL126456.

Running title

Combined MSC therapy and ECMO in experimental ARDS

Subject category classification

4.1 ALI/ARDS: Biological Mechanisms

Manuscript word count

3,086 words

At a glance commentary

Scientific knowledge on the subject:

Mesenchymal stromal cell (MSC) therapy is a promising novel intervention for ARDS. Trials to date have failed to explore the safety of cell therapy during ECMO. Pre-clinical investigations have found that MSC therapy during ECMO attenuate the efficacy of ECMO.

What this study adds to the field:
This study, employing a 24-hour, large animal model of ARDS and ECMO, examined the safety and efficacy of MSC therapy. We found that endobronchially administered MSCs adhere to, and impair, membrane oxygenators in-vivo. MSCs did not improve oxygenation or other ventilatory parameters but did reduce the severity of histological evidence of lung injury. Our data also suggest that MSCs may reduce circulatory shock associated with ARDS. There were no adverse effects of MSC administration on renal or liver function.

Online data supplement

This article has an online data supplement, which is accessible from this issue’s table of content online at www.atjsjournals.org.
Abstract

Rationale

Mesenchymal stromal cell therapy is a promising intervention for ARDS, although trials to date have not investigated its use alongside ECMO. Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO.

Objectives

To determine the safety and efficacy of mesenchymal stromal cell therapy in a model of ARDS and ECMO.

Methods

ARDS was induced in 14 sheep, after which they were established on veno-venous ECMO. Subsequently, they received either, endobronchial iPSC-derived human MSCs (hMSCs, n=7) or cell-free carrier vehicle (Vehicle control, n=7). During ECMO, a low tidal volume ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analysed, in addition to continuous respiratory and hemodynamic monitoring.

Measurements and main results

The administration of hMSCs did not improve oxygenation (PaO₂/FiO₂ mean difference -146 mmHg, p = 0.076) or pulmonary function. However, histological evidence of lung injury (Lung Injury Score mean difference -0.07, p = 0.04) and BAL IL-8 were reduced. In addition, hMSC treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in trans-membrane oxygenator pressure gradients. This was accompanied
by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers.

Conclusions

Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during VV-ECMO.

Abstract word count

250

Keywords

Acute Respiratory Distress Syndrome

Extracorporeal membrane oxygenation

Mesenchymal stromal cells

Models, Animal
Introduction

The quest for an effective pharmacological treatment for the Acute Respiratory Distress Syndrome (ARDS) has been unsuccessful. Recently, mesenchymal stromal cells (MSCs) have attracted attention as a candidate therapy for ARDS (1).

MSCs are multipotent adult stem cells found in tissues of mesodermal origin such as bone marrow (2). Therapeutic interest in these cells has arisen because of their pleiotropic immunomodulatory abilities. During acute inflammation, MSCs appear to be immunosuppressive, influencing both innate and adaptive immune responses (3). In ARDS, their beneficial effects are believed to be mediated in a variety of ways, including; secretion of anti-inflammatory paracrine factors (4), restoration of epithelial and endothelial integrity (5), enhancement of alveolar fluid clearance (6), direct antimicrobial activity (7), and by mitochondrial transfer (8). In pre-clinical models of acute lung injury, MSCs have been shown to reduce mortality (9). A phase 2 study has been conducted in patients with ARDS with no reported infusion-related adverse events (10).

To date, trials of MSCs in ARDS have excluded patients supported with extracorporeal membrane oxygenation (ECMO). The use of ECMO in acute severe respiratory failure has increased substantially in the last decade and is now an established tool for supporting those with refractory illness (11). The use of MSCs during ECMO, while potentially attractive, raises some unique considerations. Firstly, MSCs are large cells, with an average diameter between 10-30 µm (12), which when administered therapeutically may pose a risk to the patency of a membrane oxygenator. Secondly, a defining characteristic of MSCs is avid plastic adherence (13); this too may threaten membrane oxygenators, which are constructed largely from plastics. Recent ex-vivo and small animal experimentation has confirmed these concerns (14, 15).
Conversely, immunomodulation by MSCs may provide additional benefits for ECMO patients, where the institution of extracorporeal support results in an additional inflammatory insult (16).

Given the paucity of evidence to support the safe use of MSC therapy during ECMO, we conducted a controlled trial of clinical-grade induced pluripotent stem cell (iPSC) derived human MSCs (hMSCs) in an ovine model of ARDS, supported with veno-venous ECMO (VV-ECMO). The primary objective was to assess the safety of MSC therapy and to investigate its effect on physiologic and biologic markers of pulmonary and systemic injury.

