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Abstract

The current global health emergency triggered by the pandemic COVID-19 is one of the greatest challenges mankind face in this
generation. Computational simulations have played an important role to predict the development of the current pandemic. Such
simulations enable early indications on the future projections of the pandemic and is useful to estimate the e�ciency of control
action in the battle against the SARS-CoV-2 virus. The SEIR model is a well-known method used in computational simulations of
infectious viral diseases and it has been widely used to model other epidemics such as Ebola, SARS, MERS, and in�uenza A. This
paper presents a modi�ed SEIRS model with additional exit conditions in the form of death rates and resusceptibility, where we can
tune the exit conditions in the model to extend prediction on the current projections of the pandemic into three possible outcomes;
death, recovery, and recovery with a possibility of resusceptibility. The model also considers speci�c information such as ageing
factor of the population, time delay on the development of the pandemic due to control action measures, as well as resusceptibility
with temporal immune response. Owing to huge variations in clinical symptoms exhibited by COVID-19, the proposed model aims
to re�ect better on the current scenario and case data reported, such that the spread of the disease and the e�ciency of the control
action taken can be better understood. The model is veri�ed using two case studies for veri�cation and prediction studies, based on
the real-world data in South Korea and Northern Ireland, respectively.
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1. Introduction

The coronavirus disease COVID-19 is a respiratory infec-
tion disease caused by the novel coronavirus, SARS-CoV-2.
The �rst COVID-19 outbreak was reported in Wuhan of Hubei
Province, China at the end of December 2019. Within just two
months, the disease has rapidly spread across the world and it
has been declared a global pandemic in early March 2020. As
of 20th April 2020, the virus has a�ected close to 2.5 million
people with approximately 170,000 con�rmed deaths across at
least 184 countries [1].

The symptoms caused by the SARS-CoV-2 virus have large
variations with most people only experiencing mild to moderate
respiratory illnesses and only a smaller group of people would
develop complications of respiratory failure or acute respiratory
distress syndrome. Based on clinical data reported from Wuhan
where the outbreak began, elderly patients have been identi�ed
to have higher odds to experience severe symptoms with higher
mortality rate compared to people of younger age [2]. Study
also shows that up to approximately 80% of the people infected
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with SARS-CoV-2 are asymptomatic carriers, i.e. they expe-
rience no or mild symptoms but are still able to transport the
virus to others [3]. This has caused the detection and contain-
ment of the SARS-CoV-2 virus to be much more challenging.
As a result, social distancing has been widely implemented in
many countries worldwide to slow down the transportation of
the virus through minimised human-to-human contact. Individ-
uals who have recovered from COVID-19 after experiencing
mild or moderate symptoms are more likely to develop tempo-
rary resistant towards the virus and are unlikely to experience
severe respiratory illnesses [4]. However, in rare occasions,
there have been clinical �ndings showing that patients who have
recovered from the disease have been tested positive again. For
instance, in February 2020, a patient in Osaka, Japan, has been
tested positive towards the SARS-CoV-2 a few days after being
discharged from the hospital for treatment with the disease [5].
Due to very limited knowledge on the immune response of hu-
mans to this novel virus, the possibility of reinfection cannot be
ruled out at the moment.

Mathematical modelling and computational simulations
have played important roles in describing the dynam-
ics of infectious diseases using nonlinear systems so that
their risks could be better understood [6, 7, 8, 9, 10,
11]. Most notably, the SEIR (Susceptible-Exposed-Infected-
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Removed/Recovered) model has been widely reported during
the past decades in quantitative modelling studies of infectious
epidemic/pandemic, such as the severe acute respiratory syn-
drome (SARS) in 2002 [12], the in�uenza A (pH1N1) pan-
demic in 2009 [13], the Middle East respiratory syndrome
(MERS) pandemic in 2013 [14], as well as the latest Ebola
outbreak in 2018 [15]. The SEIR model represents a typical
infectious epidemic disease using four distinctive phases; sus-
ceptible (S) represents the population that has yet to be infected
by the virus; exposed (E) represents the number of individuals
exposed to the virus; infected (I) models the number of people
infected, have demonstrated symptoms, and are able to spread
the virus to the people in the S compartment; and lastly, re-
covered/removed (R) models the number of people who have
recovered and are assumed to have immune response towards
the virus [16, 17, 18, 19]. Thus, based on the model, the S com-
partment will slowly deplete as the outbreak prolongs further,
and the virus will eventually die out due to insu�cient popula-
tion within the S compartment. This compartmental modelling
method allows transport of population from one compartment
to another, where the disease transmission rates with respect to
time can be simulated.

