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Abstract

This paper explores the suitability of lip-based authentication as a behavioural biometric for mobile devices. Lip-based
biometric authentication is the process of verifying an individual based on visual information taken from the lips while
speaking. It is particularly suited to mobile devices because it contains unique information; its potential for liveness
over existing popular biometrics such as face and fingerprint and lip movements can be captured using a device’s
front-facing camera, requiring no dedicated hardware. Despite its potential, research and progress into lip-based
biometric authentication has been significantly slower than other biometrics such as face, fingerprints, or iris.
This paper investigates a state-of-the-art approach using a deep Siamese network, trained with the triplet loss for
one-shot lip-based biometric authentication with real-world challenges. The proposed system, LipAuth, is rigourously
examined with real-world data and challenges that could be expected on lip-based solution deployed on a mobile
device. The work in this paper shows for the first time how a lip-based authentication system performs beyond a
closed-set protocol, benchmarking a new open-set protocol with an equal error rates of 1.65% on the XM2VTS dataset.
New datasets, qFace and FAVLIPS, were collected for the work in this paper, which push the field forward by enabling
systematic testing of the content and quantities of data needed for lip-based biometric authentication and highlight
problematic areas for future work. The FAVLIPS dataset was designed to mimic some of the hardest challenges that
could be expected in a deployment scenario and include varied spoken content, miming and a wide range of
challenging lighting conditions. The datasets captured for this work are available to other university research groups
on request.

Keywords: Lip-based, Biometric, Authentication, One-shot-learning, Open-set, Real-world, FAVLIPS, qFace, XM2VTS,
Siamese network, Triplet loss

Introduction
In today’s society, mobile devices such as phones, ts
and laptops are considered essential for both personal
and business purposes and the risks of passwords as a
sole means of authentication is widely recognised. These
devices can provide a gateway to gaining access to private
and confidential data and online services such as social
media, financial services and ecommerce services. Secure
authentication before gaining access to personal devices is
essential.
Biometric authentication is the process of verifying the

claimed identification of a person based on an innate
human characteristic or trait. Figure 1 gives an overview

*Correspondence: cwright32@qub.ac.uk
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of the 2 stages of biometric authentication which first
includes an enrolment stage, users can then authenticate
themselves against the enrolment data.
Biometric traits can be physiological or behavioural.

Physiological biometrics such as face or fingerprint have
already been successfully rolled out in many state-of-the-
art devices, both of these examples have been spoofed in
high profile media cases. Behavioural biometrics capture
a pattern or behaviour such as signature or voice veri-
fication. Behavioural biometrics can be more difficult to
spoof; however, they can also be more difficult to model
and authenticate robustly. Within biometric authentica-
tion, liveness detection refers to being able to detect if
a human is live and present during the authentication
process. If liveness is successfully incorporated within a
biometric system it could prevent face recognition sys-
tems from being spoofed using photographs or artificial
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Fig. 1 Biometric authentication overview, involving an enrolment stage shown in blue, and authentication stage shown in green

fingerprints being successful. Liveness detection is natu-
rally easier to build into a behavioural biometric system as
the behaviour requested can be altered.
Lip-Based Biometric Authentication (LBBA) is the pro-

cess of authenticating a person based on their visual lip
movements while speaking. LBBA has great potential for
mobile devices; it is a behavioural biometric in which
liveness could be easily incorporated by randomising the
requested spoken content, and it can be captured using a
device’s front-facing camera.
Despite its suitability, LBBA research has been spo-

radic. Much of the LBBA research has stemmed from
speech and speaker verification, where early studies
[1–4] suggested lip-movements alone were not sui as a
solo biometric.
Due to the recent limited success in selecting suitable

lip-based features for speaker verification, work in [4]
explored behavioural lip motion and intensity features
for visual speaker verification and speech recognition. [4]
used a closed-set protocol and 50-person dataset for all
training and evaluation. HMMs were used to model the
behavioural features and the best recorded result using
visual information only was an equal error rate (EER)
of 1.6% on the evaluation set. Following this, additional
research [5–8] went on to further confirm lip-movements
do contain unique information. However, in all these
works training and testing were completed using single,
small private datasets containing 9, 20, 43, and 40 individ-
uals, respectively, and closed-set protocols. In a closed-set
protocol, all users are known in advance and enrolled
during training. An open-set protocol differs as it enrols
new users during evaluation and testing stages, produc-
ing more realistic results of how a system would actually
perform in deployment.
Lip information has also been used in identification.

Similarly, identification is also a 2-step approach, as in
Fig. 1. However, identification differs from authentication
in that it is the ability to identify an individual from a pre-
defined group of users. Work in [9] generated lip features
using information about the lip area, height and width of
the lip contours, oral cavity pixels and visible teeth. For
the work in [9], they collected a private 20 person data set
for all training and testing. Their best recorded result for
identification was reported as 94.7% accuracy.

While evidence clearly shows the potential for visual
information taken from the lips to be used for authentica-
tion, each paper discussed so far used a different approach
to feature selection and extraction. Results have been
reported on single datasets that have ranged in size and
availability and closed-set protocols. Using larger datasets
that are widely available or multiple datasets would not
only enable comparison of results but also give a greater
understanding to the strengths and weaknesses of the
proposed algorithms.
Work in [10] researched LBBA using the popular

XM2VTS dataset, containing 295 individuals and closed-
set Lausanne protocol. They reported an EER of 2.2%
during evaluation and a FAR of 1.7% at a FRR of 3% on the
test set. The work in [10] used Discrete Cosine Transform
(DCT) coefficient features modelled with GMMs, where
enrolment required 4 videos for each user speaking a total
of 80 digits from multiple sessions. While not unfeasible,
the required amount of enrolment data is not ideal for a
biometric authentication solution.
Work in [11] presented a preliminary study of LBBA

with deep Siamese networks. They achieved state-of-the-
art on the XM2VTS dataset and closed-set Lausanne
protocol for LBBA with an EER of 1.03%. The proposed
solution, referred to as LipAuth, enabled a one-shot-
learning solution which allows new users to enrol with a
single 20-digit video.
This paper extends [11] with amore rigourous investiga-

