Removal of Phthalates from Aqueous Solution by Semiconductor Photocatalysis: A review

Published in:
Journal of Hazardous Materials

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen’s University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Removal of Phthalates from Aqueous Solution by Semiconductor Photocatalysis: A review.

Xinzhu Pang, Nathan Skillen*, H. Q. Nimal Gunaratne, David W. Rooney, Peter K. J. Robertson*

School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.

*Corresponding Authors.

E-mail addresses: n.skillen@qub.ac.uk (N. Skillen), p.robertson@qub.ac.uk (P.K.J. Robertson)
Abstract:

While phthalate esters are commonly used as plasticizers to improve the flexibility and workability of polymeric materials, their presence and detection in various environments has become a significant concern. Phthalate esters are known to have endocrine-disrupting effects, which affects reproductive health and physical development. As a result, there is now increased focus and urgency to develop effective and energy efficient technologies capable of removing these harmful compounds from the environment. This review explores the use of semiconductor photocatalysis as an efficient and promising solution towards achieving removal and degradation of phthalate esters. A comprehensive review of photocatalysts reported in the literature demonstrates the range of materials including commercial TiO$_2$, solar activated catalysts and composite materials capable of enhancing adsorption and degradation. The degradation pathways and kinetics are also considered to provide the reader with an insight into the photocatalytic mechanism of removal. In addition, through the use of two key platforms (the technology readiness level scale and electrical energy per order), the crucial parameters associated with advancing photocatalysis for phthalate ester removal are discussed. These include enhanced surface interaction, catalyst platform development, improved light delivery systems and overall system energy requirements with a view towards pilot scale and industrial deployment.

Key words: phthalate esters; photodegradation; photocatalyst; advanced oxidation processes; pollutant removal
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract:</td>
<td>2</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Overview of phthalate esters</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Occurrence of PAEs in the environment</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Human exposure to PAEs</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Toxicity of PAEs and the effect on environment</td>
<td>9</td>
</tr>
<tr>
<td>2. Oxidation Methods for PAEs removal</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Photocatalytic mechanism</td>
<td>12</td>
</tr>
<tr>
<td>2.2 An overview of photocatalyst materials deployed for PAEs removal</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Pathways of degradation of PAEs</td>
<td>28</td>
</tr>
<tr>
<td>2.3.1 Degradation pathway of DMP</td>
<td>28</td>
</tr>
<tr>
<td>2.3.2 Degradation pathway for additional PAEs</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Kinetics of removal of PAEs</td>
<td>30</td>
</tr>
<tr>
<td>3. Moving forward: key considerations for advancing the technology</td>
<td>32</td>
</tr>
<tr>
<td>3.1 Improving the chemistry; key considerations for PAEs removal</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Improving the engineering; key considerations for PAEs removal</td>
<td>38</td>
</tr>
<tr>
<td>4. Conclusion</td>
<td>40</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>41</td>
</tr>
<tr>
<td>Conflict of interest</td>
<td>41</td>
</tr>
<tr>
<td>References:</td>
<td>41</td>
</tr>
</tbody>
</table>
Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOP</td>
<td>advanced oxidation process</td>
</tr>
<tr>
<td>BBP</td>
<td>butyl benzyl phthalate</td>
</tr>
<tr>
<td>CA</td>
<td>carbon aerogels</td>
</tr>
<tr>
<td>CA-α-Fe₂O₃</td>
<td>citric acid-α-Fe₂O₃</td>
</tr>
<tr>
<td>CB</td>
<td>conduction band</td>
</tr>
<tr>
<td>CB-TiO₂</td>
<td>carbon black modified nano-TiO₂</td>
</tr>
<tr>
<td>CMCD</td>
<td>carboxymethyl-β-cyclodextrin</td>
</tr>
<tr>
<td>CNT</td>
<td>carbon nanotube</td>
</tr>
<tr>
<td>CPI</td>
<td>controlled periodic illumination</td>
</tr>
<tr>
<td>DAP</td>
<td>diamyl phthalate</td>
</tr>
<tr>
<td>DBP</td>
<td>dibutyl phthalate</td>
</tr>
<tr>
<td>DEHP</td>
<td>di-(2-ethylhexyl) phthalate</td>
</tr>
<tr>
<td>DEP</td>
<td>diethyl phthalate</td>
</tr>
<tr>
<td>DiBP</td>
<td>di-isobutyl phthalate</td>
</tr>
<tr>
<td>DMP</td>
<td>dimethyl phthalate</td>
</tr>
<tr>
<td>DOP</td>
<td>di-๑-octyl phthalate</td>
</tr>
<tr>
<td>Ebg</td>
<td>energy band gap</td>
</tr>
<tr>
<td>EEO</td>
<td>electrical energy per order</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>HAT</td>
<td>hydrogen atom transfer</td>
</tr>
<tr>
<td>HGM</td>
<td>hollow glass microsphere</td>
</tr>
<tr>
<td>IQ</td>
<td>intelligence quotient</td>
</tr>
<tr>
<td>LDH</td>
<td>layered double hydroxide</td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>L-H</td>
<td>Langmuir-Hinshelwood</td>
</tr>
<tr>
<td>MEHP</td>
<td>mono-2-ethylhexyl phthalate</td>
</tr>
<tr>
<td>MMP</td>
<td>monomethyl phthalate</td>
</tr>
<tr>
<td>mPMMA</td>
<td>magnetic poly (methyl methacrylate)</td>
</tr>
<tr>
<td>MWCNT</td>
<td>multiwalled carbon nanotube</td>
</tr>
<tr>
<td>NHE</td>
<td>normal hydrogen electrode</td>
</tr>
<tr>
<td>NT</td>
<td>nanotube</td>
</tr>
<tr>
<td>PA</td>
<td>phthalic acid</td>
</tr>
<tr>
<td>PAE</td>
<td>phthalate esters</td>
</tr>
<tr>
<td>PANi</td>
<td>polyaniline</td>
</tr>
<tr>
<td>PET</td>
<td>polyethylene terephthalate</td>
</tr>
<tr>
<td>RAF</td>
<td>radical adduct formation</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SET</td>
<td>single electron transfer</td>
</tr>
<tr>
<td>TRL</td>
<td>technology readiness level</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VB</td>
<td>valence band</td>
</tr>
<tr>
<td>WWTP</td>
<td>wastewater treatment plant</td>
</tr>
</tbody>
</table>
1. Introduction

1.1 Overview of phthalate esters

A particular and damaging consequence of industrialization has been the proliferation of toxic industrial compounds that have been released into the environment (Gogoi et al., 2018). Phthalate esters (PAEs) are among some of the most important industrial chemicals and are commonly used as plasticizers to improve the flexibility and workability of polymeric materials (Staples et al., 1997). The structure of typical phthalate compounds is shown in Fig. 1.1, which can vary in physical and chemical properties depending on the different alkyl chains present. High molecular weight phthalates, such as di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DOP), are generally used in building materials and furniture while lower molecular weight phthalates, such as dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP) are widely used in personal care products, coatings, and varnishes (Schettler, 2006). The global production of phthalates was estimated to be around 5 million tons in 2010 (Guo et al., 2012).

Recently, the amount of plastics in the marine environment has been found to be increasing at an alarming rate and as result has been subject to extensive media coverage (Lebreton et al., 2018). Plastics and PAEs are not chemically bonded so they can migrate from plastics into the marine environment relatively easily (Hahladakis et al., 2018). According to the European Union (EU) definition, DMP belongs to volatile organic compounds and other PAEs are classified as semi-volatile organic compounds, and consequently such PAEs may be emitted to the atmosphere as particulates and vapours (Weschler et al., 2008). Phthalates have endocrine-disrupting effects as they can mimic, compete with or disrupt the synthesis of endogenous hormones (McLachlan et al., 2006). In addition, phthalates are known to affect reproduction in invertebrates and fish; the development of crustaceans may also be impaired, and they can induce genetic aberrations (Ye et al., 2014). Due to these detrimental effects, EU restrictions have been imposed on five phthalates, namely DBP, DEHP, butyl benzyl phthalate (BBP), di-isononyl phthalate and di-isodecyl phthalate, which specifies the scope of use that is permitted and the maximum permitted specific migration limit for each compound (Ventrice et al., 2013).
1.2 Occurrence of PAEs in the environment.

PAEs can leach, migrate or evaporate into the surrounding environment (Chen et al., 2008; Moreira et al., 2015) and as a result are often detected in soil, air, and water all over the world, with some key examples highlighted in Fig. 1.2. Subsequently, there have been several studies which have focused on the detection of PAEs in different environmental surroundings. Researchers from Serbia detected the occurrence of six PAEs in soil in the urban zone of Novi Sad and found that PAE concentrations ranging from 0.0002 mg/kg to 4.82 mg/kg, with the highest level obtained for DEHP and the highest total PAE samples obtained from city parks (Škrbić et al., 2016). Similarly, DBP and DEHP have been detected as dominant compounds in soil in China with obvious spatial distribution (Lü et al., 2018) and also in Denmark (Laturnus and Grøn, 2007). Zhang et al., (2014) investigated the occurrence of indoor PAEs from 10 families from Tianjin, China with results showing the presence of a total of six PAEs in indoor PM$_{10}$ (particulate matter with a size generally less than 10 µm) and PM$_{2.5}$ (particulate matter with a size generally less than 2.5 µm) were in the range of 13.878-1591.277 ng/m3 and 7.266-1244.178 ng/m3, respectively with DBP as the most abundant compounds followed by DEHP. Wang et al., (2008) determined that the total concentration of six gas-phase PAEs in the urban area of Nanjing, China were 3.5-fold higher than that detected in suburban stations. Fromme et al., (2013) investigated the presence of PAEs in indoor air of 63 German day-care centres and confirmed that di-isobutyl phthalate (DiBP), DBP, and DEHP were detected, with median values of 468, 227, and 194 ng/m3, respectively. High DBP concentrations were also found close to deep and bottom water located in waters off the shore of France (Paluselli et al., 2018). Eight different PAEs were found in urban lakes in Guangzhou, China, with DEHP and DBP detected at higher levels than the other compounds (Zeng et al., 2008). Peijnenburg and Struijs (2006) reported that DBP and DEHP were found in freshwater, marine water, sediment and even fish. Moreover, PAEs were capable of moving between phases (Gao and Wen, 2016) (Fig. 1.3), which presents a series of additional challenges when attempting to monitor, track and even remove the pollutants.

Fig. 1.2; Occurrence of PAEs reported in the literature, which were detected in soil (brown text), water (blue text) and air (green text) samples in (a) Europe and (b) Asia (Škrbić et al., 2016; Li and Fu, 2006; Laturnus and Grøn, 2007; Peijnenburg and Struijs 2006; Paluselli et al., 2018; Zeng et al., 2008; Fromme et al., 2013; Wang et al., 2008; Teil et al., 2006).