In this work, we propose a modi�ed SEIRS model based on
the Kermack-McKendrick model [20] with consideration for
time delay and resusceptibility to the virus after recovery. In
this model, the probability of a recovered patient to be rein-
fected with SARS-CoV-2 is taken into consideration to predict
the future projection of COVID-19 cases. Resusceptibility is
one of the crucial keys that could possibility lead to a prolonged
COVID-19 pandemic. Time delay in the control action repre-
senting the time taken for the authorities to act on the virus and
also the duration of short-term immunity after recovery, which
may lead to resusceptibility, are also considered in the model.
The time delay factor is applied to enhance the robustness and
accuracy of the model and simulation, hence to better re�ect on
the timely situation with speci�c measures to control the trans-
mission of the disease. The consideration for resusceptibility
with time delay is an important highlight in this paper as it has
rarely been considered in the SEIR models reported thus far
[18, 21, 22]. Other than that, we also included information such
as demographic details for the ageing population, who seem to
experience a higher fatality rate due to COVID-19 [23].

This paper is organised as follows: Section 2 introduces the
mathematical model; Section 3 presents the theoretical proofs
for the positivity, boundedness, and stability of the model, as
well as describes the model with time delay factors for the con-
trol action and potential resusceptibility; Section 4 veri�es the
proposed model and also provides some extensive results and
discussions on predictions using the model through case stud-
ies based on real-world data; and Section 5 concludes the paper.
Appendix A presents the design of the simulation package us-
ing the MATLAB/Simulink environment.

2. Modelling COVID-19 Using Modi�ed SEIRS

First, let’s consider the modi�ed SEIRS model system below,

dS (t)
dt

= � � �S (t) � �(1 � �)S (t)I(t) + Rs(t); (1)

dE(t)
dt

= �(1 � �)S (t)I(t) � (� + �)E(t); (2)

dI(t)
dt

= �E(t) � (� + )I(t) � �I(t) (3)

dR(t)
dt

= I(t) � �R(t) � Rs(t); (4)

dD(t)
dt

= �I(t); (5)

where S (t); E(t); I(t);R(t); and D(t) represent the susceptible,
exposed, infected, recovered/removed, and deaths compart-
ments, respectively. It is established that S (t) + E(t) + I(t) +
R(t) + D(t) = N(t), where N(t) is the total stock population.
The constant � is the birth rate in the overall population and �
is the death rate due to conditions other than COVID-19. The
parameter � is the rate of transmission per S-I contact, � is the
rate of which an exposed person becomes infected, and  is the
recovery rate. Therefore, the incubation and recovery times are
�inc = 1

� and �rec = 1
 , respectively. The constant � is the e�-

ciency of the control action to reduce the infection rate and to
�atten the curve. It has a direct e�ect on the basic reproduction
number R0, which will be explained further later in this paper.

The parameter � = � [(1 � �old)Nold + (1 � �)(1 � Nold)]
comes into e�ect in the worst case scenario where the patient
does not recover from the virus. We model the fatality rate with
in�uence of the fraction of elderly population (above 65 years
of age) within the community Nold, where the percentages of
nonelderly and elderly who recovered are � and �old, respec-
tively. The time spent hospitalised or infected in fatal cases is
�hosp = 1

� . In this paper, we establish that �hosp = �rec, assum-
ing that patients spend the same amount of time hospitalised or
infected, whether they recover from the virus or not.

The function Rs(t) represents the resusceptible stock, which
can be computed from the recovered population using

Rs(t) = �R(t); (6)

where � is the percentage of the recovered population who
are resusceptible to the virus. The number of actual recov-
ered/removed cases with permanent immunity can then be writ-
ten using

Rc(t) = R(t) � Rs(t): (7)

In an ideal situation, population who recovered develop perma-
nent immunity against the virus, i.e. � = 0. As a result, (6)
becomes Rs(t) = 0 and subsequently, (7) becomes Rc(t) = R(t).

3. Positivity, Boundedness, and Equilibrium Analysis of the
Model

3.1. Positivity of the Solutions
Lemma 1. The solutions to all subpopulations
(S (t); E(t); I(t);R(t);D(t)) in the system (1)�(5) are nonnegative



for all time t � 0 given any �nite nonnegative initial conditions
of (S (0) � 0; E(0) � 0; I(0) � 0; R(0) � 0; D(0) � 0).