tion into the suitability of LipAuth for mobile devices. The
work in this paper proposes a new, more realistic open-set
protocol for the XM2VTS and testing with 2 new real-
world datasets. The datasets, qFace and FAVLIPS were
designed and collected for this work. They were cap-
tured on a mobile device to enable testing of LipAuth’s
potential for liveness, to discover how much data is
required for enrolment and authentication, to test a series
of real-world challenges such as miming, varied con-
tent and a range of lighting conditions. Furthermore,
this paper shows the LipAuth model can be improved
with the addition of real-world data to better handle the
challenging lighting conditions. The final experiments in
this paper show the results of the FAVLIPS dataset on
with the more traditional approach to LBBA as proposed
in [10].
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For the first time, this paper tests LBBA beyond a
closed-set protocol and it’s actual potential for mobile
devices. To the best of the authors knowledge this is the
first time LBBA has been investigated with varied content
and real-world challenges. One of the aims of this paper is
to establish the challenges that cause problems for LBBA
in the real-world. This paper proposes a way to improve
LipAuth using real-world data so the one-shot embedding
is more robust to varied lighting conditions.

Methods
The LipAuth system was trained using a Siamese net-
work and the triplet loss function. Figure 2 shows an
overview of how this was implemented. The LipAuth
model in each branch of the Siamese network was inspired
by work in LipNet [12]. The LipNet model was designed
for visual speech recognition and contains 3× Spatio-
Temporal Convolutional Neural Network (STCNN) layers
each directly followed with a max pooling layer, and 2×
Bi-directional Gated Recurrent Unit (Bi-GRU) layers each
with 128 neurons. The LipNet architecture has shown it
can learn from video data containing only the lips and
mouth area; however, the LipNet weights were optimised
for speaker independant visual lip reading.

Siamese network overview
A Siamese network was used to learn the similarity
between inputs of the same person. This is done by train-
ing a network using 3 inputs at a time, where 2 inputs
belong to the same person (an anchor-positive pair) and
the third input (negative) is from a different person to
the anchor. The network is trained as illustrated in Fig. 2,
where a branch is created with an identical model for
each input. Each LipAuth model creates an embedding

of the input and the triplet loss function minimises the
distance between the anchor and positive embeddings
and maximises the distance between anchor and nega-
tive embeddings. The model weights are then updated in
all 3 branches identically. The duplicated model weights
ensure that if identical inputs are passed to the network
they will be mapped to the same feature embedding.

Artificial neural network layers
STCNN layers
STCNN is a variation on 2D convolution used to pro-
cess video data [13]. STCNNs differ from CNNs because
they include an additional summation over time. Given
an input video x ∈ R

C×T×W×H and a STCNN layer with
C′ kernels of size kt × kw × kh, the output volume is
computed as:

[stconv (x,w)]c′tij =
C∑

c=1

T∑

t′=1

W∑

i′=1

H∑

j′=1
wc′ct′i′j′xc,t+t′,i+i′,j+j′

(1)

where xctij is the pixel at location i, j in the cth channel
of the video frame at timestep t, and wc′ct′i′j′ indexes the
STCNN layer weights. Equation 1 ignores bias, assumes a
stride of 1 and zero padding of frames when i + i′ or j + j′
are greater thanW or H, respectively.

Bi-directional gated recurrent unit layers
GRU layers are a type of RNN [14] used in the LipNet
architecture and are formulated as:

�r = σ
(
Wr

[
c〈t−1〉, x〈t〉] + br

)
(2)

c̃〈t〉 = tanh
(
Wc

[
�r • c〈t−1〉, xt

]
+ bc

)
(3)

Fig. 2 LipAuth training overview. LipAuth was trained using a Siamese network architecture as shown here. Training data is organised in triplets,
where each element of the triplet is passed to a branch containing an identical LipAuth model. The triplet loss updates the LipAuth weights
identically in each branch
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�u = σ
(
Wu

[
c〈t−1〉, x〈t〉] + bu

)
(4)

c〈t〉 = �u • c̃〈t〉 + (1 − �u) • c〈t−1〉 (5)
where x〈t〉 is the output of the STCNN, the previous
timestep’s activations are c〈t−1〉 and σ(z) = 1

(1+e(−z))
. The

reset and update gate parameters are denoted by [Wr ,br]
and [Wu,bu], respectively. A bi-GRU [15] not only takes
advantage of previous frames but also can use information
contained in all the frames in a video. The 2 bi-GRU layers
used in LipAuth produce a many-to-many and many-
to-one mapping, respectively. The output the of second
bi-GRU layer is a 1D vector embedding representing an
entire videos position in 256D space.

Triplet loss function
As seen in Fig. 2, the triplet loss function requires training
data organised into triplets, where 1 of the triplets is the
anchor, A, and every triplet contains a positive, P, and neg-
ative, N, example. The triplet loss function is defined as:

J
(
y, ŷ

) = − 1
m

m∑

i=1
max (d(A,P) − d(A,N) + α, 0)

(6)

where α is the margin which sets the minimum euclidean
distance between the positive and negative input that the
network tries to satisfy. The loss will not be affected by
a training triplet if it is too easy, resulting in it having no
contribution to the weight updates. When choosing the
training triplets there are 3 possible categories:

1. Easy Triplets contain a positive which is very similar
to the anchor and a negative which is very unlike the
anchor; therefore: d(A,P) + α < d(A,N) so the loss
will be 0 and the model weights will not be updated.

2. Semi-Hard Triplets contain a positive which is closer
to the anchor than the negative but will create a
positive loss because the negative remains within the
margin: d(A,P) < d(A,N) < d(A,P) + α.

3. Hard Triplets contain a negative example which is
more similar to the anchor than the positive
example: d(A,P) > d(A,N).

The choice of triplets used for training can have an
important effect on training. Work in [16] used randomly
sampled triplets when training a model for character
recognition and achieved state-of-the-art results. Within
face recognition research, [17] found semi-hard triplets
optimal. [17] reported when triplets were randomly sam-
pled only a few contributed to the loss and the model took
longer to converge, and using only hard triplets caused the
model to fail to converge. Work in [18] trained a Siamese
network on person re-identification and found a 2:1 ratio

of semi-hard triplets, followed by fine tuning the final
layers using only hard pairs was optimal.

