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Abstract—We present the concept of holographic beam form-
ing metasurface antenna for CubeSat platforms at X-band fre-
quencies. The proposed metasurface topology exhibits a flat-panel
system layout, particularly desirable for integration with CubeSat
platforms without a hardware-intense deployment mechanism for
launch. It is shown that appropriately interacting the guided-
mode (or reference-wave) with a metasurface layer makes it
possible to realize the radiation pattern of interest as an objective
function - similar to an optical hologram - without the need for
dedicated phase shifting circuits. The full-wave simulations of the
designed metasurface layer integrated with a 1U CubeSat reveals
a high-fidelity beam-control with an aperture efficiency greater
than 40% at 10 GHz operating frequency.

Index Terms—metasurface, holography, CubeSat, beam-
forming, microwaves.

I. INTRODUCTION

Metamaterials are artificial, sub-wavelength structures en-
abling electromagnetic (EM) properties that might not be
achievable from natural materials [1]–[3]. Planar surfaces
synthesized using an array of sub-wavelength metamaterial
elements (or meta-elements) are known as metasurfaces [4],
[5]. An interesting property of metasurfaces is that they can
be engineered to synthesize an arbitrary wavefront in an all-
electronic manner. Beam-synthesis is an important application
of EM wave-control and has been studied extensively within
the field of antennas and propagation, particularly in the con-
text of phased arrays [6]–[8]. Conventionally, beam-synthesis
requires an array topology, in which an array of antennas,
typically sampled at a Nyquist limit, is used. This technique,
known as phased arrays, requires that each antenna within
the synthesized array aperture is connected to a dedicated
phase-shifting circuit to realize the desired phase profile across
the array aperture. Moreover, due to the high insertion loss
characteristics of these phase shifting circuits, power ampli-
fiers are also needed to compensate for their insertion losses.
As a result, the conventional phase shifting technology can
be power hungry and exhibit a significant complexity in the
hardware layer. Metasurfaces offer an alternative solution to
the beam-synthesis problem and, as will be shown in this
paper, can be used to break the conventional phase shifting
requirements of the phased array technology to achieve beam
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forming, significantly simplifying the hardware architecture
and power consumption metrics. This advantage of metasur-
faces makes them a suitable candidate for Earth and space sci-
ence applications. Instruments for these missions typically ex-
hibit challenging payload requirements, such as limited space
available for antenna integration and tight component weight
tolerances to name a few. Moreover, because these applications
require establishing communication links over extremely large
distances, high gain antennas are needed to satisfy the required
link budgets. The high gain requirement, in turn, increases
the size of the antenna to achieve the desired gain metrics,
which further complicates the deployment process. A typical
example for such kind of antenna is the meshed reflector
topology, which was successfully demonstrated for several
missions, including NASA’s Ka-band parabolic Deployable
Antenna (KapDA) [9] and deployable Ka-band anTENna
(KaTENna) [10], and ESA ARTES project Reflective Metal
Mesh (MESNET) and European H2020 project Large Euro-
pean Antenna (LEA) [11], [12]. The deployment of meshed
reflector antennas in space has been proven to be an extremely
challenging task for these applications. Because of the limited
space available, systems leveraging these antennas require a
special deployment mechanism in which the reflector antennas
are folded prior to launch and unfolded once the instrument is
deployed. This approach brings several disadvantages. First,
the weight of the deployment mechanism substantially adds
to the total weight budget allocated for the antenna platform
within the instrument. Second, the necessity to have such a
deployment mechanism can substantially increase the cost of
the mission due to the precise alignment requirements of the
different parts of the antenna once it is launched and unfolded.
To address these challenges, the concept of flat-panel antennas
has recently gained substantial traction. A good example for
this is NASA’s MarCO mission, in which the communication
link is established using a flat-panel reflectarray antenna
topology [13]. Due to its flat-panel geometry, the deployment
mechanism of this antenna has been shown to be simpler while
the antenna offers on par gain characteristics in comparison
to the meshed reflector architecture. Although the reflec-
tarray surface itself has a flat-panel topology, conventional
reflectarray antennas require a secondary feed to illuminate
the reflectarray surface. This requirement makes reflectarray



antennas not truly flat-panel antennas but rather volumetric
structures. Recently, the concept of flat-panel, holographic
metasurface antennas has received significant interest from
the antenna community, particularly due to their advantage
to solve these issues. A flat-panel metasurface antenna uses
an integrated feed architecture, which lies on the same plane
as the metasurface, resulting in a truly flat system layout. The
design approach of such an antenna relies on a holographic
principle, using the electromagnetic (EM) waves launched by
its feed as a reference-wave. Interacting the metasurface with
the reference-wave produces the desired objective function (or
aperture field distribution), similar to a hologram at optical
frequencies. In Section II, we demonstrate the concept of
holographic metasurface antennas as applied to next generation
CubeSat technologies.