Proof. Firstly, it is established that all subpopulations
(S (t); E(t); I(t);R(t);D(t)) de�ned by the system (1)�(5) are
continuously di�erentiable. As such, if all subpopulations have
nonnegative initial conditions, and that if any of the subpopula-
tions is zero at time t = ti � 0, its derivative is nonnegative by
inspection. Assume that S (0) � 0, S (t1) = 0, and Rs(t1) � 0 at
time instant t = t1. Then, we can rewrite (1) using

dS (t1)
dt

= � + Rs(t1) � 0;

where we can establish that S (t+1 ) � 0 and hence, S (t) is non-
negative for all time t � 0. Next, assume that E(0) � 0,
E(t2) = 0; S (t2) � 0; and I(t2) � 0 at time instant t = t2. We can
rewrite (2) using

dE(t2)
dt

= �(1 � �)S (t2)I(t2) � 0;

so that E(t+2 ) � 0 and hence, E(t) is nonnegative for all time
t � 0. Assume that I(0) � 0, I(t3) = 0, and E(t3) � 0 at time
instant t = t3. Equation (3) then becomes

dI(t3)
dt

= �E(t3) � 0;

where we can establish that I(t+3 ) � 0 and hence, I(t) is nonneg-
ative for all time t � 0. Assume that R(0) � 0, R(t4) = 0, and
I(t4) � 0 at time instant t = t4. Equation (4) can be rewritten
using

dR(t4)
dt

= I(t4) � 0;

so that R(t+4 ) � 0 and hence, R(t) is nonnegative for all time
t � 0. Finally, assume that D(0) � 0, D(t5) = 0, and I(t5) � 0 at
time instant t = t5. We can then rewrite (5) using

dD(t5)
dt

= �I(t5) � 0;

where we can establish that D(t+5 ) � 0 and hence, D(t) is non-
negative for all time t � 0.

It can be seen that since none of the subpopulations would
have a negative derivative at any time instant of t = ti when all
other subpopulations are nonnegative, then it can be concluded
that all subpopulations are nonnegative for all time t � 0. As a
result, given that N(t) = S (t)+ E(t)+ I(t)+R(t)+ D(t), the stock
population N(t) is also nonnegative for all time t � 0. Hence,
the proof is complete.

3.2. Boundedness of the Solutions
Lemma 2. The stock population N(t) is �nitely upperbounded
for any nonnegative initial conditions.

Proof. The dynamics of the stock population can be written us-
ing

dN(t)
dt

=
dS (t)

dt
+

dE(t)
dt

+
dI(t)

dt
+

dR(t)
dt

+
dD(t)

dt
;

= � � �(S (t) + E(t) + I(t) + R(t));
= � � �(N(t) � D(t)): (8)

Assuming that N(t) >> D(t), and since Lemma 1 has estab-
lished that all subpopulations are nonnegative and given that all
parameters are assumed to be positive, then (8) becomes

dN(t)
dt

� � � �N(t): (9)

We can then deduce that

dN(t)
dt

� � � �N(t); (10)

where an integration of the inequality (10) yields

N(t) � N(0)e��t +
�
�

�
1 � e��t

�
� max

 
N(0);

�
�

!
;

for all time t � 0. As a result, the stock population is �nitely
upperbounded and hence, the proof is complete.

3.3. Disease-free Equilibrium
Lemma 3. The disease-free equilibrium EDFE is locally asymp-
totically stable if the basic reproduction number R0 < 1.

Proof. The disease-free equilibrium can be obtained by equat-
ing equations (1)�(4) to zero, hence satisfying

� � �S (t) � �(1 � �)S (t)I(t) + Rs(t) = 0; (11)
�(1 � �)S (t)I(t) � (� + �)E(t) = 0; (12)

�E(t) � (� + )I(t) � �I(t) = 0; (13)
I(t) � �R(t) � Rs(t) = 0; (14)

of which the disease-free equilibrium is given by EDFE =�
�
� ; 0; 0; 0

�
. Equation (5) can be removed from this analysis

without loss of generality as other equations do not depend on
it. It can then be shown that the Jacobian for (1)�(4) at EDFE is
written using

JDFE =

2
666666666666664

�� 0 � ��(1��)
� �

0 �(� + �) ��(1��)
� 0

0 � �(� +  + �) 0
0 0  �(� + �)

3
777777777777775
: (15)