Training LipAuth
For this work LipAuth was trained twice, once using the
closed-set protocol and again using the open-set proto-
col. LipAuth was trained using semi-hard and easy triplets
with a learning rate of 1 × 10−5 and no dropout. These
hyperparameters were fine tuned in preliminary work in
[19]. The closed- and open-set models were trained for 99
and 113 epochs, respectively, beyondwhich the evaluation
performance plateaued.

Datasets
This work used the existing XM2VTS dataset [20] as it
is large and popular and has an accompanying closed-set
protocol [21] which enables comparison with other algo-
rithms. In order to test the proposed algorithm for LBBA
under more realistic conditions, a new open-set protocol
is defined for XM2VTS in this work. Additional data was
captured to enable more thorough testing of LBBA for
mobile devices. Data was collected in 2 parts: qFace and
FAVLIPS, and are available to other university groups for
research upon request.

XM2VTS
The XM2VTS dataset [20] is well-known and widely
used for audio-visual speaker and speech recognition.
The dataset contains 2360 videos from 295 individuals
uttering the same digit sequence 8 times, recorded over
4 sessions. Sessions contain each individual repeating a
digit sequence twice and a phonetically rich sentence,
with approximately 1month between sessions. Themonth
duration between each session enabled variation in indi-
viduals appearance, such as changes in facial hair, lip-
stick and facial blemishes. With authentication being the
focus of this work, it is important that natural changes in
appearance such as these are represented in the dataset.
In all XM2VTS videos, the speakers are recorded in a
well lit up room sitting infront of a blue background and
videos are recorded at 25 frames per second (fps). The
digit sequence uttered is ‘01234567895069281374’.

XM2VTS protocols
The Lausanne protocol [21] is a closed-set authentication
protocol for XM2VTS. A closed-set authentication pro-
tocol requires knowing the whole population of clients
in advance [22], meaning no new users are added to the
system during cross validation and testing. An open-set
protocol differs as it takes new users into consideration
during both cross validation and testing. An open-set pro-
tocol imitates a real-world scenario, providing a more
realistic idea of how a system would actually perform
in deployment. It would be unrealistic to retrain a new
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systemwith each new user in deployment; thus, it is essen-
tial to know how the performance is affected by new
users. This makes the open-set protocol a harder chal-
lenge. To the best of the authors knowledge, there is no
prior open-set protocol currently available for XM2VTS.
Figure 3 shows the distributions of individuals for the
existing closed-set protocol (Fig. 3a), and the new pro-
posed open-set protocol (Fig. 3b).

qFace
qFace is an audio-visual dataset designed and collected
for this work. qFace’s design was specifically structured
to enable a series of systematic tests for a model trained
on XM2VTS. qFace contains real-world data of varied
content and duration collected on a mobile device.
qFace was collected using the front-facing camera on

a Nexus 7 Android tablet. The dataset contains 10 users
saying 10 different digit sequences 8 times each, produc-
ing 800 videos. The dataset is made up of 7 males and 3
females and contains a wide range of ages and facial hair.
All participants within the dataset are from the UK and
Ireland. Users were asked to centre their face in the screen
and read out-loud the digit sequences. As can be seen in
Fig. 4, minimal instructions on angle and distance to the
screen were given, ensuring a more natural and realistic
dataset for mobile-based authentication. Full face audio-
visual videos were captured at 30 fps and saved as mp4.
Recordings for 9 individuals were completed in a single
session to avoid significant changes in appearance and
behaviour. Due to a technical issue, Jack’s recordings were
completed in 2 sessions with a single day between ses-
sions. Recording the dataset in a well-lit environment and
within a single session limited changes in appearance over
time so that changes in results can be attributed to the
content and quantity of data instead.
This dataset was designed to verify if an authentication

system trained with the XM2VTS dataset can be ported
for use in real-world applications using video data cap-
tured on amobile device. Furthermore, to verify if liveness
can be easily incorporated by varying digit content. In

order to test a range of possible enrolment and authenti-
cation content we asked the individuals in qFace to repeat
digit sequences of varying length and content 8 times,
Table 1 shows the digit sequences spoken.
The first digit sequence in Table 1 is the same digit

sequence used in all videos in the XM2VTS. This means a
direct comparison can be made using both the XM2VTS
open-set protocol test set. Digit sequences 2 to 5 are sub-
sets of digit sequence 1. Sequences 6 to 10 match the
length of the previous sequences but the digit sequence
was randomised. It is worth noting that unlike sequences
2 to 5, sequences 7 to 10 are not subsets of sequence 6.
qFace is a small dataset, designed and collected to fulfil

the specific needs of this work. However, qFace allows for
a comparison of real-world data to XM2VTS, and enables
a series of systematic experiments to carefully monitor the
effects of not only the number of digits spoken, but spe-
cific digit content also. The qFace dataset was designed to
be used solely as an additional test set.

FAVLIPS
The FAVLIPS dataset contains video data and basic infor-
mation from 42 individuals captured over 4months for
person authentication. The aim of creating this dataset
was to capture real-world data, collected from the same
people over a long period of time. This mimics the 4
sessions from the XM2VTS collection process, with the
addition of the individuals having control of their own
recordings. In this type of authentication, a certain level of
cooperation can be expected from individuals, so minimal
instructions were provided to users and they were asked
to record themselves as they would if they were using it to
log into a personal application.
The 42 individuals recorded themselves speaking and

miming a series of digit sequences and phonetically
rich sentences using a custom application on a Nexus
7 Android tablet over 4 sessions, with approximately 4
weeks between sessions. This time period between ses-
sions allowed for changes in appearance and behaviour,
making the authentication challenge more realistic. Each

Fig. 3 XM2VTS protocols. a Existing closed-set Lausanne protocol, configuration II, as defined in [21].bNew open-set protocol as defined for this work
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Fig. 4 Sample of the qFace dataset: 10 users consisting of 7 males and 3 females, with each user’s reference name. Real-world data collected on
handheld mobile device

individual made a total of 54 recordings. During every
session individuals were asked to utter the following:

• Ten digits in series
• A randomised 10-digit sequence (same for all users)
• Mime both of the 10-digit sequences
• Utter the randomised 10-digit sequence under 3

additional lighting conditions: light from the side,
light behind, and light infront. Figure 5 illustrates the
neutral lighting and the 3 additional lighting
conditions.