II. HOLOGRAPHIC METASURFACE DESIGN

Holography is a well-known concept at optical frequencies
and there has been a substantial amount of research conducted
in this field since the revolutionary works of Gabor [14] and
Upatnieks [15]. The application of holography has recently
gained traction in a variety of applications at microwave and
millimetre-wave frequencies, such as radar imaging [16]–[20],
compressive sensing [21]–[26], antenna characterization [27]–
[30] and beam-synthesis [31]–[34] to name a few. Leveraging
the holographic concept to achieve beam-synthesis at mi-
crowave and millimetre-frequencies requires that a reference-
wave is synthesized at these frequencies which can be mod-
ulated in such a way that the resultant wavefront produces
the radiation pattern of interest in the far-field of the antenna.
This modulation step can be realized using a metasurface layer,
which, when illuminated by the reference-wave, produces the
desired radiation wavefront, similar to an optical hologram.
This simple yet extremely powerful concept does not re-
quire any phase shifting circuits to achieve beam-forming,
and therefore, can exhibit a significantly simplified system
architecture on the physical layer. A technique to synthesize
a desired radiated wave-front using a metasurface aperture is
known as discrete surface impedance, approximating a smooth
and continuous impedance function. This method has been
well reported in the literature with numerous metasurface
antenna prototypes are now presented [35]–[38]. Convention-
ally, this technique requires creating an impedance database
by means of eigenmode simulations of a single metamaterial
element with varying dimensions and/or geometries. Different
from the holographic principle relying on a discrete dipole
mechanism to model [33], creating a continuous impedance
function requires that a smoothly varying surface impedance
profile is achieved. This constraint is not always feasible to
synthesize different wavefronts to realize different radiation
patterns. In the presented holographic principle, we achieve
beam-forming by directly interacting the array factor (AF)
of the sub-wavelength sampled metasurface aperture and the
holographic guided-mode reference-wave by relying on a
polarizable dipole model for the meta-elements building the
metasurface. This enables us to modulate and synthesize

the desired antenna wavefront by employing discontinuously
varying elements and simple modulation schemes, such as
binary (on/off) modulation. Such modulation schemes can be
realized using simple, semiconductor circuit components, such
as PIN diodes [32]. A metasurface is synthesized using an
array of meta-elements distributed across a planar aperture.
Hence, it can be said that a metasurface antenna consists of
an array of sub-wavelength sized meta-elements. Moreover,
a metasurface aperture is sampled at a sub-wavelength level,
meaning that the spacing between the meta-elements is sub-
wavelength. In order to illustrate the metasurface design and
the holographic beam-forming technique, let us consider the
2D aperture shown in Fig. 1.

(a)

(b)

(c)

Fig. 1: Flat-panel metasurface antenna (a) structure of the
metasurface antenna (b) example guided-mode phase pattern
(c) example objective function phase pattern to be realized.
Dimensions: a=3.88 mm, b=1.6 mm, c=4 mm, W=L=10
cm. Objective function is selected to be (θ=20°, φ=20°) for
depiction purposes only. Phase patterns are in radians.

For the presented example in Fig. 1, the metasurface antenna



consists of a parallel plate waveguide (PPW) layout, with a
dielectric substrate (Rogers 4003, εr=3.38 and tanδ=0.0027),
in between a ground plane at the bottom and a metasurface
layer on top. For this design, the frequency band is selected
to be 10 GHz within the X-band. In Fig. 1, the metasurface
layer is synthesized using an array of sub-wavelength sized
slot-shaped meta-elements. The metasurface is fed through a
coaxial cable exciting a waveguide to launch a holographic
reference-wave into the dielectric substrate. The launched
reference-wave within the PPW has a quasi-TEM mode char-
acteristic and its magnetic field can be modeled as follows:

Ha,b = H1
0 (kgra,b)sin(ζa,b) (1)