Fig. 1.3; Occurrence and transfer of phthalate esters (PAEs) between phases in environment.
The occurrence of PAEs in effluent and sludge from wastewater treatment plants (WWTPs) has also been investigated by several groups around the world. Salaudeen et al., (2018) revealed that in South Africa, six PAEs were detected in almost all of the WWTPs influent and effluent of which DBP was the most abundant compound followed by DEHP. Cai et al., (2007) selected sewage sludges from eleven WWTPs from nine different cities in China to analyse the occurrence of semi-volatile organic compounds and they found that PAEs (DMP, DEP, DBP, BBP, DEHP, and DOP) were the most abundant compounds. In addition, the study found that DEHP was the most abundant PAEs in most cities with a percentage ranging from 24 to 95% (mean: 70%). Çifci et al., (2013) detected the occurrence of five PAEs (DMP, DEP, DBP, BBP, and DEHP) in sludges in Istanbul, Turkey and found that concentrations of these compounds in sewage sludge ranged from 1.4 to 2.7 mg/kg dry weight with DEHP as the most abundant compound. DMP, DEP, DBP, BBP, DEHP and DOP were detected in nearly all WWTP effluent samples and in all road runoff samples in Austria, with DEHP being the most abundant compound (Clara et al., 2010).

1.3 Human exposure to PAEs

The threat PAEs and other environmental pollutants present is often driven by the frequency and method of exposure to humans and animals. As phthalates are omnipresent, it has been found that people have been exposed to phthalates via many different routes (Fig. 1.4). Initially, people may be exposed by direct contact with the products containing PAEs. Koniecki et al. (2011) investigated the occurrence of eighteen PAEs in 252 Canadian products, including baby products, cosmetic and personal care products. It was reported that DEP was the most frequently used phthalate, followed by DBP and DEHP. Xu et al., (2020) collected plastic express packaging bags from major delivery companies in China and confirmed that leaching of phthalates after 48 h ranged from 181.44 to 5320.64 ng/g, indicating that plastic express packaging bags could be a potential source of phthalates. Paluselli et al. (2019) found that DiBP and DBP were the main PAEs released from the polyethylene bags, with the highest values of 83.4 ± 12.5 and 120.1 ± 18.0 ng/g of plastic, respectively while DMP and DEP were the main PAEs released from Polyvinyl Chloride-cables, with mass fractions as high as 9.5 ± 1.4 and 68.9 ± 10.3 ng/g, respectively.
Furthermore, people may be indirectly exposed to PAEs through leaching of these compounds into other products, such as food and drinking water. For example, H. Li et al. (2019) confirmed the occurrence of twenty one PAEs in polyethylene terephthalate (PET) bottled drinking water samples in Beijing, with DBP, DiBP, and DMP being the main compounds detected. The correlation analysis in the study suggested that the PET bottles may be one of the primary sources of PAEs in these samples. Similar research also suggested diet may be a significant source of human exposure to DEHP (Wormuth et al., 2006). In addition, clothing also appeared to play an important role of exposure to phthalates (Gong et al., 2016).

Exposure to PAEs may also occur via general environmental contamination, such as through contaminated air and water along with indoor dust as another potential source (Subedi et al., 2017). It was reported that DEHP was the most common compound detected in indoor dust samples in the bedroom and living room with mean concentration of 455 and 462 μg/g, being detected for each compound, respectively (Y. Li et al., 2019). The profiles of the compounds detected in indoor dust is shown in Fig. 1.5 and it is obvious that DEHP is frequently detected as the most abundant PAE in door dust (Albar et al., 2017).

Based on various exposure mechanisms, including the ingestion of food, drinking water, dust/soil, air inhalation and dermal exposure, the daily intake of PAEs in humans has been suggested to reach values as high as 70 μg/kg/day (Net et al., 2015). Ji et al., (2014) estimated the daily intake (DI) of PAEs via ingestion, inhalation and dermal absorption from five sources (food, water, air, dust and soil) in Tianjin and found that diet was the main source of DEP, BBP, DEHP and DOP, whereas water ingestion led to the greatest exposure to DBP, DEHP and DOP. Contaminated air was another major source of DMP, DEP and DBP contributing up to 45% of the overall exposure (Ji et al., 2014) (Fig. 1.5). Similarly, Koch et al., (2003), tested the daily intake of PAEs in the German population and revealed that 12% of the subjects (10 out of 85 samples) within the collective of the general population exceeded the tolerable daily intake value established by the EU Scientific Committee for Toxicity,
Ecotoxicity and the Environment, which was 37 μg/kg. Furthermore, Wormuth et al. tested the daily exposure of PAEs within different age groups and showed that the amount of exposure varied, with infants and children experiencing greater PAE exposure compared to adults (Wormuth et al., 2006) (Fig. 1.6). This was partly believed to be due to most infants wearing garments made from cotton, which has been shown to adsorb phthalates more easily than other fabrics (H. L. Li et al., 2019).

Fig. 1.6; Daily exposure to six phthalates (in μg/kg bodyweight/day) in seven consumer groups, with minimal, mean, and maximal estimates shown. (Reprinted with kind permission from Wormuth et al., 2006. Copyright (2020) Elsevier.)

1.4 Toxicity of PAEs and the effect on environment.

As phthalates are produced as bulk chemicals worldwide and are toxic organic contaminants, there have been many studies on the effects of PAEs on organisms, including reproductive and developmental effects. PAEs have endocrine-disrupting effects, so they can compete with or disturb the synthesis of endogenous hormones, causing reproductive problems (Knez, 2013). For example, an investigation into the relationship between PAEs levels in the body and reproductive health has been conducted, which revealed that urinary phthalate metabolite levels were significantly associated with a decrease in sperm motility, testosterone level and an increase in sperm gene damage and sperm aneuploidy (Jurewicz et al., 2013). In addition, PAE exposure for pregnant women may cause several problems for both the mother and baby. For example, the risk of delivering preterm may be increased for pregnant women as a result of exposure to phthalates during pregnancy (Ferguson et al., 2014) and exposure to monomethyl phthalate monomethyl phthalate (MMP) and mono-2-ethylhexyl phthalate (MEHP) were also associated with a decrease in birth weight (Song et al., 2018). These issues were more severe for male babies, with testicular development and Leydig cell development potentially being vulnerable to phthalates such as low androgen levels and short anogenital distance (Lottrup et al., 2006; Main et al., 2006). Toxicology studies also proved that prenatal exposure to high-molecular-weight phthalates increased the risk of asthmatic symptoms and respiratory tract infections throughout childhood (Gascon et al., 2015).

Behavioural traits were also confirmed to be adversely associated with prenatal exposure to phthalates, with evidence suggesting children were clinically diagnosed with conduct or attention deficit hyperactivity disorders as a result of exposure (Engel et al., 2010). Furthermore, PAEs have also been linked to developmental problems. Cho et al., (2010) enrolled 667 children at nine
elementary schools in South Korea and tested the concentration of urine phthalate concentrations along with the scores on neuropsychological tests from both the children and their mothers. The authors stated that controlling for maternal intelligence quotient (IQ) and other covariates, the results showed an inverse relationship between phthalate metabolites and IQ scores. Similarly, Olesen et al., (2018) conducted an experiment to reveal the relationship between the prenatal phthalates exposure and language development. They proposed that high phthalate exposure in utero may have a negative effect on early language development for both males and females and low prenatal phthalate exposure could have an adverse effect on male early language development but no adverse effect on female.

Given the frequency at which PAEs are occurring in environmental samples, coupled with the significant health risk they pose to humans, there is now increased focus on developing technology that can efficiently achieve degradation and removal of these compounds. Therefore, this review explores the use of semiconductor photocatalysis as a viable option for PAE removal. An overview of photocatalyst development is provided which covers a broad range of materials that have been reported in the literature. In addition, the degradation pathways and kinetics are reviewed to provide the reader with a detailed insight into the photocatalytic removal mechanism. While reviewing previously published literature is important, it is also crucial to consider the key parameters which are fundamental to the advancement of the technology. Therefore, this review also considers the challenges that photocatalysis must overcome in order to achieve continued development with a view towards pilot scale and potential industrial deployment. This was achieved by using the technology readiness level (TRL) scale and electrical energy per order (EEO) value as platforms to identify and evaluate the key factors which could facilitate the transition of photocatalysis from ‘lab’ to ‘real world’.

2. Oxidation Methods for PAEs removal

The previous sections have highlighted the significant issues and threat associated with PAEs regarding both toxicity and routes of human exposure. As people can be exposed to PAEs, without knowledge and by a range of methods that are considered part of ‘everyday life’, there is now an increased focus and urgency to develop effective and preferably low energy technologies capable of removing the compounds from the environment. Traditional drinking water treatment focuses on removing the particles and colloids via physical processes. Since PAEs are stable and often recalcitrant organic chemicals, removing them from water using traditional methods can often be challenging. The removal rates of PAEs from two waterworks in Harbin, China were reported to be approx. 25.8 to 76.5 %, with DMP and DOP showing the lowest removal efficiencies at both waterworks, Fig. 2.1 (Liu et al., 2013). These values indicate that traditional drinking water treatments may not be effective in
eliminating these micro-pollutants from potable water.

Fig. 2.1; PAEs detected in water samples from the two different Waterworks, a) Mopanshan Waterworks, b) Seven Waterworks (waterworks with the old water source of the Songhua River). (DNOP in this figure refers to DOP) (Reproduced with kind permission from Liu et al. (2013), open access).

As a result, an increasingly large volume of research has now focused on the development of new methods to eliminate PAEs from water and soil, including, membrane processes (Bodzek et al., 2004), sodium percarbonate activated by discharge plasma (Wang et al., 2018a), bioaugmentation (Jianlong et al., 2004) and a range of advanced oxidation processes (AOPs) such as photolysis (Lau et al., 2005), ozonation (Li et al., 2009) Fenton process (He et al., 2009) and photocatalysis (J. C. Sin et al., 2012). A number of detailed and informative reviews have previously covered some of these remediation approaches (Gao and Wen, 2016; Abdel daiem et al., 2012; Gani et al., 2017; Gani and Kazmi, 2016). Among these processes, AOPs are promising candidates to remove refractory organic contaminants with a range of examples being effectively deployed for environmental remediation applications, including water treatment processes (Gmurek et al., 2017). Many AOPs utilize ultraviolet (UV) light or visible light and a selective reagent that facilitates a chemical reaction, the breaking of chemical bonds and forming breakdown products of the targeted chemicals (Fig. 2.2). Even the direct absorption of light may result in photodegradation, although many molecules are resistant to direct photolysis. Consequently, there is a requirement for an additional oxidant or catalyst, which usually results in the formation of highly reactive and short-lived reactive oxygen species (ROS), such as hydroxyl radicals (‘OH).

Fig. 2.2; Oxidation processes included in the AOPs for PAE degradation.