• Randomly selected phonetically rich sentences from
450 possible sentences taken from the TIMIT dataset
[23]

The FAVLIPS dataset contains 2268 videos from the 42
individuals. This is made up of 11 females and 31 males,

Table 1 The digit sequences uttered 8 times, by each individual
in qFace

Content of digit sequence No. of digits Type

1 01234567895069281374 20 XM2VTS

2 5069281374 10 Subset

3 69281374 8 Subset

4 692813 6 Subset

5 2813 4 Subset

6 91763284058540263917 20 Random

7 6873021594 10 Random

8 53216970 8 Random

9 280914 6 Random

10 4795 4 Random

Sequence 1 is the same 20-digit phrase as XM2VTS, sequences 2–5 are subsets of
sequence 1. Sequences 6–10 are random. Sequences 7–10 are not subsets of
sequence 6

from 6 different countries and ages ranging from 19 to 59
years. Although FAVLIPS is a diverse dataset it is still con-
sidered small in comparison to [24–26]; however, it fills a
need for testing a LBBA with real-world data. The content
captured provides a wide range of real-world testing situa-
tions such asmiming and lighting that could be expected if
deployed on amobile device. In addition, it enables perfor-
mance measurements on varied content which is essential
for potential liveness checks.

Dataset preprocessing
For this work all datasets were cropped to only contain
the lips and surrounding mouth area using an open-
source library, DLib [27]. The cropped RGB video data
was passed directly to the LipAuth model.

Results
The aim of the work in this paper is to rigorously test
LipAuth, a LBBA solution that uses one-shot-learning,
with real-world data to better understand its suitability
for mobile devices. The experiments include compari-
son closed-set protocol to the new open-set protocol,
benchmarking real-world datasets, varied enrolment and
authentication data, and a range of potential challeng-
ing situations that would be possible with LBBA on a
mobile device. These include miming, randomised digits
and sentences for liveness checks and varied illumina-
tion. The next experiment presents a proof-of-concept
that shows how using a Siamese network can transfer
knowledge of challenging conditions to new unseen indi-
viduals. The final experiments show the performance of
the FAVLIPS dataset on a more traditional approach to
LBBA which used handcrafted features, to help provide
additional insight on the amount of overtraining seen
within the LipAuth model.
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Fig. 5 A sample of 2 participants from FAVLIPS showing the range of lighting conditions captured. Lighting condition from left to right: neutral, side,
behind, and front

New open-set protocol
The XM2VTS dataset and closed-set Lausanne protocol
were employed to enable comparisons with other algo-
rithms; however, an open-set protocol is essential in order
to test robustness and potential for real-world applica-
tion and facilitate comparisons with other datasets in the
future. Two separate LipAuth models were trained with
the training data available in each protocol as previously
described. Table 2 includes EER on both evaluation and
test sets and the FAR at a 1% FRR.
Table 2 shows that the closed-set protocol performed

slightly better than the open-set protocol throughout.
This is not unexpected as the open-set protocol is a
harder challenge with completely new users who must be
enrolled during evaluation and testing. Upon further anal-
ysis of the test set errors when the threshold was set to
the EER, the 1.03% achieved in the closed-set protocol
equates to 15 attempted login tests where the individual
could not login as themselves, and these 15 attempted
logins were all from 3 individuals. From reviewing the 3
individuals, there were 2 male and 1 female, no notable
facial hair or obvious physical characteristics were the
cause. The corresponding 1.65% EER on the open-set pro-
tocol resulted from 40 attempted logins. The increased
number of failed attempted logins was due to an increase

Table 2 Closed-set Lausanne protocol and open-set protocol
results on the XM2VTS test set. Results are FRR at a 1% FAR

Closed-set Open-set

Evaluation EER 0.93% 1.21%

Test set EER 1.03% 1.65%

Test set at 1% FAR 1.07% 1.83%

in the number of tests in the new protocol, and the 0.62%
increase in EER. There was an overlap in problematic indi-
viduals between the protocols, with approximately a third
of the closed-set failed client tests also failing during the
open-set test set. The open-set protocol test set contains
60 completely new individuals who had no representation
in training, these 60 individuals produced over 2500 of the
client-attempted login tests. In the open-set protocol test
set results, 30 of the 40 failed attempted logins were from
these new users. While, the majority of new clients were
not problematic, this suggests that the LipAuth model
could be overfit to the training data. In Table 3, the open-
set EER is split into repeating clients who had a data
representation in training and completely new clients.
There is a notable difference in Table 3 between the EER

for new clients and clients with a representation of their
data used to train LipAuth. This confirms the LipAuth
model trained with the open-set protocol is overfit to the
training data. Although the EER on new clients is higher
than the repeating clients, at 2.80%, it shows the model
can handle new unseen individuals reasonably well. The
LipAuth model trained with the open-set protocol is used
to test the real-world data sets below.

Table 3 Results for the XM2VTS test set and open-set protocol
on LipAuth

EER breakdown

Full test set 1.65%

Repeating clients 0.97%

New clients 2.80%

The test set is split into existing clients who are represented in training and those
who are not. This provides a measure of how much LipAuth is overfit to the training
set
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One-shot-learning
One of the biggest advantages of the Siamese network over
existing traditional approaches such as [10, 28] is the one-
shot-learning solution. One-shot-learning for LBBA is the
ability to authenticate from a single enrolment video. This
experiment was used in order to know if authentication
improves with more enrolment data. For this experiment,
to generate anchor videos longer than 20 digits, videos
were concatenated to produce 40, 60, and 80 digit enrol-
ment videos. The XM2VTS and open-set protocol was
used for this experiment. The results are shown in Table 4.
Table 4 shows that there is very little difference between

using more than 20 digits for enrolment. The Siamese
network remained stable with a single 20 digit enrolment
video, and no additional informationwas gained by adding
more data to enrolment. For all future LipAuth experi-
ments in this paper, a single video is used for enrolment.