Methods

Study design

Ethical approvals were obtained from University Animal Ethics Committees (QUT1600001108, UQPCH/483/17) and authorization for in-vivo use of hMSCs was granted by the Australian Department of Agriculture (2017/075). The study was conducted in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (17) and is reported in compliance with ARRIVE guidelines (18). Detailed methods and a comprehensive description of the experiments and analyses are provided in an online supplement. A schematic of the study protocol is provided in Figure 1.

Animal model

Fourteen healthy Border Leicester Cross ewes aged between 1-3 years and weighing between 46-55 kg (mean, 52.6 ± 3 kg), were randomly assigned to one of two groups; endobronchial iPSC-derived hMSC treatment (n=7) or endobronchial carrier vehicle only (n=7).

In brief, animals were anesthetized with a combination of ketamine, midazolam, and fentanyl. Continuous neuromuscular blockade was maintained by infusion of vecuronium. In a
supine position, animals were tracheostomized and ventilated using a low tidal volume strategy (6 mL/kg actual body weight (ABW)). After instrumentation, acute lung injury was induced by combining an intravenous infusion of oleic acid (OA; 0.06 mL/kg; O1008, Sigma-Aldrich, Castle Hill, NSW, Australia) with endobronchial E. coli lipopolysaccharide (LPS; 100 µg; O55:B5, Sigma-Aldrich, Castle Hill, NSW, Australia). Once a PaO$_2$/FiO$_2$ ratio < 100 mmHg (PEEP ≥ 10 cmH$_2$O) was obtained (T$_0$), animals were established on VV-ECMO via a right-sided jugular-jugular configuration (T$_1$) and positioned in sternal recumbency. VV-ECMO was combined with a lower tidal volume strategy (4 mL/kg ABW) for 22 hours, at which time (T$_2$) ECMO was stopped and a standardized recruitment manoeuvre was performed. Animals were returned to pre-ECMO ventilatory settings for one hour before being euthanized (T$_2$).

iPSC-derived hMSCs

After one hour of VV-ECMO (T$_2$), animals received a fixed dose of 3 x 108 iPSC-derived hMSCs suspended in a carrier vehicle (hMSC) or carrier vehicle alone (Vehicle control). Cells were provided by Cynata Therapeutics Ltd. (CYP-001; Cynata Therapeutics Ltd., Melbourne, VIC, Australia). These cells were ≥ 99% positive for CD-73, CD-90, and CD-105, but negative for CD-31 and CD-45. The total volume of vehicle was 60 mL (57.5% Plasmalyte-A, 40% Flexbumin 25%, 2.5% Dimethyl sulfoxide). Cells were ≥ 97% viable prior to administration. The distribution of delivery is described in Figure E1.

Statistical analysis

An *a priori* sample size calculation, based on the primary outcome of PaO$_2$/FiO$_2$ ratio at 24 hours, is detailed in the online supplement. Data are expressed as mean (± SD) or median (IQR) if non-normally distributed. Analysis was undertaken in Graphpad Prism (v 8.1.2., GraphPad Software, San Diego, USA). Longitudinal data were analyzed by fitting a mixed model. This model uses a compound symmetry covariance matrix and is fit using restricted
maximum likelihood. Where a significant interaction was observed post-hoc comparisons were undertaken. Correction for multiple comparisons was made using the Benjamini-Hochberg method (false discovery rate restricted to 5%). Non-longitudinal data were compared using an unpaired t-test or a Mann-Whitney test as appropriate. Categorical data were compared using the chi-squared test. Statistical significance was assumed if $P < 0.05$.

Results

Baseline characteristics at injury (T_0) are shown in Table 1 and in *supplementary Table E1*. All animals completed the study protocol and were euthanized at T_{24}.

Respiratory variables

The use of ECMO facilitated a lower tidal volume ventilation strategy (4 (4-4) mL/kg ABW). The median ECMO flow rate was 2.75 L/min (2.5-3.25 L/min), with a sweep gas flow of 3 L/min (2-3.5 L/min). During VV-ECMO, animals had a median PaO$_2$ of 109 mmHg (94-131 mmHg) and a PaCO$_2$ of 32 mmHg (30-35 mmHg). There were no significant differences in these parameters between groups (*supplementary Figure E2*). Animals were adequately anticoagulated during ECMO, as measured by activated partial thromboplastin time (aPTT) ratios. The dose of heparin was not significantly different between groups (*supplementary Figure E2*).