The characteristic equation can subsequently be obtained by
subtracting � from the diagonal elements and then computing
the determinant, which yields

(�� � �)(�(� + �) � �) f1(�) = 0; (16)

where

f1(�) = (�(� +  + �) � �)(�(� + �) � �) �
���(1 � �)

�
: (17)

The �rst two eigenvalues in (16) can be easily computed to
be �1 = ��; �2 = �� � �, and that they are negative. As for
the remaining eigenvalues, they can be found by solving the
quadratic f1(�) in (17), which can be expended and represented
using

a1�2 + a2� + a3 = 0;



where

a1 = 1;
a2 = 2� +  + � + �;

a3 = (� +  + �)(� + �) �
���(1 � �)

�
:

For the disease-free equilibrium to be stable, i.e. all eigen-
values are negative, it is required that

���(1 � �)
�

� (� +  + �)(� + �) < 0;

���(1 � �)
�(� +  + �)(� + �)

< 1:

As such, the basic reproduction number with the control ac-
tion is de�ned using

R0 =
���(1 � �)

�(� + �)(� +  + �)
; (18)

where for a disease-free system that is locally asymptotically
stable, we need to ensure that R0 < 1 while an unstable EDFE
would translate to R0 > 1. Hence, the proof is complete.

Should there be no control action taken, i.e. � = 0, then the
basic reproduction number in (18) becomes

R0 =
���

�(� + �)(� +  + �)
;

which is similar to other models found in the literature [6, 9,
10]. See [24] and the references within for a brief study on
using control theory to �ght COVID-19.

3.4. Endemic Equilibrium

Lemma 4. The endemic equilibrium EEE is locally asymptoti-
cally stable if the basic reproduction number R0 > 1.

Proof. Let’s assume that the system (1)�(4), which other than
the disease-free equilibrium has a unique equilibrium at EEE =
(S �; E�; I�;R�) such that

S � =
�
�R0

;

E� =
��(� +  + �)(� + �)(R0 � 1)
���(1 � �)(� + �) � ���R0

;

I� =
��(� + �)(R0 � 1)

��(1 � �)(� + �) � ��R0
;

R� =
��(R0 � 1)

��(1 � �)(� + �) � ��R0
:

It can be seen that the model has no positive endemic equi-
librium if R0 < 1 for E�; I�; and R� would be negative, which
indicate an unrealistic biological system. If R0 = 1, then we
would have the disease-free equilibrium EDFE discussed ear-
lier in Section 3.3. Hence, for a positive endemic equilibrium
system, we would require that R0 > 1.

For the stability analysis of the endemic equilibrium, we use
the Jacobian for (1)�(4) at EEE , which is written using

JEE =

2
6666666666664

�(� + �I�) 0 ��S � �
�I� �(� + �) �S � 0
0 � �(� +  + �) 0
0 0  �(� + �)

3
7777777777775
; (19)

where � = �(1 � �). The characteristic equation can subse-
quently be obtained by subtracting � from the diagonal ele-
ments and then computing the determinant, which yields

(�(� + �) � �)(��3 + b1�2 � b2� + b3) � ���I� = 0; (20)

where

b1 = �(� + �I�) � (� + �) � (� +  + �);
= �3� � � �  � � � �I�;

b2 = (� + �I�)(� + �) + (� + �I�)(� +  + �)
+ (� + �)(� +  + �) � ��S �;

= 3�2 + 2�� + 2� + 2�� + � + �
+ �I�(2� + � +  + �) � ��S �;

b3 = �(� + �I�)((� + �)(� +  + �) � ��S �) � ��2S �I�;

= �(� + �I�)(�2 + �(� +  + �) + �( + �)) + ���S �:

Assuming that ���I� << (�(�+�)��)(��3 +b1�2�b2�+b3);
then the characteristic equation in (20) becomes

(�(� + �) � �)(��3 + b1�2 � b2� + b3) � 0: (21)

It is obvious that the �rst eigenvalue is �1 = �� � �. It can
also be shown that in order for the remaining eigenvalues to be
negative such that the endemic equilibrium is locally asymptot-
ically stable, i.e. b1 < 0; b2 > 0; and b3 < 0; we would require
that R0 > 1 while an unstable EEE would translate to R0 < 1.
Hence, the proof is complete.