Dataset direct comparison between XM2VTS and qFace
The XM2VTS dataset can be considered an ‘ideal’ dataset
as it was recorded in consistant illumination with a steady
camcorder and uniform recording conditions. LipAuth
was trained using only XM2VTS and performs well on
data from the same distribution as the training data, how-
ever showed signs of overfitting. The qFace dataset con-
tains an identical 20-digit sequence (Table 1, Sequence 1)
to the XM2VTS dataset to enable a measure of LipAuths
performance on data captured on a mobile device.
Table 5 shows the performance of the qFace ‘like-for-

like’ sequence to XM2VTS. The higher EER on qFace
shows the embedding learned on the XM2VTS data did
not transfer well to real-world data. This is expected
as new clients in the XM2VTS test set were still from
the same distribution as the training data. Training the
LipAuth model using only XM2VTS data means the
embedding learned has never had to account for the
variations seen in real-world data.
This ‘like-for-like’ experiment with qFace involved 1,600

attempted logins, 160 of which are true client tests. The
6.25% contributed to 12 failed attempted logins, 8 of
which resulted from 2 videos from a single person, Jack,
who failed to log in against all 4 of their enrolment videos.
The remaining missed clients are due to 1 individual,

Table 4 One-shot-learning enrolment data results

Num digits EER

20 1.65%

40 1.94%

60 1.51%

80 1.79%

Results on XM2VTS, varying the number of digits used in enrolment against the EER
test set

Molly, who was unable to log in against 1 of her enrolment
videos given 4 attempts, despite being able to log in against
all other enrolment videos with the same authentica-
tion videos. After inspection of the original videos, Molly
seemed to not move her mouth much while speaking in
the problematic enrolment video, in her other enrolment
and test videos more movements were seen. The qFace
dataset contained 7 males, 5 of which had notable facial
hair. While Jack was the only participant with a clearly
defined beard this did not appear to be the problem, his
2 problematic authentication videos appeared to contain
an extreme change in illumination. In all Jack’s enrol-
ment videos, and 2 of his authentication videos, the videos
appeared slightly darker. Figure 6 shows a sample of his
‘normal’ videos on the left, and one of the problematic
videos on the right.
t-Distributed Stochastic Neighbour Embedding (t-SNE)

[29] was used on the qFace embeddings calculated in
this experiment in order to reduced the number of
dimensions from 256 to 2 for visualisation. t-SNE uses
a non-linear dimensionality reduction method to trans-
form data from a high dimensional space and project it
into a low-dimensional space, while maintaining a rela-
tionship between the structure of the points in the high
dimensional space and the distance between them in the
low-dimensional space. Figure 7 shows the resulting plot.
Interestingly, it can be seen that the points for each indi-
vidual are clearly clustered. Each point represents the
embedding for a single video, where enrolment videos are
shown with a border and authentication videos without.
From Fig. 7 Jack’s outlying videos can be seen to lie much
further from the rest of his points.

qFace: testing digit quantity and content
The qFace dataset contains multiple digit sequences of
varying number of digits from 20 to 4 digits. The spe-
cific digit content was planned to enable systematic test-
ing of the digit order and quantity of sequences after
training with the XM2VTS dataset. Videos were captured
in as few sessions as possible so errors could be attributed
to the enrolment and authentication content rather than
major changes in individual’s appearance or changes in
environment.

Table 5 Dataset comparison results: the EER showing the
comparison between qFace and XM2VTS

Test set EER

XM2VTS: full test set 1.65%

XM2VTS: new clients 2.80%

qFace 6.25%

All enrolment and authentication contained the same digit sequence content.
Results compare the XM2VTS open-set protocol results with matching qFace
sequence 1 from Table 1
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Fig. 6 qFace—Jack. Sample frame from two 20-digit videos in which the XM2VTS sequence was spoken. Video on the left represents the majority of
Jack’s data, while the sample on the right was from 1 of the 2 problematic videos for Jack

Matched enrolment and authentication
This experiment was carried out to see how the number
of digits in a video affects performance. The experiment
uses a ‘like-for-like’ number of digits within sequences for
enrolment and authentication. This is important for user
experience.
The one-shot-learning means using a single enrolment
and authentication sequence which is already a desir-
able trait for a biometric for mobile devices, but if 20
digits provide no additional benefit over 4 digits, then
why request 20 digits from users? In this experiment
both the random and subset sequences were used. The
first 4 videos for each sequence were used as individual
enrolment videos, and the final videos as the authentica-
tion sequence. When testing against a 20-digit enrolment
video, 20-digit authentication videos were used, for 10-
digit anchor videos, 10 digit authentication sequences
were used and so forth. For each of the 10 individuals
this produces 8 enrolment videos and 8 authentication
videos, meaning each experiment contained 8 enrolment
videos × 8 authentication videos × people = 640 client
scores and 5760 imposter scores. Results are shown in
Fig. 8 .

In Fig. 8, the 10 digit enrolment and authentication
sequence out performed all other sequence lengths with
an EER of 5.00%; however, the 20 and 8 digit sequences
scored similar EERs of 5.94% and 5.49%, respectively.
On closer inspection of the mistakes made by the 10-

digit setup, the 5.00% EER equated to 32 out of 640 client
tests where the client could not log in as themselves and
287 out of 5760 cases where an imposter was able to
log in as another. Of the 32 problematic client scores, 16
were from a single individual, Beth. Beth had 8 rejected
attempted logins from a single video that was unable
to log in against any anchor video. On manual inspec-
tion of the video and other videos by Beth that were not
problematic, it is unclear why it caused an issue. In the
imposter tests, the same video by Beth was not able to
log in to any imposter models either, and all of Beth’s
anchor videos were not susceptible to any imposter tests.
Looking at the imposter scores, Adam’s anchor videos
were repetitively fooled by Joe, Mike and Molly, produc-
ing over half the imposter logins. The majority of the
remaining mistakes involved Joe, Molly and Jack. Figure 9
gives a sample frame containing only the mouth region
from each person in the qFace dataset. These results show

Fig. 7 Results using t-SNE to reduce videos from the qFace dataset from 256 to 2 dimensions. Each individual is represented by a unique colour.
Enrolment videos are shown with a border and authentication videos without
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Fig. 8 Figure shows the performance using LipAuth trained on XM2VTS data tested on the qFace dataset for varied length sequences. Results
reported on authentication sequences of matched number of digits to the Anchor video

that the LipAuth embedding is not specifically making
mistakes based on gender or facial hair. Figure 9 also
highlights the real-world element of the qFace dataset, as
all volunteers were asked to record themselves in neu-
tral lighting; however, a range of lighting conditions is
observed.