Although AOPs are effective in removing PAEs from aqueous solutions, the cost of these processes is relatively high because of the need for expensive reagents such as H$_2$O$_2$ and O$_3$ and electrical energy when far UV radiation is applied. A review by Gmurek et al. (2017) provided an overview of photochemical approaches to the decomposition of endocrine disrupting compounds, investigating the use of photocatalysis, photochemical reactions with Fenton’s reagents and H$_2$O$_2$ and
direct photolysis. An interesting alternative option is the use of semiconductor photocatalysis, which has been proven to be an efficient and promising solution towards eliminating refractory organic contaminants in water (Zhang et al., 2019). Photocatalysts, such as TiO₂ are nontoxic and leave no hazardous reagents in the system following treatment. Another significant advantage of semiconductor photocatalysis for the removal of PAEs is the potential to simultaneously remove heavy metal contaminants. Xu et al. (2007) showed that when using TiO₂ photocatalysis for the degradation of DBP, the simultaneous photocatalytic reduction of Cr(VI) to the less toxic Cr(III) also occurred. Similarly, You et al., (2018) succeeded in removing Cr(VI)/Pb(II)-DBP mixed pollutants by Bi₂O₃-TiO₂ under visible light, where Pb(II) was reduced to Pb⁰ and DBP was mineralized to CO₂. In wastewater treatment, it is common to have a varied range of pollutants present, therefore the ability to deploy a technology capable of removing more than just one compound is highly desirable.

2.1 Photocatalytic mechanism

Despite the varying and growing number of photocatalytic applications, the core mechanism often remains the same. Photocatalysis is a light driven chemical process which is primarily dictated by the electronic structure of the active photocatalyst material. The principle of photocatalysis is illustrated in Fig. 2.3 (and supported by Eq. 1-10), which demonstrates the formation of ROS utilised for the degradation of PAEs. Semiconductors such as TiO₂ are characterised by an occupied valence band (VB) and vacant conduction band (CB), separated by an energy band gap (E₉bg). The E₉bg value dictates the energy and wavelength of light required to promote an electron (e⁻) from the VB to the CB, via photoexcitation. Therefore, in the example of TiO₂, the E₉bg = 3.2 eV, which can be provided by a photon at a wavelength of ~ 387 nm. Therefore, upon irradiation with light of an appropriate wavelength, an electron-hole pair are generated by producing a positive hole in the VB (h⁺vb) and an electron in the CB (e⁻CB) (Eq. 1). These charged species can react with surface absorbed molecules to facilitate redox reactions. The h⁺vb can react with surface adsorbed H₂O, and titanol groups to generate ·OH (Eq. 3), which are often the primary radical associated with photocatalytic degradation due to a high oxidative potential of 2.8 eV vs NHE (normal hydrogen electrode) (Fang et al., 2013; Nagarajan et al., 2017a). Simultaneously, the e⁻CB can react with O₂ which has been adsorbed onto the surface of the catalyst, generating a superoxide anion radical (·O₂⁻) (Eq. 5). There are additional ROS generated via the subsequent reduction of ·O₂⁻, which is due to the redox potential of the TiO₂ electron-hole pair thermodynamically supporting the formation of H₂O₂. The generation of H₂O₂ occurs via a peroxide radical (Eq. 6-7) and can also result in additional ·OH formation as a result of scavenging an e⁻CB (Eq. 8). While still debated, the rate-limiting steps in photocatalysis have been proposed to be the factors which are capable of preventing recombination (Eq. 2) such as the adsorption of O₂ onto the
photocatalyst surface (Eq. 4) and/or the transfer of \(e^-_{CB} \) to the adsorbed O\(_2\) molecules (Eq. 5) (Sczechowski et al., 1995).

\[
\text{Photocatalyst} + hv \rightarrow h^+ + e^- \quad (1)
\]

\[
h^+ + e^- \rightarrow \text{heat} \quad (2)
\]

\[
h^+ + \text{OH}^- \text{ (or } H_2O\text{)} \rightarrow \cdot \text{OH} \quad (3)
\]

\[
O_2 \text{ (free)} \rightarrow O_2 \text{ (ads)} \quad (4)
\]

\[
e^- + O_2 \text{ (ads)} \rightarrow \cdot O_2^- \quad (5)
\]

\[
\cdot O_2^- + H^+ \rightarrow \cdot HO_2 \quad (6)
\]

\[
\cdot \text{HO}_2 + \cdot \text{HO}_2 \rightarrow H_2O_2 + O_2 \quad (7)
\]

\[
H_2O_2 + e^- \rightarrow \cdot OH + OH^- \quad (8)
\]

\[
\cdot O_2^- + \text{pollutant} \rightarrow \text{products} \quad (9)
\]

\[
\cdot OH + \text{pollutant} \rightarrow \text{products} \quad (10)
\]

Fig. 2.3; Principle of photocatalytic degradation of PAEs by semiconductor.

2.2 An overview of photocatalyst materials deployed for PAEs removal

While a range of photo-active materials have frequently been reported as photocatalysts in the literature, TiO\(_2\) remains one of the most utilised materials (Fujishima et al., 2000). With respect to PAE removal, researchers have demonstrated that TiO\(_2\) can be employed to degrade PAEs in wastewaters (Huang and Chen, 2010), with 'OH and 'O\(_2\)\(^{-}\) found to be capable of degrading DMP by 91.9 and 78.1\%, respectively (Wang et al., 2018b). As a result, most materials investigated for the photocatalytic degradation of PAEs have focused on titania based compounds. An excellent review by Sin et al. (2012) also highlighted the use of TiO\(_2\) photocatalysis for the degradation of endocrine disrupting chemical from wastewater. To provide a more extensive overview of materials used however, a broader range of catalysts are discussed here, which have been divided into three groups of catalytic materials; single metal oxide, doped and composite photocatalysts.

Single metal oxide semiconductors such as ZnO, Fe\(_2\)O\(_3\) and TiO\(_2\) have frequently been reported in the literature for photocatalytic applications, primarily due to their availability as commercial
products. TiO$_2$ is available as a photo-active material in a range of platforms such as pellets, paints and powders with varying crystal morphologies. This coupled with advantages such as being inexpensive, non-toxic and chemically inert has resulted in much of the early work in any photocatalytic applications beginning with TiO$_2$. Interestingly for PAEs removal, despite most of the work beginning around the early 2000’s, which was due in part to the increasing concern of the presence of PAEs in water, one of the earliest reports was in the late 1980’s. In 1988, Hustert and Moza monitored the photocatalytic breakdown of DMP, DEP, DBP and DEHP in an aqueous system using TiO$_2$ (Hustert and Moza, 1988). The authors concluded it was the generation of \textit{•OH} by TiO$_2$ that facilitated the degradation and subsequently resulted in the formation of hydroxyphthalates and dihydroxyphthalates as intermediate products. Moreover, they found the degradation process was accelerated by the addition of O$_2$. Shortly after this, in 1992, Halmann reported the photodegradation of di-n-butyl-orthophthalate and found the addition of H$_2$O$_2$, Fe$^{3+}$ and NaIO$_4$ enhanced the photocatalytic degradation process (Halmann, 1992). Following these initial reports, which demonstrated the feasibility of photocatalytic technology to remove PAEs, it was the work of Muneer \textit{et al.}, (2001a) and Kaneco \textit{et al.}, (2006), that provided a more detailed insight in the potential mechanisms and the impact of varying parameters. Subsequently, these studies provided an excellent platform for further work to be conducted that focused on both visible light photocatalysis and enhanced activity through the development of composite materials. As early as 2005, there were reports of modified TiO$_2$ films being used for the improved removal of DBP (Li \textit{et al.}, 2005) along with doped materials in 2012 for BBP degradation (Wang \textit{et al.}, 2012). Development in these key areas has continued to date, with a range of papers published from 2005 onwards that have attempted to develop materials that can achieve rapid rates of PAE removal under visible light irradiation. Within this period and in more recent years (~2017 onwards), papers have also been published that have investigated PAE removal at pilot scale and under solar irradiation (Vela \textit{et al.}, 2018a; Vela \textit{et al.}, 2018b).

Table 2.1 provides a summary and overview of single metal oxide photocatalysts to be used for the degradation of PAEs.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Structure</th>
<th>Catalyst</th>
<th>Light source</th>
<th>Experimental conditions</th>
<th>Key results and observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td> TiO$_2$ (anatase) (Huang and Chen, 2010)</td>
<td>TiO$_2$</td>
<td>Xenon lamp: 254 nm.</td>
<td>DEP initial concentration: 20 mg/L Catalyst loading: 0.2 g/L Temperature=25°C pH=4.0 Luminous intensity: 2.5×10$^{-6}$ Einstein/L·s.</td>
<td>DEP was eliminated after 50 mins irradiation.</td>
</tr>
<tr>
<td></td>
<td>ZnO</td>
<td>Hg lamp (15 W): 254 nm</td>
<td>DEP initial concentration: 50 mg/L Catalyst loading: 1 g/L UV light intensity: 9.79 mW/cm2 pH: 5.61 Microwave power: 400 W.</td>
<td>The authors reported the time required to achieve 50 % DMP removal was 18.1 and 30.3 min for TiO$_2$ P25 and ZnO, respectively.</td>
<td></td>
</tr>
<tr>
<td>DMP</td>
<td> Hydrothermal (h-t) and sol-gel (s-g) prepared TiO$_2$ (Jing et al., 2011)</td>
<td>Hydrothermal (h-t) and sol-gel (s-g) prepared TiO$_2$</td>
<td>UV lamp (15 W): 365 nm.</td>
<td>DMP initial concentration: 10 mg/L pH: 5.5 Catalyst loading: 1 g/L.</td>
<td>The photocatalytic activity of h-t TiO$_2$ (62.1 % DMP removal) was 2.5 times higher than that of s-g TiO$_2$ (33.6 % DMP removal).</td>
</tr>
<tr>
<td>DBP</td>
<td> TiO$_2$ (P25) (Kaneco et al., 2006)</td>
<td>TiO$_2$ (P25)</td>
<td>Xe lamp (990 W): 320-410 nm.</td>
<td>DBP initial concentration: 5 mg/L Catalyst loading: 0-30 mg (100 ml) pH:1-10 Light intensity: 1.8 mW/cm2.</td>
<td>Complete degradation of DBP was achieved in < 3 h, with moderate amounts of TiO$_2$ (5 mg in 100 ml). The final degradation product was observed to be CO$_2$.</td>
</tr>
<tr>
<td></td>
<td>α-Fe$_2$O$_3$</td>
<td>High-pressure</td>
<td>DBP initial concentration: 13mg/L</td>
<td>The maximum degradation</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1 An overview of single metal oxide photocatalysts for PAE degradation
| BBP | P25 TiO₂ (Xu et al., 2009) | UV lamp (8 W): 350nm. | BBP initial concentration: 1 mg/L
Catalyst loading: 2.0 g/L
Temperature: 24±1 °C
Light intensity: 3 mW/cm². | 80% photocatalytic degradation of BBP was recorded after 2 hrs irradiation. | achieved was 94% under optimum conditions; 300 mg/L α-Fe₂O₃, 50 µl of 30% H₂O₂, pH =6.5 and an initial DBP concentration of 13 mg/L. The study reported that DBP and subsequent intermediates were mineralized to CO₂ and H₂O. |
Photocatalytic research is typically dominated by materials synthesis and the development of novel photocatalysts, which is often driven by the desire to overcome the apparent limitations associated with the use of single oxide materials such as TiO$_2$. Firstly, TiO$_2$ is hindered by a wide E_{bg} (3.2 eV for anatase and 3.0 eV for rutile), which means UV light is required to promote electron excitation from the VB to the CB. Secondly, the recombination rate of the electron-hole pair is high, which subsequently leads to low photonic efficiencies for many photocatalytic degradation reactions. Therefore, early research focused on the modification of TiO$_2$ with a view towards producing a visible light absorbing material with a high photonic efficiency. This has typically been achieved via the addition of co-catalysts either through doping elements into the matrix of the catalysts or by the addition of small nanoparticles onto the surface. Element doping with metal and non-metals has been demonstrated to be a potential way to reduce the E_{bg} of photocatalysts and increase the absorption of visible light as dopants are capable of introducing intermediary energy levels (Hassan et al., 2016). The addition of co-catalysts can also significantly suppress recombination by improving electron-hole charge separation, which subsequently can lead to enhanced degradation of PAEs.

