
Ecohydrological feedbacks confound peat-based climate
reconstructions

Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M., & Plunkett, G. (2012). Ecohydrological feedbacks
confound peat-based climate reconstructions. Geophysical Research Letters, 39(11), Article L11401.
https://doi.org/10.1029/2012GL051500, https://doi.org/10.1029/2012gl051500

Published in:
Geophysical Research Letters

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2012 American Geophysical Union

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:26. Jan. 2025

https://doi.org/10.1029/2012GL051500
https://doi.org/10.1029/2012gl051500
https://pure.qub.ac.uk/en/publications/d005a761-5ec8-4e60-9fed-cfc3ec2b6628


Ecohydrological feedbacks confound peat-based climate
reconstructions

Graeme T. Swindles,1 Paul J. Morris,2 Andy J. Baird,1 Maarten Blaauw,3 and Gill Plunkett3

Received 25 February 2012; revised 3 May 2012; accepted 7 May 2012; published 5 June 2012.

[1] Water-table reconstructions from Holocene peatlands
are increasingly being used as indicators of terrestrial
palaeoclimate in many regions of the world. However, the
links between peatland water tables, climate, and long-term
peatland development are poorly understood. Here we use
a combination of high-resolution proxy climate data and a
model of long-term peatland development to examine the
relationship between rapid hydrological fluctuations in peat-
lands and climatic forcing. We show that changes in water-
table depth can occur independently of climate forcing.
Ecohydrological feedbacks inherent in peatland development
can lead to a degree of homeostasis that partially disconnects
peatland water-table behaviour from external climatic influ-
ences. We conclude by suggesting that further work needs
to be done before peat-based climate reconstructions can
be used to test climate models. Citation: Swindles, G. T.,
P. J. Morris, A. J. Baird, M. Blaauw, and G. Plunkett (2012), Ecohy-
drological feedbacks confound peat-based climate reconstructions,
Geophys. Res. Lett., 39, L11401, doi:10.1029/2012GL051500.

1. Introduction

[2] There has been a proliferation of peat-based palaeocli-
mate studies in recent decades, and peat-based reconstructions
have become one of the most common types of terrestrial
palaeoclimate archive in some regions [e.g., Charman et al.,
2006]. This popularity attests to an increasing acceptance of
peatlands as reliable archives of Holocene climate change
[Blackford, 2000; Chambers and Charman, 2004], but also
demands that the assumptions that underpin the methods
involved are appraised critically.
[3] Recent work in NW Europe has suggested that

reconstructions of peatland water tables from testate amoebae
assemblages indicate changes in effective precipitation (pre-
cipitation minus evapotranspiration), relating primarily to
the summer water deficit period [Charman, 2007; Swindles
et al., 2010]. The use of peat stratigraphy for palaeoclimatic
reconstruction relies on two broad assumptions. Firstly, that
measurements of plant macrofossil assemblages, peat
humification, and testate amoebae provide reliable proxies
for past water-table behaviour in peatlands. Secondly, that

peatland water tables, particularly in ombrotrophic bogs,
respond consistently and predictably to climatic conditions.
While there is strong theoretical and observational evidence
in support of the first assumption [Woodland et al., 1998;
Väliranta et al., 2007], we question the validity of the
second assumption, echoing earlier warnings [Aaby, 1976;
Barber, 1981].
[4] Peat deposits are not static, inert receptacles of

palaeoclimatic proxy information. Rather, peatlands and
their constituent soils are dynamic ecohydrological systems,
the behaviour of which is often complex and regulated by a
network of cross-scale feedbacks between peat formation,
decomposition, and drainage [Belyea and Baird, 2006;
Frolking et al., 2010; Morris et al., 2011]. As such, hydro-
logical transitions in peatlands can occur with weak climate
forcing [Belyea and Malmer, 2004; Belyea, 2009]. It is also
evident that, although there are some clear similarities
between peat-based proxy climate records within a region,
there are also marked differences (Figure 1). Such differ-
ences may be explained by i) internal peatland dynamics and
feedbacks; ii) proxy responses that are non-linear, compla-
cent, or related to non-climatic factors; and iii) chronological
(dating) errors.
[5] While it seems that some shifts in reconstructed water

tables do reflect climatic signals, this may not always be the
case, and it is necessary to examine the scenarios leading to
changes in peatland palaeo-water tables and the relative
influence of autogenic (internal) and allogenic (external)
processes. Here we present one such examination. Using
well-dated proxy data from a typical northern peatland and a
simple ecohydrological model of peatland development, we
investigate whether shifts to both wetter and drier conditions
in peat-based palaeohydrological records are caused by
climatic change or internal ecohydrological mechanisms
(or both) within a peatland.