Number of digits within authentication
The next experiment was created in order to take a closer
look specifically at the number of digits within an authen-
tication sequence. Following results from Figure 8, the
number of digits in authentication was investigated using
enrolment videos of length 8, 10 and 20 digits. A similar
setup was implemented using the same anchor videos and
authentication sequences, but this time multiple length
authentication sequences were tested against each enrol-
ment video, as shown in Table 6.
From Table 6, it can be clearly seen that each authen-

tication sequence performed best when tested against an
anchor video of the same length. It can also be seen

with the current LipAuth weights and one-shot-learning
approach that 4 and 6 digit sequences perform relatively
poorly and it could be that, given their length, they con-
tain less unique information in comparison to the longer
sequences tested.

Mistmatched digit content
The previous experiments using the qFace dataset used all
digit sequences of the same length. For this experiment
the 20- and 10-digit videos were split into the 2 different
sequences recorded as described in Table 1. Each length
of sequence has a subset of the digits used in the XM2VTS
sequence and a randomised digit sequence.
For this experiment, each of the 4 sequences used were

tested as an enrolment video against matched digit con-
tent and an other sequence of the same length. This will
show if the LipAuth embeddings favour the XM2VTS
sequence it was trained with, and the effects of changing
the content for a matched length sequence at test time.
The results are shown in Table 7.

Fig. 9 qFace: sample frames from a 10-digit sequence. The frames were passed to the LipAuth model to obtain the embedding. The figure also
highlights the real-world element of this dataset as all videos are considered ‘neutral lighting’
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Table 6 Number of digits in an enrolment video (Enrol) against
number of digits in authentication video (Auth)

Enrol 8 10 20

Auth 4 19.89% 17. 29% 17.41%

6 10.63% 11. 27% 12.96%

8 5.47% 9. 04% 10.73%

10 9.77% 5.00% 8.49%

20 10.24% 8.44% 5.94%

Results show EER on qFace dataset, using the Siamese network

Table 7 shows 4 different enrolment videos against
authentication sequences of matched number of dig-
its, where italic highlights matched content as well. The
results on the 10-digit sequences from Table 7 appear
in general better than the 20-digit results and suggest
that content appears to have little effect. The lowest EER
produced in this experiment involved enrolling with a ran-
dom 10-digit sequence and authenticating with a different
10-digit sequence, achieving 2.50%. This is lower than the
2.80% achieved on the new clients in the XM2VTS test set.
When enrolled with the XM2VTS sequence both 20

digit authentication sequence and the content of the
authentication sequence had little effect. However, when
enrolled and authenticated with the 20-digit random
sequence, the performance dropped to 2.88% which is
comparable to the new clients in the XM2VTS test set.

FAVLIPS: varied real-world content
The FAVLIPs dataset was designed and collected over 4-
month-long sessions, to test the performance of LBBA on
mobile devices under a series of challenging conditions
including miming, random sentences and varied lighting
conditions.
It is already known from the previous experiments that

the LipAuth model is overfit to the XM2VTS dataset;
however, the performance on qFace suggested the embed-
ding learned from the XM2VTS performed fairly well on
controlled mobile data . The FAVLIPs dataset was not
collected in a controlled manor, providing a much more
difficult challenge.
The setup of this experiment mimics as closely as possi-

ble the previous experiments. The same enrolment videos

were used throughout this experiment, which includes the
10-digit sequences from the first 3 sessions, this means
each individual had 6 separate enrolment videos. All
enrolment videos were recorded in neutral lighting and
6 different categories of authentication sequences were
tested:

1. Spoken Digit Sequences with 2 authentication
sequences per individual containing different 10-digit
sequences. Recorded in neutral lighting

2. Mimed Digit Sequences with 2 authentication
sequences per individual, with the same content as
the previous spoken digit sequences. Recorded in
neutral lighting

3. Sentences with 5 random authentication sentences
per individual. Recorded in neutral lighting

4. Light Front with 1 authentication sequence per
individual. The content spoken in the sequence is the
same 10-digit sequence as one of the digit sequences
spoken aloud and mimed

5. Light Side with 1 authentication sequence per
individual. The content spoken in the sequence is the
same 10-digit sequence as the light front sequence.

6. Light Behind with 1 authentication sequence per
individual. The content spoken in the sequence is the
same 10-digit sequence as the light front sequence.

The results shown in Fig. 10 show LipAuth trained using
XM2VTS data only, is not portable to real-world appli-
cations. Despite the extremely poor performance, there
was no notable difference between spoken digits, mimed
digits and sentences for authentication. However, as the
lighting conditions vary, the performance significantly
degrades.
Possible solutions to improve these results could include

preprocessing of the data, filtering out videos that contain
extreme lighting conditions or retraining LipAuth. The
quality of one-shot-learning is entirely dependent on the
quality of the embedding, and the quality of the embed-
ding is dependent on the quality of the training data.
When training a Siamese network for LBBA, ideally the
training data should contain a wide range of challeng-
ing real-world conditions. It could be expected that an
embedding trained with enough real-world data, could be

Table 7 qFace results showing the EER of the separate 10 and 20 digit sequences

Enrol 20-XM2VTS 20-Random 10-Subset 10-Random

Auth 20-XM2VTS 6.25% 8.12% - -

20-Random 6.36% 2.88% - -

10-Subset - - 4.50% 4.60%

10-Random - - 2.50% 5.83%

Results show 4 different enrolment sequences against authentication sequences of matched length and varied content. Results in italics mark the results when the
enrolment and authentication sequences matched
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Fig. 10 Results from LipAuth trained with XM2VTS data on the FAVLIPS dataset

robust to these challenges and, therefore, more suited to
deployment on mobile devices.