Within the literature, TiO$_2$ has been successfully doped with co-catalysts such as Ni, Cl, N, Mn and Co for both improved PAEs degradation and visible light absorption (Table 2.2) (Wang et al., 2012; Singla et al., 2016). While Cl and N doped catalysts have been reported to have improved photocatalytic degradation of and BBP and DEHP over unmodified TiO$_2$ respectively, it is worth nothing that both studies used Xe lamps with $\lambda \geq 400$ nm. Under these conditions, TiO$_2$ would not be expected to have a high photocatalytic activity and therefore it could be debated as to whether a comparison of activity using a broader spectrum light source would be more suitable. In contrast however, the work by Singla et al. and Kaur et al. showed the impact of transition metal doping on TiO$_2$ for DEP degradation (Kaur et al., 2018; Singla et al., 2016). In both studies a mercury lamp with a peak emission of 365 nm was used, which demonstrated all the doped samples (Ni, Mn and Co) achieved enhanced DEP degradation over that of undoped TiO$_2$. While a pure visible light study was not conducted, the authors did determine that Mn-doped TiO$_2$ produced the lowest optical band gap at 2.47 eV, which would be suitable for visible light activation.

In addition to TiO$_2$ based catalysts, Table 2.2 also shows doped ZnO, Fe$_2$O$_3$ and SrTiO$_3$ have all been deployed as active materials for the photodegradation of PAEs under visible light irradiation. In 2017 Jamil and colleagues investigated PAEs removal using SrTiO$_3$ (Jamil et al., 2017), which is a material that has gained a lot of interest due to the activity the perovskite structured metal oxide has demonstrated for water splitting (Lo et al., 2010; Xu et al., 2011; Yu et al., 2011). The authors reported the synthesis of Bi doped and BiCu co-doped SrTiO$_3$ via two methods: the citric acid gel method and
the Pechini method. The prepared materials displayed visible light responsive photo activity as a result of energy levels inserted by Bi$^{3+}$ and Cu$^{2+}$ ions. Under both synthesis methods, an E_{bg} of 1.78 eV was achieved for BiCu co-doped SrTiO$_3$, which equates to ~695 nm. The co-doped materials were also observed to be the most active under photocatalytic conditions, achieving ~70% DBP removal after 2 hrs of visible irradiation.

The more recent development of novel photocatalytic materials has often been coupled with attempting to demonstrate activity using either natural or low power irradiation sources. Solar driven photocatalysis remains one of the most desirable approaches for advancing the technology, however low efficiencies remain a significant challenge. Advancements in light emitting diode (LED) technology has also resulted in numerous photocatalysis studies now adopting LED based light arrays as an alternative to solar driven work. Eslami et al., (2017) and Akbari-Adergani et al., (2018a) used Fe, Ag co-doped ZnO along with visible LEDs to ‘simulate sunlight’ irradiation for the degradation of DEHP and DBP respectively. In both studies, more than 90% PAEs degradation was achieved with Akbari-Adergani and colleagues using central composite design to model and determine optimum conditions of pH = 3, a photocatalyst concentration of 150 mg/L and DBP starting concentration of 15 mg/L (Akbari-Adergani et al., 2018).
Table 2.2 An overview of doped photocatalysts for PAE degradation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Structure</th>
<th>Catalyst</th>
<th>Light source</th>
<th>Experimental conditions</th>
<th>Key results and observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBP</td>
<td></td>
<td>Cl-doped TiO$_2$ (Wang et al., 2012)</td>
<td>Xe lamp (300 W): 400 nm.</td>
<td>BBP initial concentration: 10 mg/L Catalyst loading: 1 g/L Temperature: 30±2 °C.</td>
<td>Photodegradation rates of BBP by pure TiO$_2$ and P25 were 16 and 30 %, respectively. In contrast (under the same conditions), more than 92% BBP was removed by Cl-TiO$_2$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P-doped TiO$_2$ thin-films (Mohamed and Aazam, 2013)</td>
<td>Xe lamp (300 W): 400 nm.</td>
<td>BBP initial concentration: 20 mg/L Temperature: 30 °C.</td>
<td>The photodegradation rates of BBP was 17 and 98 % using P25 TiO$_2$ and PTIO-0.03 (P-doped TiO$_2$ with 0.03 % P) catalyst, respectively. Moreover, photocatalytic activity increased when the P content increased from 0.01 to 0.03 %. At concentrations greater than 0.03 %, the photocatalytic activity decreased with increasing P content.</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td>Nx-TiO${2-x}$ (Anandan et al., 2013)</td>
<td>Xenon lamp (55 W): $\lambda \geq 440$ nm.</td>
<td>DEHP initial concentration: 5.0×10^{-4} M Catalyst loading: 0.1 g/L pH: varying from 8.44 to 4.35 Temperature: 25 °C</td>
<td>A higher rate of DEHP degradation was achieved using N-doped TiO$_2$ over that of TiO$_2$ Degussa P25.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe-Ag@ZnO (Eslami et al., 2017)</td>
<td>Visible-LED lamp: 430-500 nm.</td>
<td>Catalyst loading: 20 mg/L.</td>
<td>DEHP was removed by 90 % within 120 min of visible irradiation. The authors reported that photocatalytic degradation of DEHP increased when operated at a higher and lower pH (as a result of acidic and basic catalytic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>DMP</td>
<td>Sonically fabricated N-doped TiO$_2$ (U-N/TiO$_2$) and non-sonically fabricated N-doped TiO$_2$ (N/TiO$_2$) (Zhou et al., 2013)</td>
<td>Visible light.</td>
<td>DMP initial concentration: 15 mg/L Temperature: 22±2 °C Catalyst loading: 0.5 g/L.</td>
<td>After 5 hrs irradiation, the removal rate of DMP with N/TiO$_2$ and U-N/TiO$_2$ was 41% and 58%, respectively. The study reported that U-N/TiO$_2$ possessed a larger surface area, smaller particle size, and better dispersion than N/TiO$_2$.</td>
<td></td>
</tr>
<tr>
<td>DEP</td>
<td>Ni/ TiO$_2$ (Singla et al., 2016) Mn/ TiO$_2$; Ni/ TiO$_2$; Co/ TiO$_2$ (Kaur et al., 2018)</td>
<td>Mercury lamp (125 W): 365 nm.</td>
<td>DEP initial concentration: 30 mg/L Catalyst loading: 1 g/L.</td>
<td>Ni doped TiO$_2$ samples showed improved photocatalytic activity compared to undoped TiO2. Metal doping was observed to decrease the $E{bg}$ of TiO$_2$. The lowest optical band gap was observed in Mn doped TiO$_2$ (2.49 eV). Ni doped TiO$_2$ achieved the highest rate DEP degradation, however, due to a lower crystallite size and higher surface area. All the doped TiO$_2$ showed improved photocatalytic performance over pure TiO$_2$.</td>
<td></td>
</tr>
<tr>
<td>DBP</td>
<td>Catalyst</td>
<td>Illumination</td>
<td>DBP initial concentration</td>
<td>pH</td>
<td>Catalyst loading</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>WO$_3$/TiO$_2$ (Ki et al., 2018)</td>
<td>UV LED and blue LED.</td>
<td>DEP initial concentration: 10 mg/L Catalyst loading: 5 g/L Temperature: 20 °C pH: 6.17.</td>
<td>Low concentrations of WO$_3$ loaded onto the surface of TiO$_2$ enhanced photodegradation of DEP under visible light. In contrast, the authors also reported decreased photocatalytic activity under UV light.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fe, Ag) co-doped ZnO (Akbari-Adergani et al., 2018)</td>
<td>Visible LED lamp (7 W): 450–500 nm.</td>
<td>DBP initial concentration: 15 mg/L pH: 3 Catalyst loading: 0.15 g/L.</td>
<td>95% removal of DBP was achieved under optimum conditions; pH=3, a photocatalyst concentration of 150 mg/L and an initial DBP concentration of 15 mg/L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi, Cu co-doped SrTiO$_3$ (Jamil et al., 2017)</td>
<td>Metal halide lamp: 82 lm/W.</td>
<td>DBP initial concentration: 10 mg/L Catalyst loading: 1 g/L.</td>
<td>The photocatalytic activity of nano-sized Bi, Cu co-doped SrTiO$_3$ samples were higher than that of Bi doped SrTiO$_3$ samples.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-TiO$_2$-NTs (Mesoporous TiO$_2$ nanotubes) (He et al., 2019)</td>
<td>High pressure mercury lamp (125 W): 365 nm.</td>
<td>DBP initial concentration: 5 mg/L Catalyst loading: 0.2 g/L Light intensity: 1.5 mW/cm2.</td>
<td>The m-TiO$_2$-NTs possessed a multiple channel tubular structure which provided a higher specific surface area than TiO$_2$ nanoparticles (TiO$_2$-NPs). Therefore, the degradation rate constant for DBP removal for m-TiO$_2$-NTs was 7.7 times higher than that of TiO$_2$.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In addition to catalyst doping, material development has also focused on the formation of composites by combining semiconductors with various materials and support structures that can facilitate enhanced light harvesting and charge separation along with improved downstream filtration capabilities. These composite materials for PAEs degradation are summarized in Table 2.3. The formation of composite materials is often done with a view towards achieving increased excitation across a broader wavelength range along with achieving increased charge species separation through efficient electron transfer (Zhang et al., 2010). Carbon nanomaterials are promising candidates to be combined with TiO$_2$ to form composites, as they can act as effective electron transfer units and prompt electron transfer from the CB of TiO$_2$ nanoparticles towards the carbon surface due to their lower Fermi level (Chen et al., 2011). Carbon aerogels (CA), with high porosity, low electrical resistivity, and large surface area, have been shown to be effective for DMP degradation when combined with TiO$_2$ (Cui et al., 2016). In addition, multiwalled carbon nanotubes (MWCNTs) have also been shown to be effective when used in photocatalytic composite materials. When coupled with TiO$_2$, a higher photocatalytic activity than pure TiO$_2$ for the removal of DMP was reported (Tan et al., 2018).