For the remaining of this paper where we verify the model
and perform predictions using real-world data in Section 4, and
also for the model used in the simulation package presented in
Appendix A, we assume a closed population with negligible
birth and death rates, i.e. �

� � 1; � � 0; � � 0. Time delay
factors are also considered for the control action taken as well
as resusceptibility. As a result, the system (1)�(5) becomes

dS (t)
dt

= ��(I(t)S (t) � �I(t � ��)S (t � ��)) + Rs(t; ��); (22)

dE(t)
dt

= �(I(t)S (t) � �I(t � ��)S (t � ��)) � �E(t); (23)

dI(t)
dt

= �E(t) � I(t) � �I(t); (24)

dR(t)
dt

= I(t) � Rs(t; ��); (25)

dD(t)
dt

= �I(t): (26)

and hence, the basic reproduction number in (18) becomes

R0 =
�(1 � �)
 + �

: (27)



Figure 1: The block diagram of the proposed SEIRS system used in the simu-
lation package.

The time delay �� = �pre�� + �post�� indicates the time taken
for the control action to take e�ect in �attening the infection
curve, where �pre�� � 0 represents the time to initiate the con-
trol action after the �rst con�rmed case at t = 0, and �post�� � 0
represents the time after the control action has been initiated but
before the e�ects are evidenced in the outputs of the system. In
practical scenarios, �post�� can be used to model the delay for
the population to e�ectively respond to the rules introduced by
the control action, such as social distancing, self-isolation, and
lockdown.

The function Rs(t; ��) represents the resusceptible stock with
the consideration for temporal immunity, of which we can then
rewrite (6) using

Rs(t; ��) = �R(t � ��); (28)

where the time delay �� � 0 represents the duration of temporal
immune response of the recovered population. Hence, we can
also update the expression for the number of recovered cases
introduced in (7) using

Rc(t) = R(t) � Rs(t; ��): (29)

In an ideal situation where population who recovered develop
permanent immunity against the virus, � = 0 and �� ! 1. As
a result, (28) becomes Rs(t;1) = 0 and subsequently, (29) can
be rewritten as Rc(t) = R(t).

The block diagram of the proposed SEIRS model with time
delay is shown in Figure 1. The system with time delay is as-
sumed to be stable and will exhibit similar disease-free equilib-
rium and endemic equilibrium properties as the system without
time delay provided that the time delay parameters are nonneg-
ative, i.e. �� � 0; �� � 0. Detailed discussions on the theoreti-
cal stability analysis of SEIR and similar epidemic models with
time delay can be found in studies such as [19, 25, 26, 27].

4. Case Studies

4.1. Case Study 1: Veri�cation using Data in South Korea
South Korea is used as a case study due to the amount of data

available given that it is one of the �rst few countries to be di-
rectly a�ected by the virus outside of China. Its �rst con�rmed
case was reported on 20th January 2020 [28]. The other reason
is that South Korea is also one of the very few countries that

Table 1: Initial parameters used to �t the model to the data in South Korea.

Parameter Value

Stock population, N 51.5�106

Fraction of elderly population, Nold 0.15
Percentage of recovery, � 0.98
Fatality rate for elderly, 1 � �old 0.08
Incubation time, �inc 5.1 days
Recovery time, �rec 18.8 days
Basic reproduction number, R0 5.1 (95% CI: 4.97�5.23)
Initial infected cases, I(0) 4
Initial exposed cases, E(0) 80

managed to e�ectively �atten the infection curve and it has set
itself apart from others in leading the �ght against COVID-19,
at least for the moment. For example, the country started vig-
orous testing among its population with contact tracing, espe-
cially those of con�rmed and suspected cases during the early
stage of the epidemic. The government accomplished this by
maintaining a public database keeping track of mobile phones,
credit cards, and other data of patients who tested positive [29].
Also, on 16th March 2020, the authorities in the country began
screening every person, both domestic and international, who
arrived at its airports.

As of 20th April 2020, there have been 10,674 con�rmed
cases and 236 fatalities in South Korea [1]. As a result, we
used the following parameters for our simulation. First, we as-
sumed that the population of South Korea to be approximately
N = 51.5�106 with an elderly population of about 15% (Nold =
0.15) [30]. We then set the percentage of recovery to be 98%
(� = 0.98) for the general public [1] and a fatality rate of 8%
((1 � �old) = 0.08) for the elderly [31]. We then assumed the
incubation time and recovery time to be �inc = 5.1, and �rec =
18.8, respectively in accordance with [32]. The basic reproduc-
tion number was set to R0 = 5.1 (95% CI: 4.97�5.23) based
on the early growth-rate of the epidemic in South Korea. The
initial infected and exposed cases were assumed to be I(0) = 4
and E(0) = 20I(0), respectively. See Table 1. Figure 2a shows
the results of the initial �tting of the model based on the data
in South Korea while Figure 2b shows the projections of the
model when no control action is taken. There are some minor
discrepancies between the modelled values and the real-world
data during the initial stage of the simulation as seen in Figure
2a. This is absolutely reasonable and acceptable while mod-
elling an actual epidemic as most countries are still coming to
terms with the virus during the �rst month and the data do not
usually represent the actual number of cases due to lack of test-
ing for con�rmed cases.

