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Abstract—This paper proposes an operational planning 

strategy for battery energy storage systems (BESS) in medium 

voltage distribution networks. This strategy determines the 

optimal location and size for BESS as well as the discharging 

and charging schedules. The objective of this methodology is to 

improve reliability and stability by relieving distribution 

network congestion, such as voltage violations and lines 

overloading. Particle Swarm, Firefly, Novel Bat, Krill herd and 

Coyote optimization algorithms have been utilized to find the 

optimal solutions that improve the network’s performance by 

mitigating network stresses. The strategy is implemented and 

validated using two networks; a 53-node test feeder located in 

Northern Ireland and the 33-bus radial distribution network. 

Actual demand measurements were used and high uptake 

scenarios for low carbon technologies were investigated.  

Index Terms—Allocation and sizing, battery energy storage 

system, distribution networks, low carbon technologies (LCTs), 

optimization, scheduling. 

I. INTRODUCTION  

The pace of the energy evolution is undergoing a global 
acceleration. People and governments are committing to the 
transition to carbon-free, low-emission economies to reduce 
harmful effects on human health and the environment. This 
decarbonization initiative intensely involved the electrical 
energy sector. This can be observed from the integration of 
low carbon technologies (LCTs) in the power network. The 
most popular LCTs in the power distribution network are; 
solar photovoltaics (PV), electric vehicles (EV) and heat 
pumps (HP). Increasing the installations of LCTs in the 
distribution network (DN) introduces various technical 
challenges such as voltage violations, reverse power, thermal 
overloading and power quality issues [1].  

Battery energy storage systems (BESS) development and 
deployment is rising rapidly due to their attractive benefits. 
BESS is a powerful tool that can be employed to achieve 
energy arbitrage in the DN for economic and technical 
paybacks. However, their integration requires careful 
planning and management to achieve maximized benefits. 
Many studies have evaluated the integration of BESS in the 
DN for different purposes. Finding the optimal size and 
location of BESS in the DN is an important planning 
optimization problem to be settled. Determining the location 
and size of BESS depends on the objective to be achieved 
from the BESS. BESS can provide different services which 
can be formulated into objective functions in the 
optimization problem. This optimization problem is a non-
deterministic polynomial time hard optimization problem 

than can be solved using different analytical, mathematical 
and heuristic/metaheuristics programming algorithms [2].  

 Different studies proposed various planning approaches 
based on different programming algorithms and optimization 
routines to provide applicable solutions to this problem. In 
[3], the BESS allocation and sizing is presented using non-
dominated sorting genetic algorithm-II to minimize the 
losses, improve the voltage and extend the lifespan of the 
BESS. In [4], the problem was solved along with determining 
BESS power scheduling to reduce the BESS investment and 
daily system operation costs as well as enhancing the 
utilization of wind power using chance-constrained 
programming and differential evolution algorithm.  

Firefly Algorithm (FA) and gravitational search algorithm 
were used in [5], to determine the optimal BESS size to be 
installed with PV distributed generation (DG) to mitigate 
voltage rise. In [6], a two-stage optimal power flow model is 
presented to determine the BESS location and capacity using 
genetic algorithm. The model aims to minimize the total net 
present value of the DN in presence of PV and wind DGs. In 
addition, the study optimizes BESS charging/discharging 
dispatch and the depth of discharge to minimize the losses 
taking into consideration BESS lifetime. In [7], a modified 
version of Bat Algorithm (BA) is employed to optimally site 
and size BESS in microgrids to minimize the total cost. 

 This paper utilizes the integration of BESS to solve 
network congestions represented in voltage drop and lines 
overloading due to the high LCTs uptake scenario. The main 
contributions of this paper can be summarized as follows: 1) 
proposing an effective strategy that determines the BESS 
size, locations and power schedules for congestion 
management which can be used for any type of DGs, 2) 
exploits the BESS deployment by introducing a powerful 
objective function for the charging, 3) introducing and 
testing new optimization algorithms for the BESS allocation 
problem, 4) finally, an actual distribution network located in 
Northern Ireland and real recorded measurements were used 
to validate the proposed strategy.  

 The paper is organized as follows: Section II presents the 
proposed strategy with the mathematical formulation and 
optimization algorithms; Section III introduces the case 
studies and results and Section VI contains the conclusion. 

II. THE STRATEGY 
The aim of this strategy is to enhance network performance 

by installing and managing BESS to solve network 
congestions and violations. Enhancing the network 
performance in this paper is achieved through optimizing the 
voltage profile by maintaining the voltage at end nodes 
within the acceptable limits considering different practical 
technical constraints. Optimizing the voltage profile can be 
translated into an objective function by maximizing the 
voltage profile improvement index (VPII) [8]. The VPII 
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indicates the improvement achieved on the voltage profile of 
a DN due to the installation of power sources on the network. 
The power sources in this paper are BESS. The VPII for a 
system with N buses at a specific hour can be simplified as: 

����ℎ =      ∑ �	,ℎ�  
	=1	

    
  ∑ �	,ℎ�  	

	=1  
                  (1)                        

��,ℎ�    Voltage at node i after installing the BESS. 