Composite materials can also be formed by combining two or more photoactive semiconductors, which can allow for both efficient charge separation and improved light harvesting capabilities. Examples for PAE removal include V$_2$O$_5$/MoO$_3$ (Chuai et al., 2015), ZrO$_x$/ZnO (Liao et al., 2010) and Pt-In$_2$O$_3$/TiO$_2$ (Ma et al., 2012). The formation of such composites and subsequent activity is often dictated by the overall molar ratio of the elements present along with structures which form at the interface. In 2015, Chuai et al. determined a molar ratio of 1:2 for V to Mo was optimal for DMP degradation using V$_2$O$_5$/MoO$_3$. Furthermore, the authors observed that the composite catalyst was capable of improved visible light driven activity when compared to pure V$_2$O$_5$ and MoO$_3$ as a result of a V 3d impurity energy level along with the formation of a heterostructure at the interface between the compounds (Chuai et al., 2015). The authors suggested that both V$_2$O$_5$ and MoO$_3$ were simultaneously excited by visible irradiation and capable of injecting e^-_{CB} and h^+_{VB} into lower and higher energy levels respectively i.e. e^-_{CB} were injected into MoO$_3$ from V$_2$O$_5$ while, h^+_{VB} were transferred to the VB of V$_2$O$_5$ from MoO$_3$. The transfer of charged species in this way is an effective way of suppressing recombination and has also been reported in other studies that have deployed composite materials. Liao et al. in 2010 reported a ZrO$_x$/ZnO composite to have greater efficiencies for the removal of DMP when compared to pure ZrO$_x$, ZnO and TiO$_2$ P25 (Liao et al., 2010). The authors suggested that interfacial charge transfer, which resulted in electrons being injected into ZrO$_x$ from ZnO, due to the relative binding energies, was responsible for the improved activity when conducting microwave-assisted photocatalysis. Interestingly, under pure photocatalytic conditions,
P25 and ZrO_x/ZnO had similar activity for DMP removal, however under microwave irradiation there was a notable improvement. Liao and colleagues stated that this was due to the existence of three different valence oxides in the composite (e.g. ZrO₃, Zr₂O₃ and ZrO), which formed non-stoichiometric defect structures that exhibited strong dielectric relaxation under microwave irradiation.

In addition to improved charge separation and visible light responsiveness, composite materials can also improve substrate adsorption and catalyst recovery by using support structures to load the catalyst on to. The work by Jiang et al. (2013) and Chen et al. (2009) investigated the use of hollow glass microspheres (HGM) and magnetic poly (methyl methacrylate) (mPMMA), respectively, as catalyst support structures to improve filtration and catalyst recovery. Both studies successfully degraded DMP, with Jiang et al. observing a 20-60% improvement of removal upon the addition of Pt. Furthermore, the Pt-TiO₂/mPMMA composite material was found to be active over multiple experimental runs after being recovered (Chen et al., 2009). A study by Huang et al., (2013) also utilized a support structure that could enhance the process via substrate adsorption using TiO₂ immobilised onto hydrophobic layered double hydroxides (LDHs). The LDHs were found to have excellent adsorption capabilities for the initial removal of DMP which was combined with photocatalytic degradation via TiO₂.
Table 2.3 An overview of composite photocatalysts for PAE degradation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Structure</th>
<th>Catalyst</th>
<th>Light source</th>
<th>Experimental conditions</th>
<th>Key results and observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP</td>
<td></td>
<td>Carboxymethyl-β-cyclodextrin-Fe₃O₄@TiO₂ (CMCD-Fe₃O₄@TiO₂) (Chalasani and Vasudevan, 2013)</td>
<td>Mercury lamp (400 W).</td>
<td>DBP initial concentration: 20 mg/L Light intensity: 17 mW/cm² Catalyst loading: 1 g/L.</td>
<td>CMCD-Fe₃O₄@TiO₂ displayed enhanced degradation of DBP compared to Fe₃O₄@TiO₂, with complete degradation achieved within 60 mins. The particles were also stated to be easily recovered by magnetic separation.</td>
</tr>
<tr>
<td>DBP</td>
<td></td>
<td>g-C₃N₄/Bi₂O₃CO₃; g-C₃N₄/BiOCl (Shan et al., 2016)</td>
<td>Halogen tungsten lamp (500 W): 420 nm</td>
<td>DBP initial concentration: 5 mg/L Light intensity: 1 mW/cm² Catalyst loading: 1 g/L.</td>
<td>Approx. 60 % removal of DBP achieved within 300 min of irradiation, which was observed to be more efficient with the presence of composite materials g-C₃N₄/Bi₂O₃CO₃ and g-C₃N₄/BiOCl, when compared to any single catalyst.</td>
</tr>
<tr>
<td>DBP</td>
<td></td>
<td>Carbon black modified nano-TiO₂ film (CB-TiO₂) (Li et al., 2005)</td>
<td>low-pressure UV lamp (15 W): 254 nm.</td>
<td>DBP initial concentration: 15 mg/L pH= 6.4. (tubular photoreactor)</td>
<td>The photocatalytic activity of the CB-TiO₂ films was observed to be 1.4 times higher than that of TiO₂ films in degrading DBP.</td>
</tr>
<tr>
<td>DMP</td>
<td></td>
<td>TiO₂/mPMMA (Pt-TiO₂/mPMMA) (Chen et al.,</td>
<td>Low-pressure mercury lamp: 365 nm.</td>
<td>DMP initial concentration: 29 mg/L (0.15 mM) Catalyst loading: 1 g/L</td>
<td>DMP was removed to over 99 % after 180 min irradiation. Improved activity was observed when using 0.90 and 1.50 wt%</td>
</tr>
<tr>
<td>DMP</td>
<td>2009)</td>
<td>(Pt: 1.50 wt%).</td>
<td>Pt-TiO$_2$/mPMMA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V$_2$O$_5$/MoO$_3$ (Chuai et al., 2015)</td>
<td>xenon lamp as (500 W): $\lambda > 420$ nm.</td>
<td>DMP initial concentration: 40 mg/L Catalyst loading: 100 mg/60 ml.</td>
<td>V$_2$O$_5$/MoO$_3$ composites exhibited stronger photocatalytic ability than pure MoO$_3$ and V$_2$O$_5$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWCNTs/TiO$_2$ (Multiwalled carbon nanotubes composites) (Tan et al., 2018)</td>
<td>UV lamp (96 W)</td>
<td>DMP initial concentration: 1 mg/L Catalyst loading: 0.5 g/L.</td>
<td>The photocatalytic efficiency of MWCNTs/TiO$_2$ nanocomposites (97% DMP removal) was observed to be higher than TiO$_2$ (71 % DMP removal). The authors stated that MWCNTs were capable of enhancing light absorption across the UV–Vis range while reducing the charge recombination rate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrO$_2$/ZnO (Liao et al., 2010)</td>
<td>Hg lamp (15 W): 254 nm.</td>
<td>DMP initial concentration: 50 mg/L Catalyst loading: 1 g/L pH: 5.61 Temperature: 25 °C Microwave power: 400 W.</td>
<td>TOC removal efficiency of DMP was 88 % after 30 min irradiation, which was observed to be approx. 15 % higher than that achieved with P25 TiO$_2$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDHs/ TiO$_2$ (Huang et al., 2013)</td>
<td>UV lamp (8 W): 365 nm.</td>
<td>DMP initial concentration: 10 mg/L Catalyst loading: 2 g/L Temperature: 25°C. (annular quartz reactor)</td>
<td>Approx. 80 % of DMP was removed after 4 hrs irradiation. The LDHs/TiO$_2$ composites showed higher photocatalytic reactivity than that of bare TiO$_2$ nanoparticles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO$_2$/carbon aerogel (Cui et al., 2016)</td>
<td>Xe lamp (300 W): filter used to</td>
<td>DMP initial concentration: 2 mg/L; Catalyst loading: 0.1 g/L.</td>
<td>After 3 hrs irradiation, the TiO$_2$/CA-composites degraded > 83 % of DMP, which was found to be significantly higher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEP</td>
<td>HGM-TiO₂ (Hollow glass microspheres) (Jiang et al., 2013)</td>
<td>remove infrared light. (cylindrical glass reactor)</td>
<td>than the degradation efficiency of TiO₂ and CA-9.3 when used separately.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low-pressure mercury lamp: 350 nm.</td>
<td>DMP initial concentration: 10 mg/L. (Rayonet photochemical reactor)</td>
<td>After 20 mins irradiation, DMP was eliminated in presence of ≥8.0 g/L HGM-TiO₂.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEP</th>
<th>PANi/CNT/TiO₂ (co-doping with polyaniline and two functionalized carbon nanotubes onto TiO₂) (Hung et al., 2017)</th>
<th>LED array (10 W): 410 nm and 455 nm.</th>
<th>DEP initial concentration: 1 mg/L pH: 3-9. Light intensity of each LED: 40 mW/cm².</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEP degradation under simulated sunlight was 41.5–59.0 % and 44.5–67.4 % after 120 min, with sol–gel hydrolysis PANi/CNT/TiO₂ photocatalysts and hydrothermal synthesized ones, respectively. The optimum pH was found to be 5.0 and 7.0 for the two PANi/CNT/TiO₂ photocatalysts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEP degradation was observed to be > 90% under UV and visible light irradiations with ZnO/SiC nanocomposites as photocatalyst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEP</th>
<th>Pt/In₂O₃–TiO₂ nanotubes</th>
<th>Xenon lamp: (350 W):</th>
<th>DEP initial concentration: 10 mg/L Temperature: 30 ± 2 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>The authors reported the highest degradation of DEP was 99.8 % when</td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Initial Concentration</th>
<th>pH</th>
<th>Organic Acids</th>
<th>Light Intensity</th>
<th>Removal Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/In₂O₃-TiO₂-NTs</td>
<td>0.8, 9.4</td>
<td>5.5</td>
<td>0.5 mmol/L</td>
<td>2.5 mW/cm²</td>
<td>40% within 5 hrs of UV irradiation</td>
</tr>
<tr>
<td>H₃PW₁₂O₄₀-titania</td>
<td>13.5 mg/L</td>
<td>5.5</td>
<td>0.5 mmol/L</td>
<td>5 mW/cm²</td>
<td>80% TOC reduction achieved</td>
</tr>
</tbody>
</table>

In the presence of CA and CA/α-Fe₂O₃, the removal rate of DEP was 40 and 60%, respectively within 5 hrs of UV irradiation.
2.3 Pathways of degradation of PAEs

Due to the non-selective nature of radicals generated during photocatalysis, determining the exact mechanism can often be challenging. Despite this however, mechanistic studies are extremely valuable as they can provide key details on the overall process, which is particularly crucial when deploying the technology for environmental remediation work. It is essential that any process used to clean or remove pollutants from air or water, does not subsequently result in the formation of secondary pollutants through reaction intermediates. Typically, photocatalytic degradation reactions of organic materials can achieve mineralisation through to carbon dioxide and water. During this process however, a range of intermediates may be formed because of the redox reactions occurring. Furthermore, in the case of water treatment, it is desirable to also ensure these intermediates are not harmful and can be further oxidised if required. Identification and monitoring of these reaction intermediates can provide more insight about the photocatalytic mechanism during the degradation process and help to propose pathways. Achieving this will also provide valuable information on the photocatalytic process, which can facilitate the continued development of the technology. As was recently discussed by Wang and colleagues the advancement of photocatalysis is reliant on not just technological enhancement such as improved reactor design but also on addressing a number of crucial and fundamental chemistry issues (Wang et al., 2020).