Once we have the initial �tting of the model, we introduced
control action in line with the mitigation and preventive mea-
sures taken by the government. Due to the aforementioned vig-
orous testing, contact tracing, and isolation e�orts taken, we
assumed that the control action has an e�ciency of 88% (� =
0.88). As a result, the reproduction number could be reduced to
R0 � 0.61. We also assumed that there was a time delay of 30
days since the �rst con�rmed case before the control action was
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Figure 2: Sub�gure (a) shows the initial �tting of the model onto the data in South Korea and sub�gure (b) shows the projections of the model when no control
action is taken.

introduced (�pre�� = 30) and a further delay of approximately
13 days before the control action could be properly executed in
the community (�post�� = 13). Figure 3 shows the simulation
results. Figure 3a shows that the trajectory of the modelled in-
fected and death cases match the real-world data after the con-
trol action was introduced. Figure 3b shows the simulation re-
sults until the model stabilises assuming no subsequent control
action being taken to further reduce the reproduction number.
Comparing Figure 3b with Figure 2b, the peak of the number
of infected cases could be reduced from about 19 million cases
to about 7,500 cases.

Subsequently, beginning 20th March 2020, stronger infec-
tious disease control measures for travellers coming from over-
seas were enforced, where all Koreans and foreigners with res-
idence in Korea arriving from all countries would be subject
to self-quarantine for 14 days upon entry. All short-term trav-
ellers will also be ordered to self-quarantine with exceptions
for some limited special cases [33]. Around the same time,
the Korea Centres for Disease Control and Prevention (KCDC)
also started advising all people in the country to observe an
�Enhanced Social Distancing Campaign� [34]. Inducing these
control actions into the model produces the results shown in
Figure 4. The second control action adds another e�ciency of
50%, hence bringing the reproduction number further down to
R0 � 0:31.

4.1.1. Simulation with Resusceptibility
One of the many uncertainties about COVID-19 is whether

patients who have recovered from the virus will be reinfected
in the future. There have been reports in the news that patients

who recovered from the virus were tested positive for a second
time after being cleared of the virus [5, 35, 36]. On the other
hand, most health authorities believe that patients who recov-
ered may develop an immunity towards the virus. However,
it is not sure if the said immunity is short-term or long-term.
Hence, further research is required to provide clinical proofs to
this hypothesis.

As such, we repeated the simulation for the Case Study on
South Korea without control action, but with the inclusion of
a possibility of resusceptibility. Here, we assumed that 1% of
the patients who recovered are resusceptible towards the virus
(� = 0.01), where the patients develop temporal immunity of
�� = 0; 30; 90; 360 days, respectively after recovering from the
initial infection of the virus. Figure 5 shows the simulation re-
sults, where the �rst infection spikes shown in all sub�gures
are synonymous to the result presented in Figure 2b. The sub-
sequent infection spikes are the result of resusceptibility, de-
pending on the days of temporal immune response. The results
show new surges in infection cases after the speci�c �� in each
case, which diminish over time as more people develop immu-
nity towards the virus. Interestingly, for the result shown in
Figure 5d where �� = 360 days, it could also be used to re�ect
on the situation where the virus may exhibit similar character-
istics as the seasonal �u or the pandemic in�uenza A (pH1N1)
that it is most likely active during certain seasons of the year,
e.g. autumn/winter for the seasonal �u and spring/summer for
the pH1N1, in which case an annual vaccine administration is
necessary [37, 38].
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Figure 3: The projections of the model onto the data in South Korea when control action with an e�ciency of 88% is taken. Sub�gure (a) shows the projections
during the �rst 100 days while sub�gure (b) shows the projections until the system achieves stability.
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Figure 4: The projections of the model onto the data in South Korea when a second control action with an e�ciency of 50% is taken. Sub�gure (a) shows the
projections during the �rst 100 days while sub�gure (b) shows the projections up till 300 days.

