Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

Published in: Science of the Total Environment

Document Version: Peer reviewed version
Photocatalytic removal of the cyanobacterium *Microcystis aeruginosa* PCC7813 and four microcystins by TiO$_2$ coated porous glass beads with UV-LED irradiation

Carlos J. Pestanaa*, Jolita Portela Noronhaa,b, Jianing Huic, Christine Edwardsa, H. Q. Nimal Gunaratned, John T.S. Irvinec, Peter K.J. Robertsond, José Capelo-Netob, Linda A. Lawtona

a School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
b Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
c School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
d School of Chemistry and Chemical Engineering, Queen’s University, Belfast, United Kingdom

*Corresponding author: c.pestana@rgu.ac.uk

Keywords: Cyanobacteria, Photocatalysis, Cyanotoxins, Water Treatment, Titanium Dioxide, UV-LED

Highlights

- Photocatalytic inhibition of *M. aeruginosa* PCC7813 (7.6x105 cells mL$^{-1}$ d$^{-1}$)
- 74% removal of four microcystins (intra- and extracellular)
- Porous glass beads made from recycled glass used as catalyst support
- UV irradiance supplied by low energy UV (365 nm) emitting LEDs
Abstract

Cyanobacteria and their toxic secondary metabolites are a challenge in water treatment due to increased biomass and dissolved metabolites in the raw water. Retrofitting existing water treatment infrastructure is prohibitively expensive or unfeasible, hence ‘in-reservoir’ treatment options are being explored. In the current study, a treatment system was able to photocatalytically inhibit the growth of *Microcystis aeruginosa* and remove released microcystins by photocatalysis using titanium dioxide coated, porous foamed glass beads and UV-LEDs (365 nm). A 35% reduction of *M. aeruginosa* PCC7813 cell density compared to control samples was achieved in seven days. As a function of cell removal, intracellular microcystins (microcystin-LR, -LY, -LW, and -LF) were removed by 49% from 0.69 to 0.35 µg mL⁻¹ in seven days. Microcystins that leaked into the surrounding water from compromised cells were completely
removed by photocatalysis. The findings of the current study demonstrate the feasibility of an in-reservoir treatment unit applying low cost UV-LEDs and porous foamed beads made from recycled glass coated with titanium dioxide as a means to control cyanobacteria and their toxins before they can reach the water treatment plant.

1. Introduction

Cyanobacteria are well known to form blooms in nutrient-rich waters, including drinking water reservoirs. High cell densities challenge water treatment systems by reducing the run time of filters leading to an increased demand of treatment chemicals such as coagulants and disinfectants (De Julio et al., 2010). This problem is often further acerbated by the release of toxic and/or noxious metabolites produced by the cyanobacteria, further challenging water treatment plant operators and decreasing water security (Chow et al., 1999; Drikas et al., 2001; Velzeboer et al., 1995). The most commonly reported cyanobacterial toxic metabolites are the microcystins. To date at least 247 microcystin congeners have been described (Spoof and Catherine, 2017). The toxicity of microcystins has been recognized as a global issue with the World Health Organisation setting a recommended maximum allowable limit of 1 µg L⁻¹ in drinking water (WHO, 2017).

Retro-fitting water treatment plants with improved and advanced technology is often prohibitively expensive and/or physically challenging, hence alternative treatment technologies such as in-reservoir treatment need to be explored. The application of algaecides in the reservoir is the simplest form of in-reservoir treatment but studies have shown the negative effects of this practice, such as toxicity to non-target organisms, development of bacterial resistances, increase
of potentially toxic/noxious dissolved metabolites and precursors of disinfection by-products (Bishop et al., 2017; García-Villada et al., 2004; Greenfield et al., 2014; Jančula and Maršálek, 2011).