Because VV-ECMO controls gas exchange, native lung function was assessed one hour after cessation of extracorporeal flow and after the performance of a standardized lung recruitment manoeuvre (T_{24}). As shown in Figure 2 both the PaO$_2$/FiO$_2$ ratio ($p = 0.076$) and the oxygenation index (OI) ($p = 0.153$) were numerically better in the carrier vehicle only group, the differences were not statistically significant.
The plateau airway and driving pressures were similar between groups at T_{24} (Figure 2). Static lung compliance was also similar, both during and after ECMO (Figure 2). The use of a protocolized recruitment manoeuvre did not improve compliance after cessation of extracorporeal support in either group (Figure 2).

Hemodynamic variables

This model of acute lung injury was associated with the development of hyperdynamic shock, which worsened over time (Figure 3). The administration of hMSCs resulted in significantly lower cumulative vasopressor doses (Figure 3). At T_4, mean arterial pressure (MAP) was significantly higher in the hMSC treated group (p = 0.001), even though these animals received lower doses of noradrenaline (Figure 3). By T_{14}, MAP was again similar between groups, although vasopressor requirements continued to be lower in hMSC treated animals. In addition, there were lower arterial lactate concentrations, higher arterial base excesses, and lower mean pulmonary artery pressures from 12 hrs (T_{14}) post instillation in the hMSC group (Figure 3), however these were not statistically significant. Cumulative fluid balance at T_{24} was similar in both groups (Vehicle control, 2713 ± 970 mL vs. hMSCs, 2992 ± 1237 mL, p = 0.648).

Histopathology and lung injury

The blinded assessment of lung tissue was conducted by an independent expert veterinary pathologist. Sections of the right lower lobe were prepared, and a lung injury score (LIS) was calculated (19). The administration of hMSCs resulted in significantly lower scores (p = 0.04) (Figure 4), principally mediated by a reduction in neutrophil infiltration.

There were no significant differences in lung wet/dry ratio or bronchoalveolar lavage (BAL) total protein concentration (Figure 4). BAL fluid inflammatory cell counts are detailed in supplementary Table E4. There were no significant differences in these counts over time.
Similarly, there was no difference in lung tissue homogenate gene expression (as assessed by qPCR) between groups (supplementary Figure E3).

In a post-hoc analysis, pulmonary arterial thrombosis was noted in 5 hMSC treated animals, but only one animal receiving carrier vehicle alone (p = 0.031).

Inflammatory cytokines

BAL and plasma cytokine concentrations were assessed longitudinally (supplementary Figure E4 and supplementary Figure E5). In BAL, statistically significant differences in IL-8 were observed at T3, T14, and T23 (p = 0.013, 0.016, and 0.028 respectively). In plasma, cytokine trajectories were similar between groups (supplementary Figure E5).

Hematological and biochemical measurements

A summary of hematological and biochemical values are provided in supplementary Tables E2 and E3. This lung injury model was associated with the development of acute kidney injury and abnormal liver function, although there were no significant differences in indices between groups. The administration of hMSCs resulted in a significantly lower lymphocyte count at T24 (p = 0.047) (supplementary Figure E5).

Cell-ECMO membrane interaction and cell fate

The administration of hMSCs was associated with a significant increase in the trans-oxygenator pressure gradient, becoming apparent 4 hours after cell delivery (Figure 5). By T23, the mean pressure gradient in the hMSC group reached 64 ± 37 mmHg vs. 17 ± 9 mmHg in the vehicle only group. The instillation of carrier vehicle alone was associated with a reduction in the ECMO pump speed to flow ratio over time, a finding not observed in the hMSC group (Figure 5). During the study, there were no instances of pump or oxygenator failure requiring
a component exchange. Likewise, there was no evidence of clotting on the oxygenator surface by visual examination in either group.

Membrane oxygenators from animals treated with hMSCs were isolated and preserved at the termination of ECMO, subsequent deconstruction and staining of the fiber bundles (n=7) revealed adherent cells exhibiting surface markers consistent with those of hMSCs (supplementary Figure E6). Similar cell populations were not apparent in vehicle only controls (n=3).