4.2. Case Study 2: Prediction using Data in Northern Ireland

Given the location of which this research is based, data in
Northern Ireland is used for prediction study of the model. The

reports on con�rmed and death cases are published daily since
24th March 2020 by the Northern Ireland Public Health Agency
(PHA) via their Daily COVID-19 Surveillance Reports [39].
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Figure 5: Trajectories for the infected and fatalities in South Korea due to resusceptibility where it is assumed that 1% of the recovered cases are reinfected after a
time span of temporal immunity of (a) 0 day, (b) 30 days, (c) 90 days, and (d) 360 days, respectively. However, these results only apply assuming that if there is no
control action being taken to �atten the curve.

The �rst con�rmed case was recorded on 27th February 2020,
and as of 20th April 2020, the total number of con�rmed cases
stood at 2,728 with 207 fatalities.

We used the parameters in Table 2 for the initial �tting of the
model based on the data from PHA on the initial growth-rate of
the epidemic in Northern Ireland. Figure 6a shows the results
of the initial �tting, with Figure 6b depicting the projections
of the infected and deaths if no control action is taken. We
then simulated the model based on the control action carried
out; most schools in Northern Ireland were closed beginning
18th March 2020 followed by a national lockdown initiated by
the United Kingdom government on the 23rd March 2020. As
such, we set �pre�� = 20 (20 days) to correspond to said dates
since the �rst con�rmed case, and assuming that it took a further

Table 2: Initial parameters used to �t the model to the data in Northern Ireland.

Parameter Value

Stock population, N 1.88�106

Fraction of elderly population, Nold 0.18
Percentage of recovery, � 0.94
Fatality rate for elderly, 1 � �old 0.12
Incubation time, �inc 5.1 days
Recovery time, �rec 18.8 days
Basic reproduction number, R0 5.0 (95% CI: 4.85�5.15)
Initial infected cases, I(0) 3
Initial exposed cases, E(0) 60



approximately 12 days for the public to respond to these control
action, i.e. �post�� = 12, we obtained the simulation results
as shown in Figure 7. The results show that in order for the
model to follow the projected trajectories of the data from PHA
in Figure 7a, the control action have to achieve an e�ciency of
about 45% (� = 0.45), which indicates that the reproduction
number could be reduced to R0 � 2.75. Comparing Figure 6b
with Figure 7b, the peak of the number of infected cases could
be reduced from 650,000 cases to 350,000 cases.

4.2.1. Further Control Action To Meet Critical Care Capacity
However, based on the results shown in Figure 7, it is es-

sential to further �atten this curve due to the limit of about
330 critical care beds available in Northern Ireland (100 initial
setup + 230 introduced by the newly built Nightingale hospi-
tal) [40]. According to the Intensive Care National Audit &
Research Centre (ICNARC) with its �Report on 2249 patients
critically ill with COVID-19� dated 4th April 2020, about 6%
of those tested positive for the SARS-CoV-2 required critical
care [41]. Meanwhile in Italy, as of 29th March 2020, up to
12% of all positive cases were admitted to the intensive care
unit (ICU) [42]. As such, should we assume that approximately
10% of those tested positive in Northern Ireland would require
ICU admission, then the peak of the infection curve should not
exceed 3,300 cases, i.e. more control action have to be taken to
reduce the peak of 350,000 cases as seen in Figure 7b.

Therefore, on day 38, which is about one week after the in-
fection curve started to �atten due to the �rst control action, a
second control action was introduced into the model. This sec-
ond control action also re�ects on the announcement made by
the United Kingdom government in early April 2020 to allow
police o�cers to enforce social distancing measures. Assuming
that this second control action results in a further e�ciency of
66%, the reproduction number could then be reduced to R0 �
0.93, and that it would take another 7 days for the public to
fully respond to the control action, we could observe the results
as shown in Figure 8. With the initiation of the second control
action, it can be seen in Figure 8a that the peak in the infection
curve is now reduced to 3,500 cases. As such, the critical care
capacity should be able to meet the demand for treatment based
on the same assumption made earlier in this section, where it
is estimated about 10% of the infected cases are admitted to
the ICU. Another observation worth noting is that the number
of deaths in the worst case scenario has also been reduced to
about 3,000 cases. See Figure 8b. This value echos the projec-
tion made by the government in Northern Ireland that COVID-
19 could lead to 3,000 deaths during the �rst wave [43].