2. Method

[6] Malham Tarn Moss (MTM) is a small (�30 ha) upland
raised bog at an altitude of 377 m above sea level in North
Yorkshire, England. Multiproxy palaeoecological data
(testate amoebae and cladocera, plant macrofossils, pollen,
spore and charcoal, loss-on-ignition, peat humification and
d13C) were used to examine the nature of stratigraphic
changes in a visible peat section at MTM. We applied a
transfer function based on weighted-averaging regression to
the testate amoebae data to generate a quantitative water-
table reconstruction, and used bootstrapping to calculate
sample-specific errors [Charman et al., 2007]. Bayesian
modelling was used to produce an age-depth model with
quantified chronological uncertainties [Blaauw and Christen,
2011]. We used Model 3 ofMorris et al. [2011] to simulate a
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virtual bog (an artificial ecology) with similar properties to
MTM. The virtual bog had the same initiation date and
diameter as MTM. We chose decay-rate and peat perme-
ability parameters that were plausible (within measured
ranges) for raised bogs. Likewise, the relationship between
rate of litter production and water-table depth was based on
measurements from a UK raised bog with similar plant
assemblages to MTM [Belyea and Clymo, 2001]. The
virtual bog allowed us to perform numerical experiments to

investigate how peatland water tables respond to climatic
changes. We refer the reader to Text S1 in the auxiliary
material for further details.1

3. Results and Discussion

[7] The multiproxy paleoenvironmental data clearly show
that the stratigraphic changes were driven by peatland
water-table fluctuations (Figures 2 and S1–S6 and Tables S1
and S2). Two periods of abrupt water-table rise are evident
from decreased peat humification and replacement of
palaeoecological indicators of deep water tables (e.g.,
Ericaceae macrofossils and pollen; the testate amoeba
Hyalosphenia subflava) by indicators of near-surface water
tables (e.g., Sphagnum cuspidatum macrofossils; Sphagnum
spores; the testate amoeba Amphitrema wrightianum)
(Figure 2). The dataset clearly shows that there were four
rapid, high-magnitude water-table fluctuations over a rela-
tively short timescale (�500 years) within this peatland,
forming a sawtooth pattern with respect to time. Two major
wet shifts (water-table rise) occurred at c. 2210–2170 cali-
brated years before present (cal. BP where BP is AD 1950)
and c. 2000–1975 cal. BP with changes in mean recon-
structed water table of �23 and �17 cm respectively. These
wet shifts were followed by wet phases of �70 and
�90 years before the peatland returned rapidly to a drier
state (deeper water table). Phases of deep water tables are
present in the record at c. 2301–2210 cal. BP, c. 2050–
2010 cal. BP and c. 1875–1840 cal. BP (Figure 3). The
presence of the Glen Garry tephra layer (2210–1966 cal.
BP) in this sequence allows precise comparison with eight
other palaeohydrological records from peatlands in Scotland
(n = 7) and Northern England (n = 1). It is clear that,
although a similar sawtooth pattern of wet and dry shifts is
apparent (within chronological imprecision) in three of
these sites, five have a contrasting palaeohydrological
record at this time (Table S3). This variable coherency may
be due to regional climatic differences or factors internal to
the peatlands themselves; however, it is likely that it is a
combination of both factors.
[8] Experiments with our virtual bog were used to inves-

tigate how a peatland similar to MTM might respond to
external forcing. We report below on those numerical
experiments in which net rainfall U was increased in two
steps; i.e., in which it was increased once to a new steady
value and then again to a higher steady value. These steps
were set to occur at the same time as the dated wet shifts at
MTM. Figure 4 shows the water-table response of the virtual
bog to (i) two wet shifts each of 20 percent of the pre-shift U,
and (ii) two wet shifts, each of 40 percent of the pre-shift U.
Both cases produce a distinct sawtooth pattern in which the
depth of the water-table below the bog’s surface first
decreases and then increases in response to the wetter
regime. That is, the virtual bog shows apparent drying a few
years after a shift to a wetter climate. This apparent drying is
caused by an increase in the rate of net peat accumulation,
so that the rate of rise of the peatland surface outpaces the
rate of rise of the water table, giving greater depths to the
water table. The dry shifts are, therefore, caused by pro-
cesses internal to the virtual bog. This finding suggests that