Discussion

We carried out a trial of clinical-grade iPSC-derived hMSCs, given endobronchially, for acute lung injury in sheep during VV-ECMO. The main findings of this study can be summarized as follows; (1) with regard to the primary outcome, hMSCs did not improve oxygenation at 24 hours. (2) hMSCs did not improve pulmonary mechanics but did improve the severity of histological lung injury and reduced the concentration of bronchoalveolar lavage IL-8. (3) in spite of endobronchial administration, hMSCs adhered to and impacted the function of a commercial membrane oxygenator in-vivo - with an increase in the trans-membrane oxygenator pressure gradient. In addition, more pulmonary arterial thromboses were noted in hMSC-treated lungs. (4) hMSCs reduced the depth and severity of shock.

This study was conducted in a large animal model of ARDS and ECMO, which replicates several important clinical features (20). The ‘double-hit’ injury applied in this study resulted in acute severe hypoxemic respiratory failure consistent with modern criteria for the use of VV-ECMO (11). To support the severe acute respiratory failure, we employed a commercial ECMO device which is in widespread clinical use. Additionally, our protocolized intensive care was consistent with clinical best practice standards (21). A common criticism of pre-clinical trials of MSCs has been the use of heterogeneous, non-clinical grade cell products.
(1), however, we tested a commercial hMSC product which is under investigation in clinical trials.

MSCs have been administered to patients with respiratory failure on ECMO (22, 23). These reports, which include only three patients, did not describe infusion-related adverse events although failed to fully characterize the interaction between MSCs and the extracorporeal device. Kocyildirim et al. have conducted the only other pre-clinical study involving both MSCs and ECMO for respiratory failure (24). Their ovine based, 6-hour pilot study did not report on the impact of MSC administration on the performance of ECMO.

hMSCs and pulmonary function

In this study, the administration of hMSCs failed to improve oxygenation at T_24. Furthermore, animals receiving hMSCs had a trend for worse oxygenation index values. In a phase 2a study of 60 patients with ARDS, the intravenous administration of hMSCs did not significantly improve PaO_2/FiO_2 ratio, although there was a signal toward improvement in oxygenation index in a post-hoc analysis (10). Pre-clinical studies of MSCs in ARDS have reported improvements in oxygenation, although few have produced lung injury as severe (25). In a recent systematic review of pre-clinical models combining ARDS and ECMO, only four achieved PaO_2/FiO_2 values <100 mmHg (20). The degree of lung injury in this model may explain why oxygenation is impaired in the treated group, despite improvements in inflammation and lung injury. Emerging research has highlighted the pro-coagulant effects of transplanted MSCs. These appear to be primarily mediated by MSC expression of tissue factor (26), but also by the secretion of pro-coagulant microvesicles (27) and by direct enhancement of platelet deposition (28). In pre-clinical experiments MSCs have been associated with the development of pulmonary emboli in-vivo (29). In this study, despite the use of heparin, almost all hMSC animals (n=6) had histological evidence of pulmonary arterial thrombosis at post-
mortem. The presence of exogenous hMSCs within the disordered pulmonary vasculature may have contributed to impairments in oxygenation, tempered by the fact that there was no increase in mean pulmonary artery pressure in treated animals.

Animals receiving hMSCs had improved composite histologic lung injury scores at post-mortem. The components of the score most influenced by hMSCs were neutrophil numbers in the alveolar and interstitial space. Multiple studies of MSCs in pre-clinical models of ARDS have demonstrated their ability to reduce neutrophil infiltration (30) and neutrophil extracellular trap formation (31). In this study, BAL neutrophil counts did not differ between groups. This may reflect the technical challenges of obtaining and assessing BAL cell counts. In a recent porcine model of ARDS and MSC therapy, a reduction in neutrophil infiltration was correlated with a reduction in BAL IL-8 concentrations (32), a finding confirmed in this study.

hMSCs and the systemic inflammatory response

Multiple pre-clinical models (33) and recent clinical trials (34-37) have examined the use of MSCs in the treatment of septic shock. Animals receiving hMSCs required less vasopressor support throughout the experiment to achieve an equivalent or higher MAP. A similar, early but non-sustained, reduction in vasopressor requirement has previously been described in a large-animal model of septic shock treated with MCSs (38). hMSCs did not alter plasma concentrations of pro-inflammatory cytokines over extended time periods in this study, a finding which has previously been identified in other pre-clinical (39) and clinical studies (34). A recent Phase I dose escalation study of MSCs in patients with septic shock demonstrated that the maximum effect of cell therapy on plasma cytokine levels occurred at 4 hours post-administration and declined with time (36). In this study, that time period coincides with the maximum separation in vasopressor dose, MAP, and levels of IL-1β and IL-6 between
groups. This may indicate that repeat dosing of MSCs will be required for optimal therapeutic efficacy.