5. Conclusion

This paper has presented a robust model for COVID-19 based
on a modi�ed SEIRS method to include considerations for the
ageing population, and time delay for control action as well as
resusceptibility of the recovered population due to temporal im-
munity. Two case studies using real-world data were presented
in this research; the �rst case for veri�cation of the model based

on the data in South Korea including a study on the possibil-
ity of resusceptibility of recovered population; and the second
case for prediction study of the model using data and up-to-date
control action and related events in Northern Ireland. The sim-
ulation results from the case studies have clearly shown that the
time of which the control action is taken and also the time for
the public to properly respond to such intervention measures
are critical in helping to �atten the curve. Also, until a time
where a vaccine is developed and made available to the gen-
eral public, the possibility of resusceptibility, no matter how
small, will lead to subsequent waves of infections in the fu-
ture depending on the time of temporal immunity. A simulation
package was developed using the MATLAB/Simulink environ-
ment to ease understanding on the spread of the virus as well as
the e�ciency that needs to be achieved by the control action in
order to successfully �atten the infection curve to not overload
the healthcare capacity.

Interesting future research and expansion of the model in-
clude but not limited to the predictions for the occupancy of
ICU beds, the e�ects of easing control action on R0 and hence,
the time of which control action have to be reinstigated, as well
as speci�c subregions analysis such as demographic informa-
tion to model the transmission of the virus among subregions in
the country to cater for population movements and travels.
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Appendix A. Description of The Simulation Package

Figure A.9 shows the graphical user interface (GUI) of the
simulation package developed using the MATLAB/Simulink
environment. Users can use this interface to set preferred set-
tings for the simulation and also to view simulation results.
The simulation kit can be downloaded from https://github.
com/nkymark/COVIDSim.

Appendix A.1. Establishing Simulation Settings

At the top section of the GUI are some interactive interfaces
available for the user to set key simulation settings, which in-
clude the following:

� General Settings:

� Stock Data: Use this to load real-world data of select
countries. The data are obtained from [1].

� Stock Population: The stock population N is entered
here.

� Recovered Cases: Use this to set the percentage of
recovered cases �.

� Elderly Population: Use this to set the fraction of
elderly population (above 65 years of age) Nold.

� Elderly Fatality Rate: Use this to set the fatality rate
(1 � �old) for the elderly population.

� SEIR Parameters: Use this to set the values for
R0; �inc; �rec, the initial infected cases I(0), and the
simulation time.

� Resusceptibility Settings:

� Resusceptible Cases: Use this to set the percentage
of recovered cases who are resusceptible.

� Duration of temporal immunity: Use this to set the
time of short-term immune response ��, assuming
there is no permanent immunity after recovery.

� Control Action Settings:

� Control Action E� ciency: Use this to set the percent-
age of control action e�ciency �.

� Pre-action Time Delay: Use this to set the time delay
�pre�� for the control action to be introduced after the
�rst con�rmed case.

� Post-action Time Delay: Use this to set the time delay
�post�� to mimic the time it takes for the population
to respond to the control action.

Appendix A.2. Simulation Results
The simulation results are displayed at the bottom section of

the GUI. The plot on the right shows the initial �t of the model
using the settings established in Section Appendix A.1 onto the
real-world data of the select country, while the plot on the left
shows the simulation results until the simulation stop time.
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Figure A.9: The main graphical user interface of the simulation package in MATLAB. 1O Load real-world data for the selected country. 2O Set the stock population
N for simulation. 3O Set the percentage of recovered cases �. 4O Set the fraction of elderly population Nold . 5O Set the fatality rate for the elderly population
(1 � �old). 6O Computed values for � = R0; � = 1

�inc
, and  = 1

�rec
using values entered for R0; �inc; and �rec. 7O Set the simulation time in days. 8O Set the value

for the basic reproduction number R0. 9O Set the initial number of infected cases I(0). 10O Set the incubation time �inc. 11O Set the recovery time �rec. 12O Settings for
recusceptibility, including the percentage of resusceptible cases � and duration of temporal immunity �� . 13O Settings for control action, including the e�eciency rate
� as well as the time delay during pre- and post-control action, �pre�� and �post��, respectively. 14O Reset the GUI and clear all plots. 15O Run the simulation. 16O
Recreate the graphs on external Matlab �gure windows. 17O Graphical plots from the simulation (left �gure for overall simulation while right �gure compare initial
projections of the model with real-world data).
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