Figure 1. Quantitative 4,000-year water-table reconstruc-
tions from five peatlands in the UK and Ireland. The sites com-
prise: Ballyduff - County Tipperary, Ireland (D. Charman
et al., unpublished data, 2012); Butterburn - Cumbria,
England [Mauquoy et al., 2008]; Dead Island - County
Londonderry, Northern Ireland [Swindles et al., 2010];
Derragh – County Longford, Ireland [Langdon et al., 2012];
Slieveanorra - County Antrim, Northern Ireland [Swindles
et al., 2010]. All reconstructions are based on a European tes-
tate amoebae-hydrology transfer function [Charman et al.,
2007]. Sample-specific errors were generated through
1,000 bootstrap cycles. The chronologies are based mostly
on radiocarbon dating, although tephra layers were also used
to constrain the records from Dead Island and Slieveanorra.
The records from Dead Island and Slieveanorra have a mod-
ified chronology based on Bayesian modelling [Swindles
et al., 2012]. The blue-shaded boxes illustrate clear phases
of similarity between records – namely a hydrological response
to amajor climatic event beginning at�2700 cal. BP [Swindles
et al., 2007] and the Little Ice Age at c. 600–150 cal. BP
[Barber et al., 2000]. It is obvious that there is not always
coherence between the records outside these boxes.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL051500.
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not all water-table shifts in real peatlands are necessarily
climatically-driven.
[9] The simulation also shows that the response of the bog

to climatic perturbations is non-linear: the water-table
responses to the 40 percent shifts are not twice the size of the
responses to the 20 percent shifts. Other features of the
responses show non-linearity. For example, the stable water-
table position following the second dry shift is similar to that
before the first climatic perturbation (Figure 4a), even
though the climate after the step increases in U is very dif-
ferent (wetter) from that before (Figure 4b). This return
of the water table shows a homeostasis that partially
disconnects peatland water tables from external climate
drivers. The virtual bog also shows homeostatic response
to external dry shifts, by exhibiting autogenic wetting
(water-table rise) shortly after externally-imposed dry shifts
(reduction in U) (Figure S7). Our numerical experiments
suggest that, although peatland water tables do respond to
climate, the peatland archive can be contaminated by com-
plex internal responses that are non-linear. The notion of
peatlands responding in a homeostatic manner to external
perturbations is also supported by observational [e.g., Loisel
and Garneau, 2010; van Bellen et al., 2011] and experi-
mental [Bridgham et al., 2008] evidence.
[10] Recent work has attempted to compare peat-based

water-table reconstructions with instrumental data to infer

the climatic controls on the recent (last �200 years) record
[Charman et al., 2009] and, through calibration based on
linear-regression, reconstruct quantitative climatic variables
over millennial timescales [Charman et al., 2012]. This
approach is problematic because changes in the magnitudes
of peatland water table may not be linearly related to cli-
matic parameters. While it appears that some shifts in peat-
land water tables are climatically driven, caution must be
applied when interpreting the peat archive because other
changes in water-table position may be products of internal
peatland dynamics, independent of climate. Peatland water-
table records represent complex ecohydrological dynamics
as suggested by our modelling approach, and illustrated by
the variable correspondence of high-resolution water-table
reconstruction data (Figure 1 and Table S3). Records from
multiple sites with high-resolution chronologies are funda-
mental for helping to identify real climatic events [Swindles
et al., 2007; Blaauw, 2012]. Despite over 100 years of
debate concerning the strength of linkage between peat stra-
tigraphy and climate change [Blytt, 1876; Sernander, 1908;

Figure 2. Multiproxy palaeohydrological proxy data (selected variables) from MTM based on peat humification, testate
amoebae (with water-table reconstruction), Cladocera remains, plant macrofossils (with NMDS one-dimensional data
summary) and peatland pollen taxa. Charcoal abundance is also illustrated. The total age error based on the Bayesian
age-depth model is shown. Depths represent those from the sampled peat face and do not correspond to contemporary
surface. Full datasets are provided in the auxiliary material.

Figure 3. Water-table reconstruction from MTM, with
current approach to palaeoclimatic interpretation illustrated.

Figure 4. (a) Modelled water-table wet and dry shifts in
response to (b) climatic wetting in two steps. (c) Modelled
bog surface and water-table position. The positions of the
stable water tables after the second dry shift are also shown
(�1500 cal. BP).
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Osvald, 1923; Barber, 1981; Backeus, 1990; Chambers and
Charman, 2004], recent researchers have tended to interpret
peat-based proxy records in a predominately climatic way.
Researchers now need to consider fully how climatic forcing
is filtered by peatland ecohydrological controls and feed-
backs. Only after such consideration can the peatland archive
be used for testing climate models.
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