The photocatalytic degradation pathways for three common PAEs, namely DMP, DEHP, DBP, are discussed in the following section. It is important to highlight that for certain organic materials the degradation pathway may vary slightly when different catalysts or different experimental conditions are applied. PAE removal rates are reduced with an increase in the length of the alkyl side chains and the alkyl branch chain during photocatalytic reactions (Li et al., 2006). Similar results have demonstrated that PAEs with shorter alkyl chains, such as, DMP and DEP could be degraded faster than DBP and DOP in bioaugmentation (Jianlong et al., 2004).

2.3.1 Degradation pathway of DMP

The 'OH has been proven to play a key role in degrading PAEs (Hung et al., 2017), which is primarily a result of the aforementioned oxidative potential (2.8 eV vs NHE). This can be further confirmed by the range of techniques which generate 'OH, including plasma (Qi et al., 2019) and Fenton process (Wongniramaikul et al., 2007), which have been shown to effectively degrade PAEs. Usually, 'OH oxidizes organic materials in aqueous solutions via three possible reaction mechanisms; the addition of the radical to an aromatic ring or other unsaturated bond leading to the radical adduct formation (RAF, Eq. 11), hydrogen atom transfer by 'OH (HAT, Eq. 12), and/or single electron transfer
with \('\text{OH}\) (SET, Eq. 13) (Naik et al., 2005).

\[
\begin{align*}
\text{RAF:} & \quad B^{+} + \text{OH} \rightarrow B^{+}\text{OH} \\
\text{HAT:} & \quad B^{+}\text{OH} \rightarrow B(-\text{H}) + \text{H}_2\text{O} \\
\text{SET:} & \quad B^{+}\text{OOH} \rightarrow B^{+} + \text{OH}^{-}
\end{align*}
\] (11) (12) (13)

In the RAF mechanism, the \('\text{OH}\) can easily react with aromatic and unsaturated molecules, especially in acidic environments. For example in the case of aromatic compounds the radicals may undergo an addition reaction to the benzene ring, producing OH-adducts (Mohan and Mittal, 1999). Song et al., (2009) reported that there are more than 50 active sites in aliphatic alkyl chains within cyanotoxin such as microcystin-LR, which can react with \('\text{OH}\) via the HAT reaction. The SET mechanism is also considered as a main pathway for \('\text{OH}\) mediated degradation of some aromatic molecules (Tripathi, 1998).

It is suggested in DMP degradation, SET is insignificant in the \('\text{OH}\)-mediated degradation and that RAF and HAT are the main pathways (An et al., 2014). During the degradation, four stable degradation products, phthalic acid (PA), MMP, ortho-hydroxylated DMP and meta-hydroxylated DMP were identified along with a proposed initial reaction mechanism (An et al., 2014; Graham, 2008) (Fig. 2.4). The final products of photocatalytic reactions are ultimately mineralisation products, CO\(_2\) and H\(_2\)O, which would be expected if complete PAE removal was achieved.

Fig. 2.4; Degradation pathway of DMP.

2.3.2 Degradation pathway for additional PAEs

In DMP degradation reactions, the primary aromatic intermediates are MMP and PA. A similar trend can be seen in the photocatalytic degradation of other PAEs. For example, in the photocatalytic degradation of DEP, the two primary intermediates formed were PA and MEP (Ki et al., 2018), while the photodegradation of DEHP resulted in the production of PA and MEHP (Anandan et al., 2013). Thus, the degradation pathway of common PAEs can be summarized in Fig. 2.5.

Fig. 2.5; Degradation pathway of PAEs.
Fig. 2.5 illustrates the common primary photocatalytic degradation pathway of PAEs based on these two main intermediates. Initially, the degradation of the parent compound began with attack from various oxidants, such as \(\cdot \)OH. When \(\cdot \)OH attacked aliphatic chain (marked red in the Fig.2.5), the original compound decayed to phthalic acid or mono-functional phthalate resulting from bond cleavage (Muneer et al., 2001b). DEHP however, exhibits more toxic effects compared with MEHP (Ye et al., 2014), so consequently if the photocatalytic degradation is not complete, the toxicity of the treated materials will have increased.

The mechanism of BBP photodegradation is slightly different, as there are two benzene rings in this compound, Fig. 2.6. Mono-butyl phthalate, mono-benzyl phthalate and phthalic acid were identified as primary intermediates products of BBP degradation (Xu et al., 2009). They all subsequently degraded into phthalic acid before ultimately forming \(\text{CO}_2 \) and \(\text{H}_2\text{O} \).

The implementation of AOPs in water treatment systems requires an accurate prediction of the fate and risk assessment of the target contaminants. It can be seen that during the photocatalytic degradation of every PAE compound, PA is the common intermediate. PA is not developmentally toxic in rats even at a dietary dose which induces maternal toxicity (Ema et al., 1997).

Fig. 2.6; Degradation pathway of BBP. (Reprinted with kind permission from Xu et al., 2009. Copyright (2020) Elsevier.)

2.4 Kinetics of removal of PAEs

The kinetic analysis of photocatalysed reactions has become a challenging area of research as the development of the field has revealed the processes and mechanism occurring are more complex than initially suggested. Catalytic processes in heterogeneous systems are often described by the kinetics of the Langmuir-Hinshelwood (L-H) model, which is described in Eq. 14. This model assumes products are formed as a result of the reaction between catalyst and adsorbed reactants, which often involves the participation of ROS. The popular use of the L-H model within photocatalysis research is likely a result of its versatility as researchers are frequently able to utilise it for experimental data.

\[
\frac{dC_i}{dt} = -k\sigma \frac{KC_i}{1 + KC_i}
\]

In this situation, \(r \) describes the reaction rate (mg/L·min), \(t \) means the time (min), \(k \) represents the apparent reaction rate constant (mg/L·min), \(\sigma \) is the fractional coverage of catalyst surface, and \(K \)
defines the dynamic equilibrium constant of PAEs’ adsorption onto a photocatalyst (L/mg). When adsorption is relatively weak, or the reactant concentration is low (KC_t ≪ 1), Eq. (15) can be simplified to a pseudo-first order kinetic model (Fu et al., 2016):

$$\frac{dC_t}{dt} = -kKC_t = -k_{app}C_t$$ \hspace{1cm} (15)

where k_{app} is the apparent rate constant (/min). Integrating Eq. (16), it is

$$\ln\left(\frac{C_t}{C_0}\right) = -k_{app}t$$ \hspace{1cm} (16)

Where the value of k_{app} can be calculated from the slope of a plot $\ln\left(\frac{C_t}{C_0}\right)$ versus t.

The L-H model was used to describe the photocatalytic process, leading to the determination of the kinetic parameters, which are not directly related to constants of Langmuir adsorption isotherm. This indicates that the parameters of L-H kinetics in cases of photocatalytic reactions do not have real physical meaning. These parameters are experimental constants describing the degradation in assumed experimental conditions, including a specific range of substrate concentration.

While widely cited in semiconductor photocatalysis, flaws have been found within this model. For example, Turchi and Ollis, (1990) found the L-H parameters k and K had a negative correlation, which has not been shown in Eq. 14. It was observed that k and 1/K varied with light intensity to the same exponent, which may be 1.0 (very low intensity) or 0.5 (high intensity) (Emeline et al., 2000). K is a parameter reflecting adsorptive affinity of a substrate onto catalyst surface so it should not vary with light intensity. As such, a research group carried out a series of experiments on the degradation of DMP with TiO$_2$ to clarify details of the process and establish a new kinetic model based on L-H model, (Eq. 17-19) (Du et al., 2009).

$$\frac{1}{k} = \frac{489.5}{\sqrt{I}} + 3.22$$ \hspace{1cm} (17)

$$\frac{1}{K} = \frac{12.13}{\sqrt{I}} + 1.43$$ \hspace{1cm} (18)

$$K = \frac{1.299}{k} + 0.025$$ \hspace{1cm} (19)

Subsequent research has proven that PAE degradation follows the pseudo-first order kinetic models, such as that observed for BBP (Vela et al., 2018a). Moreover, to date there are no examples in the literature that have reported photocatalytic PAE degradation which follows a second order kinetic
In the kinetic analysis of the photocatalytic degradation of a range of compounds including phthalates in a pilot scale reactor, Vela et al., (2018a) used fluence units as opposed to time, which was the “the radiant energy received by a surface per unit area”. The authors considered this was more appropriate as time would be affected by the geometry of the photoreactor, while fluence units could be interchangeable between different investigations. Through this analysis Vela and colleagues found that the photocatalytic degradation of the compounds, including four PAEs, followed a pseudo first order process. Ollis, (2018) recently provided a detailed analysis of the key issues that needed to be considered with respect to kinetics of photocatalysed reactions. Ollis discussed that while the L-H model has been used extensively for photocatalytic processes, it should be noted that it was originally developed for simpler, non-light driven, heterogenous processes. Ollis concluded that a number of considerations should be taken into account when applying the L-H model to photocatalytic processes, particularly as there may be a range of mechanisms involved in these processes and the influence of light will also have an impact on the surface reactions. Ollis also concluded in his analysis that the photocatalytic rate constant k, is a property of the photocatalyst material rather than the structure of the chemical compounds undergoing the photocatalytic degradation process. In view of photocatalytic PAE removal, these are key factors which should be given consideration when attempting to develop the technology further.

3. Moving forward: key considerations for advancing the technology

This review has attempted to provide readers with key information and data on the frequency, occurrence and health risks associated with PAEs along with a broad overview of the potential for photocatalysis as an approach to degradation and removal. Despite the progress that has been made, photocatalytic technology for PAE removal remains predominantly at the research stage and is now faced with overcoming several crucial challenges with a view towards demonstrating efficiency at larger scale deployment. Interestingly, however, it should be noted that photocatalysis as a technology is faced with similar challenges that are not specific to a single application and can be linked to most photocatalytic processes. In heterogenous photocatalysis, uniform distribution of light, low efficiencies, high energy requirements, and mass transfer limitations all result in difficulties when scaling up in industry (Mukherjee and Ray, 1999). Overcoming these challenges, however, is only part of the solution to advancing photocatalytic technology, as the use of raw water when operating at pilot or industrial scale presents additional parameters that require consideration. The physiochemical composition of raw water can vary and furthermore factors such as pH, turbidity and the presence of
organic ions and other pollutants can significantly impact photocatalysis. In a reaction suspension where multiple organic species are present, competition for both active sites and ROS at the catalyst surface increases which could reduce the efficiency and rate of PAE removal. Moreover, a variation in pH could greatly influence the interaction between substrate and catalyst, which is already a potential limitation due to the chemical structure of PAEs. In addition, turbidity could also impair light penetration and distribution which would reduce the photo-excitation of the catalyst.