In recent years, advanced oxidation processes, including titanium dioxide (TiO$_2$) photocatalysis have been demonstrated to control cyanobacteria and their secondary metabolites. Successful removal of cyanobacterial toxins by TiO$_2$ nanoparticulate photocatalysis have been reported by a number of studies (Cornish et al., 2000; Liu et al., 2009; Pelaez et al., 2011), especially for the elimination of the commonly occurring group of cyanobacterial toxins, the microcystins. One of the most critical technical challenges that has hampered the application of photocatalysis in water treatment is the removal of the nanoparticulate TiO$_2$ materials following treatment. The post treatment recovery of TiO$_2$ is not only a technical challenge but also has ecotoxicological health implications. It has been demonstrated that nanoparticulate TiO$_2$ can bioaccumulate and damage biota (Heinlaan et al., 2008; Wang et al., 2007; Zhu et al., 2010). Further, the application of nanoparticulate TiO$_2$ represents a health hazard to operators if inhaled (Grassian et al., 2007). To avoid the problems of free nanoparticulate TiO$_2$, immobilization of the photocatalyst onto a robust carrier matrix is preferable. Matrices such as activated carbon, metal particles, and glass have been explored, each with inherent advantages and disadvantages (Kinley et al., 2018; Liu et al., 2007; Pestana et al., 2015). Several design parameters have to be considered when applying immobilized TiO$_2$ in a water treatment context. For example, cyanobacteria occupy different positions in the water column, depending on species and time of the day (Varuni et al., 2017). Thus, to ensure maximum efficiency of immobilized TiO$_2$, an even distribution throughout the water column is desirable. Surface floating matrices will not
reach cyanobacteria deeper in the water column and likewise heavier matrices that sink will miss cyanobacteria higher up in the water column. The use of semi-bouyant foamed glass beads allows for even distribution in the water column. Additionally, the use of low-cost (ca. USD 0.30 per LED), long life (approximately 100,000 working hours), waterproof UV (365 nm) emitting LEDs to activate TiO$_2$ would solve a further technological challenge in the application of this in-situ treatment system, as in the past supplying cost-effective UV irradiation of the required wavelength has been problematic. While in recent years solar light-driven photocatalysis has been explored for the removal of contaminants of emerging concern, including cyanobacteria and their toxins, the application of this technology at scale suffers from drawbacks compared to the use of for example UV-LEDs (Fagan et al., 2016). There are two major drawbacks to this technology, one is the need to modify TiO$_2$ to shift its activity into the visible light range, usually achieved doping with other materials such as noble metals, carbon, or nitrogen (Wang et al., 2017, Fotiou et al., 2013). This would increase the cost of the treatment as additional steps and materials are required in the catalyst preparation. The other drawback of solar light-driven catalysis is that sunlight hours vary across the globe and that it is only available for a maximum of 12 h per day, thus rendering a purely solar light-driven treatment system inactive overnight. Recently, we have shown the feasibility of such a system for the photocatalytic removal of microcystin-LR (Gunaratne et al., 2020). Applying a similar technology using TiO$_2$ coated porous glass beads and UV-emitting LEDs, we now present a bench scale proof-of-principle in-reservoir treatment system that aims to inhibit and eliminate cyanobacteria while simultaneously removing toxins that are released and is energy efficient, thus can be maintained in continuous use to limit cyanobacterial biomass and...
dissolved metabolites entering water treatment plants. It is envisaged that the
pre-treatment system operates continuously avoiding the formation of intense
blooms and keeping the cyanobacterial biomass at a level that allows the
conventional water treatment process to completely remove any remaining
cyanobacteria, while at the same ensuring that no dissolved toxins enter the
plants that are ill equipped to remove dissolved contaminants, rather than a
point treatment used when cell numbers or toxin concentrations exceed national
threshold levels.

2. Materials and Methods

2.1 Reagents

All reagents for the preparation of artificial fresh water (AFW) and cyanobacterial
culture medium BG-11 were of reagent grade, obtained from Fisher Scientific
(UK), and used as received. Acetonitrile and methanol were of HPLC grade and
obtained from Fisher Scientific (UK). Ultrapure water (18.2 MΩ) was provided by
a PURELAB® system (ELGA Veolia, UK). Isoton II Diluent (Beckman Coulter,
USA) was used for cell enumeration and biovolume determination.