hMSCs and ECMO

The risk posed by MSCs to membrane oxygenators has been postulated for some time (1), but has only recently been shown to have an experimental basis. Our group has previously reported the ability of hMSCs to tightly adhere to the membrane fibers of a commercial oxygenator. This may have been the result of the known plastic avidity of MSCs (13). Recently, Cho *et al.* reported the loss of systemically administered MSCs in an ex-vivo model of veno-arterial ECMO (15).

Given the emerging signal that systemically administered MSCs may interact with membrane oxygenators, we decided to test endobronchial instillation in this study. Cardenes *et al.* have used 18F-fluorodeoxyglucose labelling to track the fate of both systemically and endobronchially administered MSCs in an ovine model of ARDS (40). While systemically administered cells have a wide biodistribution in the first 5 hours, endobronchially administered cells were retained at the site of instillation. There are key differences in our approach, including the means of inducing lung injury and its severity.

Limitations

This study has some limitations. First, while our model of injury replicates several relevant features including severe respiratory and hemodynamic failure, clinical ARDS is usually caused by infection and develops over several days, often in patients with other comorbidities (41). Second, MSCs are known to exhibit different functional responses dependent on the contemporary milieu, which in some circumstances may be detrimental (42). This study may have modelled only one phase of acute lung injury and so hMSCs may have exerted an effect which may differ in other phases. Third, while our model extended 21 hours
Combined MSC therapy and ECMO in experimental ARDS
JE Millar et. al.

post cell or vehicle delivery, this may have been too short a period to observe some beneficial effects of the intervention. For example, it may be that the favourable effect of hMSCs on histological injury may have translated to improvements in oxygenation over a longer time period. Conversely, an extension of the study period in the face of rising trans-oxygenator pressure gradients in the hMSC group may have ultimately led to circuit failures. Fourth, the use of a lung recruitment maneuver and the assessment of native lung function off ECMO may have had several adverse effects and we cannot be certain that these effects did not differ between groups. This approach was taken due to the challenge of assessing native lung function during ECMO, particularly where a lower tidal volume ventilatory strategy has been adopted. The study protocol was designed prior to the publication of the ART randomized controlled trial (43). Fifth, the addition of an uninjured control group may have provided further insights into the distribution of hMSCs during VV-ECMO. Finally, the dose and method of delivery of hMSCs remain a matter of conjecture. Based on the findings of our previous work (14), we chose not to investigate intravenous administration. Likewise, based on clinical trial experience, we opted to administer a single, fixed-dose of hMSCs. It is possible that varying the dose and/or route of administration of hMSCs may alter their efficacy and safety profile during ECMO.

Conclusion

In a 24-hour, ovine model of ARDS and VV-ECMO, we found that hMSC therapy was associated with impairment of the membrane oxygenator. The use of cell therapy did not result in improvements in oxygenation, the primary outcome of this study, but was associated with a reduction in histological evidence of lung injury and inflammation in the lung. Given these data we cannot currently recommend the administration of hMSCs during ECMO.

Acknowledgments
We are grateful for assistance provided during animal experiments by the staff of the Queensland University of Technology Medical Engineering Research Facility (MERF) and the University of Queensland Animal Science Precinct (QASP). We extend our thanks to Ms Arlanna Esguerra-Lallen for providing expert nursing care and to Ms Mengyao Yang, Mr Matthew Wells, Dr Ai-Ching Boon, Mr Michael Cavaye, and Ms Ashlen Garrett for their assistance in study preparation, sampling, and laboratory analyses.
References

8. Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O'Kane CM, Krasnodembskaya AD. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage
Phagocytosis in the In Vitro and In Vivo Models of ARDS. *Stem Cells* 2016; 34: 2210-2223.