Retraining LipAuth weights with real-world content
In theory, the LipAuth embedding could be improved
using real-world data, learning from other people’s videos
so that it improves on challenging conditions for new indi-
viduals. To test this theory LipAuth was retrained with
videos from the FAVLIPS dataset. The FAVLIPS dataset
contains 52 recordings from each of the 42 individu-
als. All data for 22 of the individuals was added to the
pool of training data. The remaining 20 individuals still
will not have a representation seen during training and
will be completely new unseen test subjects. If each indi-
vidual contributes 52 videos, then each individual con-
tributes 1326 anchor-positive pairs for generating triplets.
With 22 individuals that total 29,172 possible anchor-
positive pairs. It would not be expected that 22 individuals
alone could provide a robust embedding that will gen-
eralise well to the whole population, so updating the
weights will include XM2VTS and FAVLIPS data. Com-
bining XM2VTS and FAVLIPS training data produces
over 30,000 anchor-positive pairs for selecting triplets.
Given the computational constraints, 10% the available
training data was randomly selected of the semi-hard and
easy triplets on a 5 to 1 of FAVLIPS to XM2VTS ratio to
train each epoch.
Two models were generated using FAVLIPS data, one

model involved updating the LipAuth weights from the
open-set protocol, and second trained LipAuth from
scratch with randomly initialised weights. When updat-
ing the existing weights the model trained for an addi-
tional 40 epochs before the loss plateaued. When training
from scratch the model was trained for 60 epochs before
the training loss significantly decreased and the model

showed signs of overfitting. The results of the updated
weights against each lighting condition are presented in
Table 8.
Table 8 shows a side by side comparison of the

LipAuth model trained with just XM2VTS data, weights
updated with training data that contained real-world and
XM2VTS data and trained from scratch with real-world
and XM2VTS data. Compared to the baseline model,
both models show FAVLIPS data improved significantly
with additional real-world training data. The best perfor-
mance on the four different lighting conditions are shown
in italics. Neither of the models trained with FAVLIPS
data outperformed the other on all lighting conditions,
though both setups do show significant improvements for
all lighting conditions. Every lighting condition improved
by over 10%, with the light behind test case improving
by more than 20%. These results were obtained using
one-shot-learning with anchor videos recorded in neutral
lighting conditions, up to 4months before the authentica-
tion videos, and themodel has not seen any representation
of the individuals tested. This confirms that a Siamese
network can learn and improve on challenging conditions
from other individuals’ data.

Table 8 Comparison of results from the 3 different LipAuth
model weights presented in this section, against lighting
conditions for the 20 unseen individuals from FAVLIPS

XM2VTS only Updated weights Retrained

XM2VTS: Evaluation Set 1.21% 1.95% 5.60%

FAVLIPS: Neutral Nums 22.43% 13.79% 10.83%

FAVLIPS: Light Front 28.44% 17.50% 20.54%

FAVLIPS: Light Side 42.29% 36.67% 30.00%

FAVLIPS: Light Behind 44.91% 24.17% 29.12%
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Comparison with traditional approach for verification of
network overtraining
The experiments in this work have shown that the
LipAuth model is overfit to the training data and the
large decrease in performance on real-world data was
attributed mostly to this. While, in an attempt to rectify
this problem the LipAuth model was retrained contain-
ing a sample of the real-world data and the performance
was shown to improve, it could be argued that perhaps
the challenging nature or sparsity of the real-world data
was a greater problem than the overtraining. In order to
test this theory, the FAVLIPS dataset was tested using
the LBBA approach from work in [10], using DCT coef-
ficient features modelled with GMMs. The setup pro-
posed in [10] was selected as it did not use deep learning
and was the previous state-of-the-art using the XM2VTS
and Lausanne protocol prior to LipAuth. Work in [10]
used DCT coefficient features selected from 4 separate
20-digit videos to train a 32-mixture GMM per person
during enrolment. Table 9 shows the results of varying
the amount data used during enrolment on the XM2VTS
dataset. This experiment was carried out to provide intu-
ition into the amount of data required during enrolment
for the FAVLIPS dataset with the traditional approach.
Results in Table 9 for the traditional approach show

a strong correlation between the EER and the amount
of data used during enrolment. As the enrolment data
is decreased the performance significantly deteriorates,
whereas the LipAuth embedding in remains more stable.
Given the need for more enrolment data, the FAVLIPS

dataset was tested using the traditional LBBA approach
with the following 3 different enrolment setups:

1. Model trained with digit sequences only—6 videos
2. Model trained with 15 phonetically rich

sentences—15 videos
3. Model trained with Session 1 data only—12 videos

While the varied amount of enrolment data prevents a
direct comparison between LipAuth and the traditional
approach, it does provide a more realistic testing scenario

Table 9 Number of digits used in enrolment for LipAuth (as in
Table 4) and traditional approach using DCT coefficient features
and GMMs (described in [10])

EER on LipAuth Traditional approach

Num enrolment digits

20 1.65% 16.49%

40 1.94% 7.93%

60 1.51% 2.64%

80 1.79% 1.88%

These results show the EER on the XM2VTS open-set test set. Results from Table 4
are included for comparison

for the traditional approach as more than 1 enrolment
video would be required.
Results in Fig. 11 show some improvements on the

FAVLIPS dataset over the LipAuth model. However, the
authentication sequences captured under the most chal-
lenging lighting conditions prove problematic for both
approaches. The figure shows that as the amount of data
used during enrolment increased so did the performance
on the challenging authentication data, but this came at
the expense of the performance on the other authentica-
tion sequences.
One of the most significant differences between

LipAuth and this traditional approach to LBBA is enrol-
ment. While the features can be fine tuned for the tradi-
tional approach using one dataset and applied to another,
it cannot learn an embedding from another data set that
can be applied to new data. Results in Table 8 showed
that when a small amount of real-world data was used
in training LipAuth, the results across new enrolling per-
sons improved. With the traditional approach every new
person enrolling will always need to provide a large pro-
file of diverse video data for training their own model, as
it cannot learn from other people’s data. Figure 11 also
demonstrated that adding more diverse data may reduce
the model performance on less challenging authentication
sequences.