2.2 Cyanobacterial cell culture

M. aeruginosa PCC7813 was originally obtained from the Pasteur Culture
Collection (France) and cultured in sterilized BG-11 medium (Stanier *et al*.,
1971), at 22±1 °C with a 12h/12h light dark cycle at 20 μmol photons m⁻² s⁻¹
under aseptic conditions. *M. aeruginosa* PCC7813 produces four main
microcystin analogues (MC-LR, MC-LY, MC-LW, and MC-LF) and does not contain
gas vesicles.
2.3 Preparation of TiO$_2$ coated recycled porous glass beads

Porous recycled foamed glass beads (1-4 mm diameter, Poraver, Germany) were sieved to achieve > 2 mm, then washed with acetone, followed by deionised water in a sonication bath (Scientific Laboratory Supplies Ltd., UK) and dried in an oven at 80 °C for 18 h. After this pre-treatment, beads were coated with titanium dioxide (P25, Rutile/Anatase: 85/15, 99.9 %, 20 nm particle size; Degussa Evonik, Germany) according to a method by Mills et al. (2006) with adaptations. In short, a slurry of P25 and water is prepared into which the pre-treated glass beads are submerged. Coated beads are removed from the slurry and allowed to dry, followed by calcination at 550 °C for 3h. Each coating procedure deposits approximately 2% (w/w) of TiO$_2$ onto the beads. Coatings are repeated until approximately 10% (w/w) of TiO$_2$ on the beads was achieved. Characterization of the beads and the coating is recorded in the supplementary material (S1 and figure S1).

2.4 Photocatalytic removal of *M. aeruginosa* PCC7813 and microcystins

Artificial fresh water (AFW) was used as an experimental matrix in the photocatalysis investigation, and was prepared according to Akkanen and Kukkonen (2003) by dissolving CaCl$_2$ (11.8 mg L$^{-1}$), MgSO$_4$ (4.9 mg L$^{-1}$), NaHCO$_3$ (2.6 mg L$^{-1}$) and KCl (0.2 mg L$^{-1}$) in ultrapure water. A three-week-old culture of *M. aeruginosa* PCC7813 was diluted in AFW to achieve a final cell density of 15 x 106 cells mL$^{-1}$. TiO$_2$ coated beads (700 mg, equivalent to 0.2% (w/v) TiO$_2$) were placed in glass mesh pods (70 mm x 10 mm diameter) and placed into 40 mL glass bottles (95 mm x 22 mm diameter) into which 30 mL of the cell suspension was added. Three replicates containing the coated beads was irradiated by a 550 cm2 UV-LED panel with 90 individual UV-LEDs (AT
Technologies, UK) providing 2.8 µmol photons m\(^{-2}\) s\(^{-1}\) (2.1 mW s\(^{-1}\)) at 365 nm and at 100 mm distance (figure 1). Another three replicates, not containing titanium dioxide coated beads was prepared at the same distance from the UV-LEDs functioning as a UV control. While a third set of replicates with TiO\(_2\) coated beads was set up outside of the area of irradiation of the UV-LED panel to act as a no-UV control. Typically, in photocatalysis the dark/no-UV control is performed in complete darkness; however, cyanobacteria are photosynthetic organisms that would not survive the duration of the experiment without light, hence this third set of replicates was maintained in ambient light (no UV irradiation at 13 µmol s\(^{-1}\) m\(^{-2}\) cool fluorescent irradiation). To maintain clarity 'TiO\(_2\)-control' will be used throughout to identify samples that contain TiO\(_2\) coated glass beads, but are not exposed to UV irradiation. All samples were sparged at 1.5 L min\(^{-1}\) with sterile ambient air. After taking a zero-time sample, each replicate was sampled (1.1 mL) daily.
Figure 1: A) Schematic diagram of the UV-LED photocatalytic experimental design (top-down view). 1- air pump, 2- air distribution hub to achieve equal air pressure across all samples, 3- silicone tubing of equal length, 4- TiO$_2$/UV treatment samples in triplicate, 5- UV control samples in triplicate, 6- UV-LED panel with 90 UV-LEDs (365 nm, 67.5 mW total output) in 9 rows of 10 LEDs; output at 100 mm 2 2.6 mW s$^{-1}$, 7- reflective surface; also blocking UV irradiation from LED panel to TiO$_2$-controls (8), 8- TiO$_2$-control samples in triplicate, 9- silicone tubing. B) Photographic representation of the reactor and the TiO$_2$/UV and UV control samples.