Figure Legends

Figure 1. Study schematic.

a Adjusted to maintain pH 7.30-7.45. Permissive hypercapnia was tolerated to a minimum pH of 7.15.
b PaO\textsubscript{2} 55 – 80 mmHg. If despite an FiO\textsubscript{2} of 1.0 oxygenation targets were not met, PEEP was increased, maintaining plateau pressure ≤ 32 cmH\textsubscript{2}O.
c Total PEEP (extrinsic PEEP + intrinsic PEEP) did not exceed 20 cmH\textsubscript{2}O. PEEP was permitted to be reduced to 5 cmH\textsubscript{2}O to maintain plateau pressure ≤ 30 cmH\textsubscript{2}O. If despite a PEEP of 5 cmH\textsubscript{2}O, plateau pressure > 30 cmH\textsubscript{2}O, tidal volume was reduced in 1 mL/kg steps until set at 4 mL/kg.

Figure 2. Oxygenation and respiratory parameters.
a. PaO\textsubscript{2}/FiO\textsubscript{2} ratio. b. Oxygenation index. c. Airway pressures and lung compliance. Data are presented as mean (± 95% confidence interval). Where error bars intersect the x axis the 95% CI includes zero.

Figure 3. Hemodynamic variables.
a. Mean arterial pressure and vasopressor dose (mean). b. Mean pulmonary artery pressure. c. Cumulative vasopressor dose. d. Cardiac index, base deficit, and arterial lactate. Data are presented as mean (± 95% confidence interval). Where error bars intersect the x axis the 95% CI includes zero. ** - p < 0.01.

Figure 4. Histopathology and lung injury.
a. Representative images of lung parenchyma. All animals showed evidence of diffuse alveolar damage however the frequency and degree of injury differed between groups. Panel 1: extensive alveolar edema with interstitial leukocyte infiltration. Panel 2: marked leukocyte infiltration within alveolar spaces and larger airways. Panel 3: some loss of alveolar structure with edema however a reduction in interstitial and alveolar leukocytes. Panel 4: preservation
of alveolar architecture with few leukocytes in the alveolar spaces. **Panel 5 & 6:** representative images of pulmonary arterial and arteriolar emboli (black arrows) in animals receiving hMCSs.

b. Composite lung injury score (LIS), lung wet/dry ratio (right lower lobe). c. BAL total protein concentration. Data are presented as mean (± 95% confidence interval). * - p = < 0.05.

Figure 5. Cell-ECMO interaction.

a. Trans-membrane oxygenator pressure gradient. b. Pump revolutions per minute (RPM)/flow ratio. Data are presented as mean (± 95% confidence interval). Where error bars intersect the x axis the 95% CI includes zero. * - p = < 0.05.
Table 1. Baseline physiological characteristics

<table>
<thead>
<tr>
<th></th>
<th>Overall (n=14)</th>
<th>Vehicle (n=7)</th>
<th>hMSCs (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>52.6 ± 3</td>
<td>52.4 ± 3.2</td>
<td>52.9 ± 2.6</td>
</tr>
<tr>
<td>Pre-ECMO tidal volume (mL/kg)</td>
<td>6.0 ± 0.1</td>
<td>6.0 ± 0.1</td>
<td>6.0 ± 0.1</td>
</tr>
</tbody>
</table>

At time of injury (T0)

Peak airway pressure (cmH₂O)	31.5 ± 4.2	31.9 ± 3.3	31.1 ± 4.9
Plateau pressure (cmH₂O)	26.5 ± 3.9	26.1 ± 3.9	26.9 ± 3.8
Driving pressure (cmH₂O)	16.5 ± 3.9	16.1 ± 3.9	16.9 ± 3.8
Static compliance (mL/cmH₂O)	21 ± 5.0	19 ± 4.6	23 ± 4.6
PaO₂/FiO₂	59 ± 20	58 ± 23	61 ± 17
PaCO₂ (mmHg)	41 (38-46)	38 (38-41)	44 (41-48)
pH	7.36 ± 0.05	7.38 ± 0.04	7.34 ± 0.05
Bicarbonate (mmol/L)	23.2 ± 1.5	23.6 ± 1.4	22.9 ± 1.5
Base deficit (mmol/L)	1.30 ± 1.31	0.94 ± 1.15	1.66 ± 1.37
Arterial lactate (mmol/L)	1.6 ± 0.7	1.8 ± 0.6	1.4 ± 0.7
Heart rate (bpm)	102 (96-117)	108 (98-128)	98 (95-103)
Mean arterial pressure (mmHg)	103 ± 19	96 ± 16	111 ± 19
Central venous pressure (mmHg)	13 (11-13)	12 (11-13)	13 (13-14)
Mean pulmonary artery pressure (mmHg)	25 (16-29)	20 (17-27)	28 (19-29)