Despite the challenges however, photocatalysis has grown rapidly and continues to be one the more ‘favoured’ AOPs applications, especially for environmental remediation, on account of the ambient operating conditions and potential for coupling with low and/or renewable energy. As a result, the technology has now been applied to a range of applications, however very few of these have shown economic viability or efficiency at industrial level. There are a number of parameters and factors which have influenced the slow development of the field and while reviewing them independently wouldn’t be appropriate, it is possible to consider them in relation to two key platforms; the TRL scale and the EU standard metric, EEO value. Using these approaches, photocatalytic technology can be evaluated on a broader scope which allows the assessment of more than just one individual parameter. Furthermore, this can be done for photocatalytic technology generally and at an application specific level, which in this case would be environmental remediation focused PAE removal.

Reviewing photocatalysis, based on the TRL scale can provide an initial evaluation of the technology while highlighting the key challenges faced with further development, Fig. 3.1. Emerging technologies considered at the concept development and academic research phase, have a TRL = 1-2. In contrast, when technologies are mature and deployed successfully at industrial level, the TRL = 7-9. The TRL for photocatalysis applications varies, with energy production typically at 1-3, environmental remediation at 3-5 and self-cleaning surfaces, which are based on the photocatalytic process, as the only example considered as established technology, at a TRL = 7-9. The degradation of PAEs via photocatalysis can be considered at TRL = 3-5, due to the majority of work being conducted at lab-scale with only a limited number of pilot scale tests reported. To date, the work by Vela et al. (2018a and 2018b) are some of the only studies to investigate photocatalytic PAE removal at pilot scale capacities. Experiments were carried out in a pilot plant in Murcia employing ZnO to degrade Diamyl phthalate (DAP) and BBP under solar irradiation (Vela et al., 2018b). The solar pilot plant was used to degrade 100 L of pollutant water with 200 mg/L ZnO and 250 mg/L Na2S2O8 under natural sunlight irradiation with an average daily capacity of 5000 m³/day. Results showed that at pilot plant scale after 240 min sunlight irradiation, the remaining amount of DAP and BPP was 20.8 ± 6.5% and 24.3 ± 5.3%, respectively. In addition, Vela et al., (2018b) also reported the use of P25 TiO2 (200 mg/L) with
Na$_2$S$_2$O$_8$ (250 mg/L) in the same pilot plant to photodegrade DAP and BBP under natural sunlight. The results showed that around 30-40% BBP and DAP remained after 240 min sunlight irradiation (Vela et al., 2018a). In addition, it was estimated that if the pilot plant operated for 8 hours per day and 365 days per year, 90% of PAEs could be removed. In addition, based on the facility being operational for 10 years, treatment cost would be 103 and 149 €/m3 for photocatalytic treatment with ZnO and P25 TiO$_2$, respectively. In contrast, if the plant was only operated for 240 days per year (which takes into consideration variable weather conditions), the cost is noticeably higher at 144, 209 €/ m3 for ZnO and P25 TiO$_2$, respectively (Vela et al., 2018a).

While transitioning photocatalysis technologies to higher TRLs requires input across a varied number of parameters, it is possible to broadly define them as:

- **Increased photocatalytic activity** – this can typically involve improved fundamental understanding of the chemical processes including investigating the interaction between the photocatalyst and the target pollutant (i.e. PAEs) and the crucial physio-chemical parameters which influence this. This should also take into consideration the impact of varying physio-chemical parameters of raw water on the photocatalytic process.

- **Enhanced reactor and system technology** – this is centred around reducing mass transfer limitations while increasing photon delivery and distribution within reactor systems to facilitate enhanced photocatalytic reactions. In addition, it also involves reviewing the entire system which includes pre-treatment, substrate delivery, catalyst platform and deployment and downstream filtration requirements.

- **Efficient deployment at large scale** – this area focuses on the scaling up of photocatalytic technology with a view towards achieving economic and industrial feasibility. A key intermediate step in relation to this is increasing the number of pilot scale studies which can demonstrate efficiency of the photocatalysis process when operating with increased capacities.

![Fig. 3.1; The TRL scale in relation to photocatalytic applications highlighting where the technology gap lies, and the key challenges associated with bridging it.](image)

These broad parameters highlight that it is engagement at both ends of the TRL scale that is...
required for further advancement of the photocatalytic process. An improved understanding of the
fundamental chemical challenges will facilitate increased photocatalytic activity, which must be
supported by the design and construction of reactor systems, preferably at pilot scale, that provide ideal
reaction environments. Therefore, it is essential to have engagement over multiple components of the
development process in order to achieve a TRL = 9 or greater. In view of this, the EEO becomes an
important parameter to consider when assessing photocatalytic processes, specifically for pollutant
removal in water, as it measures activity based on multiple parameters. The EEO is defined as the
electric energy required to degrade the initial concentration of pollutant by one order of magnitude in
a unit volume of an aqueous solution (Eq. 20) (Bolton et al., 2001). The EEO can be an extremely
useful metric for photocatalytic activity, especially regarding the key parameters that are identified by
the TRL scale when advancing the technology. Moreover, it provides an assessment tool for evaluating
the performance of photocatalysis in relation to already established AOPs technologies for
environmental remediation.

\[
EEO = \frac{P \Delta t}{V \log \frac{C_A}{C_A_0}}
\]

Where P is rated power in kW power, \(\Delta t\) is reaction time in hour, V is the batch reactor volume
in \(m^3\), \(C_A\) is the concentration of pollutant A at any time and the \(C_A_0\) is the concentration of pollutant
at the beginning. It is evident in Eq.16, in order to increase EEO, there are two main methods: increase
the reaction rate and reduce the energy requirements.

Therefore, in reviewing the TRL scale and considering the EEO value, the following chemistry
and engineering related parameters for photocatalytic PAEs removal can be considered as key:

- **Chemistry:** Improved photocatalytic degradation - including enhanced surface
 interaction through pH modification, substrate adsorption and the use of additives.

- **Engineering:** Improved reactor design - focusing on catalyst platform deployment,
 irradiation array development and overall system energy requirements.

3.1 Improving the chemistry; key considerations for PAE removal

There are a number of crucial fundamental chemical challenges that must be overcome in order
to improve photocatalytic PAE degradation. Parameters which need to be taken into consideration
include the formation of reaction intermediates and their subsequent impact on the environment, the ability to deal with varied concentrations of PAEs in real world samples along with the presence of additional pollutants in environmental samples that may create a competitive system. Therefore, it is the surface interaction between substrate and catalysts which requires consideration and along with it, the parameters which can greatly influence this; surface interaction and catalyst hydrophobicity, pH and system additives e.g. H$_2$O$_2$.

As was discussed in previous sections of this review, several materials have been developed and used to degrade PAEs in water with more novel photocatalysts frequently being reported. As photocatalysis is often considered as ‘non-selective’, due to the nature of the radicals generated, there is a challenge in developing catalysts which are selective for PAE removal. While absolute PAE selectivity may not necessarily be required, as a technology that can remove a range of pollutants is desirable, increasing surface adsorption of PAEs is beneficial. As PAEs are hydrophobic pollutants, increasing the lipophilicity of photocatalysts can enhance adsorption of the compounds onto the photocatalyst surface (Ooka et al., 2004). For example, when TiO$_2$ was combined with hydrophobic LDH, the photocatalytic efficiency of DMP was enhanced compared to pure TiO$_2$ due to the hydrophobic flaky structure of LDH working as an effective adsorbent for DMP (Huang et al., 2013). With increasing the ratio of LDHs to TiO$_2$, a high concentration of DMP was observed to adsorb onto the TiO$_2$ composite catalyst, which resulted in improved DMP removal efficiency, Fig. 3.2. Another example is the application of TiO$_2$ pillared clay. The hydrophobicity of this material has been demonstrated to have enhanced photocatalytic activity compared to unmodified TiO$_2$ for the degradation of DBP, DEP and DMP in water (Ooka et al., 2003). It was suggested that hydrophobic interaction between the adsorbate (DMP, DEP and DBP) and interlayer surface of the TiO$_2$ pillared clay was the predominant factor in PAE adsorption to the photocatalyst surface in water, which further enhanced the performance of the photocatalytic degradation process. Therefore, while the development of new photocatalysts is often done with a view towards achieving visible photon activation, careful consideration should be given to substrate-catalyst interaction, which is the crucial initial stage of any photocatalytic process.

Fig. 3.2; (a) Adsorption capacity by SDS-LDHs/TiO$_2$ composites and single TiO$_2$ nanoparticles (under the same experiment conditions, in dark); and (b) the photocatalytic removal of DMP: (■) ST42, (●) ST43, (♦) ST44, (▲) ST34, (★) ST24, (★) nano-TiO$_2$, (*) photolysis. (The number after ST is the radio of amount of TiO$_2$ of amount of hydrophobic layered double hydroxides.) (Reprinted
The pH of the reaction solution is also an important parameter as it can impact the photocatalytic performance of PAE degradation through the electrostatic interaction at the catalyst surface. Kaneco et al., investigated the role of initial pH on the degradation efficiency for DBP with TiO\(_2\) within the range of 1 to 10 (Kaneco et al., 2006). Improved photocatalytic degradation efficiency was observed when the pH levels were between 6 and 10, which the authors suggested was due to increased DBP adsorption onto the negatively charged TiO\(_2\) surface through the positive hydrogen atoms on a DBP molecule. In addition to improved surface interaction, the increased presence of OH ions were found to be beneficial by Chalasani and Vasudevan, 2013 when CMCD-Fe\(_3\)O\(_4\)@TiO\(_2\) was used to degrade DBP over the pH range of 7-10. The authors explained that at a high initial pH, the presence of increased OH\(^-\) in solution induced a higher generation of \(^{\cdot}\)OH, which were believed to be the dominant oxidizing species in the photocatalytic degradation of DBP. It is worth noting that the optimum pH conditions will differ with different photocatalyst and PAEs, which is due to two main factors; the adsorption mechanism of PAEs onto the catalyst surface and the formation \(^{\cdot}\)OH. Moreover, consideration must be given to the pH of samples detected in natural environments as this could significantly impact the ability to effectively deploy photocatalysis.