2.5 Sample analysis

2.5.1 Cell enumeration and sample pre-treatment

For cell enumeration, cell volume determination, and determination of the average cell diameter of *M. aeruginosa* PCC7813, 0.1 mL of each sample was diluted in 20 mL of Isoton II diluent and analysed by a Multisizer (Beckman...
For this a 50 µm aperture was used, allowing the determination of particles sized between 1 and 30 µm, particles ranging in size from 2.8 to 6.9 µm were considered intact cells based on published data of cell size ranges for *M. aeruginosa* (Harke *et al.*, 2016; Komárek and Komářková, 2002). This cut-off had to be introduced to ensure that cell fragments smaller than 2.8 µm are not considered cells which would artificially increase the cell densities. For microcystin analysis, the remaining 1 mL of each sample was centrifuged (13000 G) in microcentrifuge tube (1.5 mL) for 10 min to separate cells and medium. The supernatant was evaporated to dryness on an EZ-II Evaporator (Genevac, United Kingdom). The cell pellet was stored at -20 °C until further processing. Prior to analysis, aqueous methanol (80 %) was added to the cell pellets which were subsequently placed in a dispersive extractor for 5 minutes at 2500 rpm and then centrifuged (13000 G). The supernatant was analysed to determine intracellular toxin. The dried extracellular component was also resuspended in aqueous methanol (80%, 150 µL), vortexed and centrifuged (13000 G). The intra- and extracellular microcystins were analysed by HPLC.

2.5.2 High performance liquid chromatography analysis of microcystins
Chromatographic separation of microcystin analogues was carried out using a 2965 separation module with a Symmetry C18 column (2.1 x 150 mm, 5 µm particle size) and a 2996 photodiode array (PDA) detector. Mobile phases were ultrapure water (18.2 MΩ) and acetonitrile both with 0.05% trifluoroacetic acid. Separation was achieved with a linear gradient from 35 to 70% organic phase over 25 min followed by an organic solvent wash (100%) and re-estabishment of starting conditions. Column temperature was 40 °C. Scanning range for the
PDA was 200 to 400 nm, with microcystins integrated at 238 nm. The limit of quantification of this method was 5 ng mL\(^{-1}\).

2.5.3 Statistical analysis

All values shown are mean of triplicate treatments with error of one standard deviation. For statistical significance testing results were analyzed using one-way ANOVA. The significance level was set to \(p>0.05\) to identify significant differences between results.

3. Results and Discussion

3.1 Photocatalytic removal of *M. aeruginosa* PCC7813

The removal of *M. aeruginosa* PCC7813 in a photocatalytic reactor with TiO\(_2\) coated porous glass beads and UV-LED irradiation was initially investigated. Over the course of seven days treatment the cell concentration of *M. aeruginosa* PCC7813 increased significantly in both controls, UV with no catalyst and no UV irradiation \((p<0.05\) each), achieving 32 and 34 \(\times\) \(10^6\) cells mL\(^{-1}\) respectively, representing a per cent increase of 213 and 226%. There was no statistical difference between the UV- and the TiO\(_2\)-controls \((p>0.05\)).