Discussion
The work in this paper provided a rigorous investigation
into LBBA in the real-world. A new open-set protocol for
the XM2VTS was proposed and benchmarked for LBBA
achieving an EER of 1.65% and FRR of 1.83% at a 1%
FAR. This 1.65% EER is close to the closed-set 1.03%
existing state-of-the-art [11], despite the open-set pro-
tocol being a significantly harder challenge. This is this
first time LBBA has been investigated beyond a closed-
set scenario. Furthermore, results showed the one-shot-
learning solution was stable for a single enrolment video,
which has many benefits over existing approaches pre-
sented in [10, 28, 30] which require multiple enrolment
examples.
The qFace dataset was collected and used as an addi-

tional test set to enable systematic testing of varied digit
content and length of sequences for both enrolment and
authentication. The results showed for the first time LBBA
with real-world data. The results on the qFace dataset
were unpredictable as the LipAuth embeddings were
not robust to natural deviations within real-world data.
Results for 20-digit sequences ranged from EER of 2.88 to
8.12%, and EER for 10-digit sequences from 2.50 to 5.83%.
The qFace dataset did perform best when digit sequences
contained at least 8 digits, and the number of digits in an
authentication sequence matched the number of digits in
enrolment.
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Fig. 11 Results for the FAVLIPS dataset using traditional LBBA approach from [10]. EER against 3 different enrolment models per person: using digit
sequences only (blue), sentences only (pink), and all data from Session 1 (green). Each model was tested against 6 different authentication
sequences, shown in different textures

The FAVLIPS dataset presented some of the hard-
est challenges that could be expected for LBBA. Enrol-
ment and authentication data were separated by up
to 4months and individuals had complete control over
their own recordings. FAVLIPS was used to compare
the results when the authentication sequence were spo-
ken, mimed, sentences and 3 additional lighting condi-
tions. The benchmarking results on the neutral lighting
FAVLIPS sequences showed spoken digit sequences, sen-
tences and miming all achieved and EER of 22.50% ± 1%.
Despite the extremely poor performance, it was noted that
there was no significant difference between all 3 of these
challenges. However, significant declines in performance
were seenwith the variations in the lighting. These results,
while significantly worse than the results on XM2VTS
in this paper, are comparable to the results reported for
LBBA on the XM2VTS in other works [2, 3], where they
reported 19.7% and 22%, respectively.
Experiments in this work showed how the LipAuth

model could be improved to better handle real-world data
for LBBA on mobile devices. Results showed that a drop
in EER from 44.91 to 24.17% (relative reduction of 46%)
could be achieved on the hardest lighting challenge when
only a small amount of real-world data was added to the
LipAuth training data.
The final experiments in this work showed the per-

formance of the LipAuth model compared to a more
traditional approach to LBBA as proposed in [10]. Using
a single enrolment video the LipAuth model achieved
1.65% EER on the XM2VTS, whereas the traditional
approach obtained a 16.49% EER on the experiment. The
results showed that the traditional approach required
significantly more enrolment data to get comparable

results on the same test set. The FAVLIPS dataset
was tested using the traditional approach and these
results highlighted that despite using 12 times as many
enrolment videos the traditional approach had difficulty
with the real-world challenges too. It could be con-
cluded from these final experiments that the perfor-
mance worsening noticed for the LipAuth model was
not completely due to the overtraining of the LipAuth
weights.

Conclusions
While recent research has shown promising results for
LBBA on the highly controlled video recordings of the
XM2VTS dataset, work in this paper demonstrates the
challenges still faced for real-world deployment on mobile
devices for models such as LipAuth. The challenges inves-
tigated here included the length and content of enrol-
ment and authentication sequences as well as illumination
effects. It was found that varying content had little impact
on performance which is crucial for liveness checks, while
illumination was shown to present the greatest challenge.
To demonstrate one path forward, this paper showed
that training the LipAuth model on examples of var-
ied lighting leads to significant improvements in perfor-
mance (46% relative reduction in errors). However, to
push the field forward and more inline with other bio-
metrics such as face or fingerprint, a larger training set
of data expected from mobile devices is needed. Future
work could also explore preprocessing techniques such as
[31, 32] to correct for these illumination effects. Account-
ing for these illumination effects could be key to devel-
oping LBBA systems suitable for deployment on mobile
devices.
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Open-set protocol for XM2VTS
Training
Open-Set Protocol for XM2VTS: The ID Numbers of the
150 Training Clients.
003, 004, 005, 009, 012, 016, 017, 019, 020, 021, 022, 024,
025, 027, 029, 030, 033, 035, 036, 037, 038, 040, 042, 045,
049, 050, 051, 052, 053, 055, 058, 060, 061, 064, 066, 069,
071, 073, 078, 079, 080, 085, 089, 090, 099, 101, 102, 103,
105, 110, 112, 115, 116, 121, 123, 125, 126, 129, 132, 133,
137, 138, 140, 145, 148, 150, 152, 154, 159, 163, 164, 165,
166, 167, 168, 169, 173, 181, 182, 183, 188, 191, 193, 196,
198, 206, 207, 208, 209, 210, 211, 219, 221, 222, 227, 229,
231, 232, 235, 237, 240, 244, 246, 248, 253, 255, 258, 259,
261, 264, 267, 269, 270, 275, 278, 279, 282, 285, 287, 288,
289, 290, 292, 293, 295, 305, 310, 312, 316, 321, 322, 324,
325, 328, 329, 330, 332, 336, 337, 338, 339, 340, 357, 358,
360, 364, 365, 369, 370, 371

Evaluation
Open-Set Protocol for XM2VTS: The ID Numbers of the
45 New Evaluation Clients.
006, 013, 018, 026, 032, 034, 041, 054, 056, 065, 068, 072,
074, 075, 082, 091, 092, 108, 113, 124, 135, 136, 141, 146,
179, 180, 197, 213, 216, 218, 224, 228, 233, 236, 243, 266,
274, 281, 319, 320, 334, 342, 359, 362, 366

Open-Set Protocol for XM2VTS: The ID Numbers of the
20 Evaluation Imposters.
000, 002, 046, 057, 083, 093, 104, 120, 143, 157, 177, 187,
189, 203, 212, 215, 242, 276, 301, 314

Testing
Open-Set Protocol for XM2VTS: The ID Numbers of the
60 New Test Clients.
001, 007, 010, 028, 031, 043, 044, 047, 062, 067, 070, 081,
086, 088, 095, 098, 107, 109, 119, 122, 127, 128, 130, 134,
149, 153, 155, 158, 160, 171, 172, 174, 175, 176, 178, 185,
190, 199, 200, 201, 202, 225, 234, 241, 249, 250, 263, 272,
280, 283, 284, 300, 315, 313, 317, 318, 323, 331, 333, 335

Open-Set Protocol for XM2VTS: The ID Numbers of the
20 Test Imposters.
008, 011, 023, 039, 048, 059, 087, 096, 111, 114, 131, 142,
147, 161, 170, 226, 271, 286, 241, 367
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