While potentially an effective method to remove PAEs from water, the efficiency of photocatalysis is relatively low compared to other AOPs (Mansouri et al., 2019). As a result, the use of additives or hybrid systems are often used to enhance the formation of ROS at the catalyst surface or improve charged-species separation in the photocatalyst materials. For PAE removal, photocatalysis has been coupled with microwave irradiation (Ling et al., 2019) and ultrasound (Na et al., 2012), which were both proven to enhance the degradation rate. Chen et al., (2012) demonstrated that the decomposition of DMP was greatly enhanced under microwave irradiation over Fe@Fe\(_2\)O\(_3\) resulting from accelerated electron transfer and increased ROS formation. The addition of chemical additives can also promote increased photocatalytic activity. H\(_2\)O\(_2\) was shown to accelerate the degradation efficiency of DEP as a result of the increased formation of \(^{\cdot}\)OH (Medellin-Castillo et al., 2013). Similarly, the addition of electron acceptors can also accelerate the photocatalytic reaction by preventing the recombination of the electron-hole pair in the photocatalyst. The presence ferrate enhanced the photocatalytic degradation of DMP (Graham, 2008), while Na\(_2\)S\(_2\)O\(_8\) was also used in a photocatalytic system to prevent recombination, enhancing the photodegradation of BBP and DAP under solar light (Vela et al., 2018a). While the use of additives and hybrid systems are clearly capable
of enhancing the photocatalytic process, careful consideration must be given to the energy and cost requirements associated. The efficiency achieved at lab scale using such a system must be translatable at increased operating volumes to ensure the development of technology is both economically and technologically viable. Therefore, it is at this point the engineering aspects of photocatalytic PAE removal must all be considered.

3.2 Improving the engineering: key considerations for PAEs removal

Advancing the photocatalytic application of PAE degradation towards industrial scale is obviously a complex challenge and one that requires input across a broad number of key areas. Systems for water treatment based on semiconductor photocatalysis (including photodegradation of PAEs) face many challenges despite being extensively researched for over the past 40 years. There are still several crucial fundamental engineering challenges which must be overcome when attempting to improve photocatalytic PAE degradation including catalyst platform deployment, irradiation array development and overall system energy requirements.

Many photocatalytic reactors have been designed at lab-scale, with two main classifications: suspended and immobilised catalyst systems. It is common to deploy photocatalysts as suspended particles in solution, which often results in the scattering of light radiation and enhanced mass transfer. There are, however, challenges in separating the suspended powders from post water treatment. Therefore, it is often desirable to use immobilised photocatalyst systems. Chiou et al., (2006) reported the use of a packed-bed photoreactor, which coated TiO$_2$ on glass beads to degrade DBP from water, which achieved a 75% degradation efficiency of DBP (5 mg/L) following 80 min irradiation. Another example utilised TiO$_2$ coated onto a Ti plate which resulted in the successful elimination of DMP from water (Ku et al., 2017). Several supported photocatalyst systems have been developed, such as TiO$_2$ coated on glass (Chiou et al., 2006); TiO$_2$-based films on glass substrate (Mahy et al., 2019) which have been proven to be effective in degrading PAEs in water. In addition to immobilizing photocatalysts, another feasible method to facilitate post-treatment has been the development of composites with magnetic materials, such as Fe$_2$O$_3$, which can be easily removed from aquatic solutions using magnets (Dong et al., 2013; Chang and Man, 2011).

The delivery of photons through artificial and natural sources to drive photocatalytic reactions is crucial and essential to the process. The source of irradiation also represents a key parameter in relation to both energy requirements, overall efficiency and the potential for scale up. The majority of photocatalytic research has now moved away from using traditional light sources such as mercury
lamps, which have several limitations for AOP use (Autin et al., 2013), with low power LEDs more
favoured. In addition, there remains a strong desire to utilise direct solar light as a potential renewable
option to drive photocatalysis. Würtele et al. (2011) described LEDs as having a number of unique
benefits for photocatalysis including being environmentally friendly, compact and robust, capable of
faster start-up times, and potentially requiring less energy while having a longer lifetime. These are
key advantages, especially in relation to the TRL scale and potentially improving the EEO value, as
the deployment of LEDs could represent a crucial approach to lowering the energy requirements of a
system. Furthermore, LEDs have the unique ability over traditional light sources of being capable to
be deployed under controlled periodic illumination (CPI), which involves pulsing LEDs with high
frequency (Tokode et al., 2014). Not only does this present an approach to further reduce the energy
requirement of the system, however it may also address low photoconversion efficiencies, which is
considered a major challenge preventing photocatalysis transitioning from academia to practice.

Compared to other AOPs, such as UV/H$_2$O$_2$, photocatalysis has a lower Φ for *OH production, which
is considered as one of the most critical limitations for water treatment. Through deploying CPI, however, a higher Φ can potentially be achieved, which to some extent could address these drawbacks.
The use of CPI for the photocatalytic degradation of DMP has been investigated where under the same
5 seconds of illumination, the calculated EEO was decreased by almost 40% for experiments
conducted with the increasing dark period from 0.5 s to 5.0 s (Ku et al., 2017). Despite the advantages
of LEDs, they can also lead to non-uniform light distribution, which may decrease photonic efficiency
for photocatalytic oxidation (Martín-Sómer et al., 2017). Therefore, if LEDs are used in the reactor, it
is imperative to optimize the light distribution, otherwise the efficiency of the process may not be
improved compared to traditional mercury lamps.

With respect to reducing energy requirements, the development of self-powered photocatalytic
units, which don’t have any fossil fuel dependency, is an interesting field of study. One of the most
promising and desirable energy supplies is sunlight. The low-energy density of sunlight (<1000 W/m2),
however, can limit solar powered applications. When large land areas are available and an effective
light-harvesting method is employed, photocatalysis can be an effective process for small-scale
industrial waste stream treatment (Spasiano et al., 2015). Additionally, photovoltaics have been
successfully introduced to utilize solar radiation as an energy source for all devices, including UV-
LEDs in Iran to photocatalytically remove organic contaminants. This photoreactor was proposed to
be a sustainable, self-powered, and practical point-of-use decontamination system (Eskandarian et al.,
2016). In the case of photocatalytic reactors, two main parts that require energy supply is for
stirring/pumping (if applicable) and powering light sources. Effective visible light activated
photocatalysts are another method to potentially reduce energy requirements in photocatalytic reactors and remains the primary area of photocatalysis research within the literature. As highlighted above, a major drawback of commercial TiO$_2$ materials as photocatalysts for industrial process are they cannot effectively harvest sunlight (Gupta et al., 2013). It would be highly desirable if semiconductor photocatalyst materials that could be activated under sunlight were available on a large scale. Over the last two decades there has been extensive research on development of visible light activated catalysts. Their performance, however still falls short of UV activated catalysts with respect to the \(\cdot \text{OH} \) generation rate, such as Evonik P25 TiO$_2$ (Nagarajan et al., 2017). If UV light must be utilised in systems, significant advances in UV-LED technology needs to be utilised, which of course use less energy as mentioned above.

Once the technical challenges of producing a large-scale reactor have been overcome, the criteria for assessing the performance of photocatalytic water treatment toward PAE degradation must be considered. To attract commercial interest, researchers should ensure performance criteria include factors such as material cost, reusability of photocatalyst, the feasibility of large-scale deployment, tendency to foul in the proposed water matrix, and long-term stability and performance under typical operating conditions. Each of these are still issues that need to be addressed to demonstrate that the photocatalytic process is also economical. Moreover, a complete risk assessment of the process is an important initial consideration. Many intermediates of PAE degradation during photocatalytic process have been identified in lab, neglecting the presence of additional environmental dissolved organic materials that are found in real wastewater. Undesired by-products may be generated by oxidation processes, which are even more toxic than the original contaminant and can have a damaging effect on humans, which can be more detrimental than the original contaminant molecules. Complete risk assessment, therefore, is necessary in addition to research on technical issues to help realize this technology. It is also important to compare photocatalytic processes with other AOPs, such as UV/H$_2$O$_2$ and UV/O$_3$ to confirm the overall economic feasibility, which can be achieved through using the EEO value. Parameters such as the operational lifetime of typical photocatalytic system must be established to provide an overall understanding of the economic and environmental impacts of a complete process for photocatalytic degradation of chemical contaminants in water.

4. Conclusion.

This review has shown that PAEs are frequently being detected in the environment and can have
a damaging effect on human health. There are a number of exposure pathways, including direct contact via plastics and indirectly via exposure to contaminated soil, air and water. Many phthalates have endocrine-disrupting effects which can have significant, damaging and harmful physiological effects on humans. The risk posed by PAEs has resulted in increased focus on achieving removal and degradation of the harmful compounds. Semiconductor photocatalysis has been demonstrated to be an efficient and promising solution towards eliminating PAEs from the environment. This review explored the range of photocatalyst materials previously reported for PAE removal including the initial work using single metal oxides such as TiO$_2$ along with doped materials such as Fe, Ag co-doped ZnO which have achieved DEHP and DBP removal under low power visible irradiation. Composite materials were also reviewed including LDH-TiO$_2$ which could enhance the removal of PAEs through both adsorption and photocatalytic degradation. The mechanism of the photocatalytic process for PAEs removal together with a consideration of intermediates generated by the process was also discussed which identified the \cdotOH as playing a key role in the degradation pathway. In addition to reviewing the literature, crucial recommendations that need to be considered with respect to developing photocatalytic technology for large scale PAE removal were also explored and discussed. While the technology has been demonstrated to be effective on a lab scale there are still challenges that need to be addressed before a practical large-scale process may be realised. In the view of the authors, the use of the TRL scale and EEO value can provide valuable platforms and evaluation tools for assessing photocatalytic activity while identifying factors which are key to achieving continued development of the technology. Addressing these parameters, which span both chemistry and chemical engineering, can aid in facilitating the transition of photocatalytic PAE removal from the lab to the real world.

Acknowledgement

Miss Xinzhu Pang is gratefully to acknowledge financial support from the China Scholarship Council for funding her PhD research. Dr Nathan Skillen would like to acknowledge the Energy Pioneering Research Program at Queens University Belfast for funding his research.

Conflict of interest

The authors declare no competing financial interest.

References:

Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies - A review. J. Environ. Manage. 109, 164–178. https://doi.org/10.1016/j.jenvman.2012.05.014

Chalasani, R., Vasudevan, S., 2013. Cyclodextrin-functionalized Fe3O4@TiO2: Reusable, magnetic
nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7, 4093–4104. https://doi.org/10.1021/nn400287k

Clara, M., Windhofer, G., Hartl, W., Braun, K., Simon, M., Gans, O., Scheffknecht, C., Chovanec, A.,

Lau, T.K., Chu, W., Graham, N., 2005. The degradation of endocrine disruptor di-n-butyl phthalate by

52

Sin, J.-C., Lam, S.-M., Mohamed, A.R., Lee, K.-T., 2012. Degrading Endocrine Disrupting Chemicals from Wastewater by <svg style="vertical-align:-4.50008pt;width:44.5px;" id="M1" height="21.0375" version="1.1" viewBox="0 0 44.5 21.0375" width="44.5" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,. Int. J. Photoenergy 2012, 185159. https://doi.org/10.1155/2012/185159

Wang, T., Qu, G., Yin, X., Sun, Q., Liang, D., Guo, X., Jia, H., 2018b. Dimethyl phthalate elimination