On the other hand, in the treatment samples the initial cell concentration \((15 \times 10^6\) cells mL\(^{-1}\)) was significantly reduced to \(10 \times 10^6\) cells mL\(^{-1}\) \((35\%\), \(p=0.00004\)) when compared to the TiO\(_2\)-control (figure 2). The biovolume of the *M. aeruginosa* PCC7813 culture also decreased over the course of the experiment \((66\%\) of the TiO\(_2\)-control), which corresponds to and corroborates
the observed decrease in cell density. There was no statistical difference between the two controls with respect to the cell volume ($p>0.05$). The diameter of the intact cells (2.8-6.5 µm) did not significantly change ($p>0.05$) from either the initial cell size at time zero or after seven days treatment when compared to either control (UV with catalyst and no UV irradiation). This indicates that the treatment fragmented the cells into particles smaller than 2.8 µm rather than affect the cell diameter since the mean cell diameter did not change. Cell fragmentation during photocatalytic treatment was also observed by Wang et al. (2017) where *M. aeruginosa* (strain 913 from Wuhan Institute of Hydrobiology) cells were treated with floating, expanded perlite particles that were coated with F-Ce doped TiO$_2$.
Figure 2: a) Removal of *M. aeruginosa* PCC7813 cells by photocatalysis using TiO$_2$ coated porous glass beads over a seven-day period under 2.8 µmol photons m$^{-2}$ s$^{-1}$ at 365 nm (2.6 mW s$^{-1}$) at 100 mm distance, as well as the effect of the treatment on *M. aeruginosa* PCC7813 b) cell volume, and c) mean cell diameter. (n=3, Error=1SD)
From 48 h onwards, a decline in cell density was observed for the treatment with TiO$_2$/UV (figure 2a). Other studies have reported the inhibition of *M. aeruginosa* growth by TiO$_2$ photocatalysis in one hour (Liao *et al.*, 2009; Pinho *et al.*, 2015), however, there are marked differences in the application of the TiO$_2$ photocatalysis in terms of light source, *M. aeruginosa* strain, and presentation of TiO$_2$. The UV-LED panel employed in the current investigation had a total output of 67.5 mW (with each individual LED having an output of 750 µW, and the panel having a total of 90 LEDs) providing a very low energy input into the system. By comparison Pinho *et al.* (2015), who investigated the removal of *M. aeruginosa* LEGE 91094 (IZANCY-A2) with particulate TiO$_2$, used simulated solar irradiation at a UV equivalent of 44 W m$^{-2}$, and Liao *et al.* (2009), who investigated the effect of silver-doped TiO$_2$ particulates on an unspecified *M. aeruginosa* strain, used a UV-C lamp with 4 W output at 253.7 nm. The UV-LEDs (67.5 mW) deployed in the current investigation use almost sixty times less energy than the 4 W lamp used in the other study. An additional advantage of employing LEDs is their longer life span in comparison to light bulbs, ca. 100,000 h compared to ca. 8,000 to 25,000 h for other UV irradiation sources (Heering, 2004). Furthermore, while rapid cell death is recorded when nanoparticulate TiO$_2$ is used, the removal of catalyst has been a barrier to deployment of this technology. A particular advantage of the current system is the use of immobilized TiO$_2$. While the reactive surface area is markedly reduced compared to particulate catalyst systems, immobilized catalyst offers a much more facile post-treatment separation of catalyst and water compared to (nano)particulate TiO$_2$. In addition, most of these other studies which investigated the inhibition of *M. aeruginosa* by TiO$_2$ photocatalysis, used modified TiO$_2$ composite materials. Liao and co-workers (2009) used Ag-doped TiO$_2$ and Wang *et al.* (2017) used F-
Ce-doped TiO$_2$ further increasing the photocatalytic activity compared to TiO$_2$ alone. The doping of TiO$_2$ offers the advantage of shifting reactivity into the visible spectrum, however, this has to be weighed against the cost of the doping material and the complexity of preparation. Additionally, the intended application has to be considered. The current design is aimed at continuous operation within a reservoir to ease the burden on the water treatment process within a treatment plant. Thus, materials used need to be plentiful, economically affordable, and easy to obtain, which is not the case when doping with, for example, noble metals.

The UV irradiation (365 nm) alone had no observable effect on the cell number, cell volume, or cell diameter (figure 2), which was what might have been expected since antimicrobial UV treatments tend to employ irradiance in the UV-C spectrum of a wavelength of 260 nm and below (Wolfe, 1990). This was demonstrated in the Liao et al. (2009) study where approximately 12% difference in the chlorophyll a content between an untreated and the UV(C) controls was observed.