In (1), H is the magnetic field component launched into the
dielectric substrate, H1

0 is the Hankel function that models an
outgoing cylindrical wave, kg is the wavenumber in dielectric,
r is the distance vector for each meta-element from the feed
point, and ζ is the angle of the distance vector r with respect
to the x-axis while a and b denote the index numbers for the
meta-elements across the metasurface as follows:

ra,b =
√
(xa � xf )2 + (yb � yf )2 (2)

For the metasurface layout depicted in Fig. 1, in (2), the
coordinates of the feed point is (xf=0, yf=0). Here, we focus
our attention to the magnetic field component due to the slot
geometry of the meta-elements, exhibiting magnetic dipole
characteristics [33]. It should be noted that, due to their large
aspect ratio, the meta-elements are linearly polarized along the
y-axis, and hence, we reduce the design problem at hand to a
scalar problem by considering only the y-polarized magnetic
field introduced by the sinusoidal term in (2). Despite the
scalar approximation, we use the bold font to denote the vector
– matrix notation. Considering that the meta-elements couple
to the guided-mode and radiate into free space, the presented
metasurface architecture of Fig. 1 is a transmission hologram,
radiating in direction (θ,φ) in the far-field with the array factor
(AF) of the aperture can be defined as follows:

AF (θ, φ) =

N∑
a=1

M∑
b=1

H1
0 (kgra,b)sin(ζa,b)

e−jk0xasin(θ)cos(φ)e−jk0ybsin(θ)sin(φ) (3)

From (3), it is evident that, to steer the beam from such
an aperture in a given (θ,φ) direction, the exponent of the
exponential term needs to equal zero. From the AF projection
in (3), the phase at each meta-element position can be given
as follows:

ψ(a, b) = \H1
0 (kgra,b)sin(ζa,b)e

−jk0xasin(θ)cos(φ)

e−jk0ybsin(θ)sin(φ) (4)

In order to maximize the AF of (3) in a given direction
(θ,φ), we define a phase grating with a phase conjugate of
(3), ψ∗(a,b). Following this selection, we activate only the
meta-elements where remains below a certain threshold, which
was found to be �50° as a result of a parametric analysis.
The etched meta-atoms shown in Fig. 1 are the meta-atoms at
which the phase error is below the selected threshold.

III. CUBESAT INTEGRATED METASURFACE ANTENNA
AND X-BAND BEAM FORMING

Leveraging the holographic beam-synthesis procedure de-
scribed in (1)-(4), we design a flat-panel metasurface antenna
for integration with a 1U CubeSat platform (10 cm x 10 cm
x 10 cm) at 10 GHz frequency (X-band). The size of the
metasurface is 10 cm x 10 cm and is mounted onto the front
surface of the CubeSat as depicted in Fig. 2.

Fig. 2: Depiction of the X-band metasurface antenna radiating
in the broadside direction integrated with a CubeSat platform.

The metasurface antenna is designed to radiate in the
broadside direction (θ=0°, φ=0°). Therefore, the objective
function for the design process is the projection of a plane
wave with a uniform phase across the metasurface aperture.
Although shown for broadside radiation, the same holographic
modulation principle can be followed to steer the beam in
any arbitrary direction. The design process of the metasurface
antenna consists of two steps. First, we use the analytical
model of (1)-(4) to calculate the metasurface layer. Second,
the designed metasurface layer is imported into a full-wave
EM simulation software, CST Microwave Studio, to carry out
the radiation analysis of the calculated metasurface layer. The
radiation pattern of the metasurface antenna is shown in Fig.
3. For this demonstration, the E-plane is (φ=0°, θ=0° ! 90°)
while the H-plane is (φ=90°, θ=0° ! 90°).

Fig. 3: Radiation patterns of the X-band metasurface antenna.



The sidelobe levels are recorded to be -10 dB for the
H-plane and -13.8 dB for the E-plane, respectively. The
directivity of the metasurface is 17.5 dBi, resulting in an
aperture efficiency of 41%.

IV. CONCLUSION

We have presented a holographic beam-forming metasurface
antenna for integration with next generation CubeSat platforms
at microwave frequencies. The full-wave simulations of the
CubeSat integrated metasurface concept have shown that the
metasurface antenna can achieve high-fidelity beam-forming
using a truly flat-panel hardware architecture in a holographic
manner, eliminating need for hardware intense and power-
hungry phase-shifting circuits.
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