3.2 Photocatalytic removal of four microcystin congeners

The strain of M. aeruginosa PCC7813 used in the current investigation produces four main microcystin congeners (MC-LR, -LY, -LW, and -LF). During the photocatalysis of M. aeruginosa PCC7813 both the intracellular (figure 3) and extracellular (figure 4) microcystin concentrations were monitored. As microcystins are usually encountered in the intracellular space until cell integrity is compromised and the intracellular toxins leak into the surrounding water, monitoring the intracellular concentration during photocatalysis can be used as a proxy measurement of cell integrity. The distribution of the four congeners at
the start of the experiment was MC-LR 58%, MC-LY 9%, MC-LW 14%, and MC-LF 19% of the total intracellular microcystin concentration. A significant \((p=0.0009 \text{ to } 0.045) \) decrease of intracellular toxin concentration was observed for all four microcystin congeners over the course of seven days (figure 3) during photocatalytic treatment. Combined intracellular microcystin content decreased by 49% from 0.69 to 0.35 µg mL\(^{-1}\). Individually the concentrations for MC-LR, -LY, -LW, and -LF decreased by 53, 34, 60, and 54% respectively from the initial concentration present in the cells. The profile of different intracellular microcystin variants at the end of the seven-day experiment remained largely unchanged, with MC-LR remaining the main congener produced (54%), followed by MC-LF (23%) and MC-LY and MC-LW (11% each). There was no statistical difference \(\text{viz} \) the intracellular toxin concentration in either of the two controls \((p>0.05) \). Compared to the TiO\(_2\) and UV with no catalyst controls the concentration of the total intracellular microcystin in the treated samples was reduced by 67% with individual concentrations for MC-LR, -LY, -LW, and -LF decreased by 74, 50, 68, and 71% respectively. It is predicted that decrease in cell density and toxins concentration would continue and be maintained at a low level if this treatment system is used \textit{in-situ} in a reservoir.
Figure 3: Removal of the four main intracellular microcystin analogues (MC-LR, MC-LY, MC-LW, MC-LF) produced by *M. aeruginosa* PCC7813 during a seven-day photocatalytic treatment with TiO$_2$ coated porous foamed recycled glass beads and UV-LED provided UV irradiation at 2.8 µmol photons m$^{-2}$ s$^{-1}$ at 365 nm (2.6 mW s$^{-1}$) at a distance of 100 mm. ($n=3$, Error=1SD)
For most of the congeners the amount of toxin per cell decreased (table 1), which is indicative that some of the cells detected by the particle counter were damaged, but had not yet completely fragmented. Zilliges and co-workers (2011) have observed that intracellular microcystins concentrations decrease as a response to oxidative stress. In their study Zilliges et al. (2011) were able to observe intracellular microcystins bind to intracellular proteins in the presence of hydrogen peroxide (0.34 mg L\(^{-1}\)). Hydrogen peroxide is a strong oxidizing agent and under UV irradiation hydrogen peroxide can lead to the creation of hydroxyl radicals, an even stronger oxidizing agent. Thus, the oxidative stress response of *M. aeruginosa* exposed to hydrogen peroxide may be comparable to the stress response to TiO\(_2\) photocatalysis (where hydroxyl and superoxide radicals are created), indicating that the decrease in intracellular microcystin concentrations could also be caused by microcystins binding to intracellular proteins although this would require further investigation.

Table 1: Reduction of intracellular microcystin congener concentration in *M. aeruginosa* PCC7813 after seven days of treatment in a photocatalytic reactor under UV-LED irradiation (at 2.8 µmol photons m\(^{-2}\) s\(^{-1}\) at 365 nm (2.6 mW s\(^{-1}\)) at 100 mm distance in the presence of TiO\(_2\) coated porous glass beads. \((n=3, \text{Error}=1SD)\).

<table>
<thead>
<tr>
<th>MC congener</th>
<th>Time 0 (fg cell(^{-1}))</th>
<th>Time 7d (fg cell(^{-1}))</th>
<th>Per cent reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-LR</td>
<td>25.8 ± 2</td>
<td>19.4 ± 2</td>
<td>25(^*)</td>
</tr>
<tr>
<td>MC-LY</td>
<td>3.8 ± 0.1</td>
<td>3.5 ± 0.4</td>
<td>8</td>
</tr>
<tr>
<td>MC-LW</td>
<td>6.4 ± 0.4</td>
<td>4.3 ± 0.6</td>
<td>32(^*)</td>
</tr>
<tr>
<td>MC-LF</td>
<td>10.8 ± 0.7</td>
<td>8.5 ± 0.8</td>
<td>21(^*)</td>
</tr>
</tbody>
</table>

\(^*\)difference significant \((p>0.05)\)

When the cell integrity of microcystin-producing cyanobacteria is compromised by oxidative processes, the intracellular organic material leaks into the surrounding water, including any microcystins (Daly *et al.*, 2007). Therefore, it is important that water treatment systems either avoid compromising cell integrity or, failing that, the system should also be able to remove microcystins that are
released into the water. Failing to remove the dissolved organic matter, including microcystins, acerbates the challenges faced by water treatment processes, as conventional water treatment is more suited to the removal of particulate and colloidal than dissolved components (Chow et al., 1999; Li et al., 2012). In the current investigation, extracellular concentrations of the four main microcystin congeners produced by *M. aeruginosa* PCC7813 were also monitored (figure 4).
Figure 4: Extracellular microcystins (MC-LR, MC-LW, MC-LF) produced by *M. aeruginosa* PCC7813 during a seven-day photocatalytic treatment with TiO$_2$ coated porous glass beads and UV-LED provided UV irradiation at 2.8 µmol photons m$^{-2}$ s$^{-1}$ at 365 nm (2.6 mW s$^{-1}$) at 100 mm distance. ($n=3$, Error=1SD)
At the start of the experiment, relatively low concentrations (0.02-0.04 µg mL\(^{-1}\)) of extracellular MC-LR, MC-LW, and MC-LF were detected, while no extracellular MC-LY was detected. Over the course of seven-day photocatalytic treatment, the extracellular microcystin concentrations remained low, not exceeding 0.05 µg mL\(^{-1}\) in the treated samples, and were completely undetectable after day four of the UV/TiO\(_2\) treatment. As the intracellular microcystins concentrations decrease due to loss of structural integrity of the cyanobacterial cells, extracellular toxin concentrations should increase, however this was not observed in the photocatalytically treated samples. Instead the intracellular microcystins were photocatalytically decomposed once they were released into the water. The efficacy of photocatalytic removal of dissolved microcystins has been demonstrated previously (Gunaratne \textit{et al.}, 2020; Lawton \textit{et al.}, 2003; Liu \textit{et al.}, 2009; Pestana \textit{et al.}, 2015). The decreased microcystin concentrations in the TiO\(_2\)-control compared to the UV only control can be explained with adsorption of the microcystin congeners onto the surface of the TiO\(_2\) layer on the glass beads, as previously observed (Pestana \textit{et al.}, 2015). The sum of the intracellular and extracellular microcystin concentrations of the TiO\(_2\)-control represents the total microcystin. Comparing this to the total microcystins of the photocatalytically treated samples allows the determination of the individual removal of the different microcystin congeners (table 2).
Table 2: Reduction of total microcystins (intra- and extracellular) produced by M. aeruginosa PCC7813 after seven days of treatment in a photocatalytic reactor under UV-LED irradiation (2.8 µmol photons m⁻² s⁻¹ at 365 nm (2.6 mW s⁻¹)) at 100 mm distance in the presence of TiO₂ coated porous glass beads. (n=3, Error=1SD)

<table>
<thead>
<tr>
<th>MC congener</th>
<th>Mean total microcystins TiO₂ control (µg mL⁻¹)</th>
<th>Mean total microcystins photocatalytic treatment (µg mL⁻¹)</th>
<th>Mean Δ total microcystins time 7d (µg mL⁻¹)</th>
<th>Mean per cent reduction total microcystins</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-LR</td>
<td>0.79 ± 0.04</td>
<td>0.19 ± 0.04</td>
<td>0.6 ± 0.07</td>
<td>76 ± 6</td>
</tr>
<tr>
<td>MC-LY</td>
<td>0.08 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>55 ± 3</td>
</tr>
<tr>
<td>MC-LW</td>
<td>0.15 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>0.12 ± 0.01</td>
<td>72 ± 2</td>
</tr>
<tr>
<td>MC-LF</td>
<td>0.25 ± 0.03</td>
<td>0.08 ± 0.01</td>
<td>0.17 ± 0.03</td>
<td>66 ± 5</td>
</tr>
<tr>
<td>Combined</td>
<td>1.28</td>
<td>0.35</td>
<td>0.93</td>
<td>73</td>
</tr>
</tbody>
</table>

In the control samples (UV with no catalyst and TiO₂ with no UV) there were no cell-disrupting processes occurring which would lead to the liberation of microcystins. Thus, as expected, the extracellular microcystins concentrations (MC-LR, -LW, -LF) remained relatively consistent in both control samples over the course of seven days. Lack of cellular disruption is evidenced by the increase in cell numbers over the course of the seven days (figure 2) and intracellular microcystin concentrations (figure 3) in the TiO₂-control. The doubling rate of M. aeruginosa PCC7813 in the TiO₂-control is approximately seven days (from 1.5x10⁶ at time 0 to 3.4x10⁶ cells mL⁻¹ at time 7 d). Wilson and co-workers (2006) report the average doubling time for environmental isolates of M. aeruginosa cultured in BG-11 medium as 2.8 days. In the current study M. aeruginosa PCC7813 was placed in artificial fresh water which contained none of the main nutrients required for growth, which can explain the slower doubling rate. Another factor that will affect the growth rate of M. aeruginosa is the initial inoculation cell density. In the current study initial cell density was 15x10⁶ cells mL⁻¹ in 30 mL, which represents a very high inoculation cell density. In a laboratory study Dunn and Manoylov (2016) have demonstrated that M. aeruginosa UTEX2385 does not grow as rapidly with a higher (7x10⁵ cells mL⁻¹)
initial inoculation cell density compared to a lower \((1 \times 10^5 \text{ cells mL}^{-1})\) one in Bold's medium under laboratory conditions. No extracellular MC-LY was detected over the entire experimental period in neither the treatment samples or controls. This can be explained by the low intracellular concentrations of MC-LY \((0.06 \mu g \text{ mL}^{-1})\) present.

4. Conclusions

In the current study we have demonstrated that a simple photocatalytic system of recycled, TiO\(_2\) coated, porous, foamed glass beads with low level UV irradiation supplied by UV emitting LEDs can successfully inhibit cyanobacterial growth and eliminate released microcystins. The design of the treatment system is readily scalable. The housing of the beads can be increased in size to contain more TiO\(_2\)-coated beads and the application of waterproof UV-LEDs in long strips attached to the side of the bead housing would facilitate the required UV irradiation. These LEDs may be powered by integrated floating solar panels that would provide a self-contained and sustainable treatment system.

The proposed treatment system:

- is energy efficient due to the use of UV emitting LEDs requiring a lower energy in-put compared to conventional bulb light sources (mW power input compared to W)
- could be powered \textit{in situ} by photovoltaic cells to further increase the energy efficiency
- does not exacerbate the treatment challenge of, especially dissolved, cyanobacterial secondary metabolite and intracellular organic material by photocatalytically removing intracellular toxins
represents a “green” treatment option through the use of recycled materials, catalyst, and low-energy LEDs (which could be further enhanced by the application of photovoltaic cells).

5. Acknowledgements

The authors would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding this research [EP/P029280/1]. As per EPSRC requirements, the data will be made publicly available on the Robert Gordon University’s repository, OpenAIR@RGU. Len Montgomery is appreciated for proof-reading the manuscript.

6. References

enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide.

Pinho, L.X., Azevedo, J., Brito, A., Santos, A., Tamagnini, P., Vilar, V.J.P.,