��,ℎ�    Voltage at node i before installing the BESS. 

ℎ   Index of hours. 
This paper focuses on the undervoltage violation that may 

occur in the winter due to the rapid deployment of EVs and 
HPs. In order to simulate these scenarios, the maximum load 
profile is considered in this work as the BESS should be sized 
based on the worst-case scenario. Hence, the optimization 
will aim to maximize the VPII by optimally discharging the 
BESS. However, the same strategy can be applied to other 
congestion scenarios (e.g. overvoltage issues from PV 
overgeneration) by minimizing the VPII through optimally 
charging the BESS or controlling the inverter reactive power 
efficiently. The proposed strategy assumes that the BESS 
inverter is operating on a unity power factor and only the 
active power can be controlled, the strategy consists of three 
main stages: BESS Location, BESS Discharge Schedule and 
Sizing, and BESS Charging Schedule.  

A. BESS Location 

In order to determine the BESS location, the algorithm 
conducts power flow analysis for 24-hours using 
backward/forward sweep method [9]. The results obtained 
from this power flow method was validated using the 
NEPLAN AG power system software. Then, it determines the 
hours that have congestions in terms of voltage and line 
violations. The highly congested hour, which has the worst 
violations is selected for determining the location of the 
BESS. At this hour, the optimization algorithm initializes two 
sets of variables based on the number of BESS; the first set 
represents the locations and the second set denotes the BESS 
power that can be injected from these locations to solve 
network congestion by minimizing the inverse of the VPII as: 

 ���(1 ����ℎ⁄ )    s.t.    �� ≤  ≤ !�          (2)             
1 ≤  ≤ #       for location variables            (3) 
0 ≤  ≤ �&	'�(   |      ∈ [�,,ℎ&	 ]                  (4) 

Where ��  and �� represent the lower and upper bounds of 
the optimization algorithm respectively. The BESS number 
is symbolized by �, and �, &	 is the BESS discharging power.  �/� 0�1 is the maximum discharging BESS power which is 
determined for a network using the difference between the 
peak demand value in the maximum load profile case  
(�/2 3.0�1) and the peak demand value in the base case 

(�/2 3.��52)  expressed as:  

�/� 0�1 = �/2 3.0�1 − �/2 3.��52           (5)                         
These sets of variables (locations and power injections) are 

initialized by the optimization algorithm for a power flow 
calculation at the congested hour. The optimization 
algorithm keeps updating the solution variables until optimal 
solutions are found which represent the optimal sites of 
BESS to solve network congestion with minimum power 
injections. The minimum power injections are defined as the 
power that should be injected from the BESS node to regulate 
the minimum nodal voltage to its lower threshold value 
without violating the rating of the lines. The obtained BESS 

locations are also validated by determining the voltage 
stability index (VSI) [10], at each node during the maximum 
load profile. The nodes that have lower values of VSI are the 
most suitable nodes for BESS placement.  
B. BESS Discharging Schedule and BESS Size 

After determining the BESS locations, this step establishes 
the optimal minimal BESS active power injections at each 
congested hour that solves the congestion. The proposed 
scheduling strategy employs optimization algorithm to 
develop solutions of the BESS power dispatch at each hour 
constrained by Eq. (4). These values are entered to a power 
flow routine for each congested hour. After each power flow, 
the algorithm evaluates the objective function Eq. (2) at each 
hour, and the optimization algorithm updates these solutions 
and keeps running the power flow until optimal solutions are 
found.  The solutions obtained represent the minimal BESS 
power injections in MW to solve the network congestions. 
These values are then used to determine the total BESS 
capacity (���� 

�) in MWh as:  

89::,; = ∑� ℎ &	
<&

ℎ=1
>                    (6) 

Where Td is the total number of congested hours, and >  is 
the data resolution value (1 for 1-hour resolution, 0.5 for 30-
minutes resolution). 
C. BESS Charging Schedule 

This paper focuses on solving network challenges 
represented mainly in undervoltage violations and 
overloading lines which can be achieved by optimally 
placing, sizing, and discharging the BESS. However, the 
work is extended to achieve maximum BESS utilization by 
charging it wisely through introducing an objective function 
for valley filling. Load valley filling aims to shift the demand 
in the off-peak periods to reduce the stresses on the electrical 
network as well as reducing energy costs. This is essential in 
the areas where the PV generation is very high, and the load 
curve resembles the duck shape as observed in California 
[11]. Filling valleys can be achieved by determining the 
optimal power values that should be consumed at each hour 
in order to flatten the valleys. This can be mathematically 
formulated as a function that minimizes the difference 
between the load curve power points expressed for a period 
that starts at ℎ
 and ends at ℎ� for � hours as:  

���
⎝
⎜⎛ �0�1��CD

+ �0�1 + ��CD�0�,
+ ⎷

√√√1
I ∑∣�ℎ − ��CD∣2

ℎL

ℎ=ℎM
 
⎠
⎟⎞(7) 

�ℎ = ∑ �,,ℎ RℎS
T=1

 + �ℎ &U'�T& + �ℎ VMWWUW − ∑ ��,ℎ XY'
	=1

(8)        
�'�(      Maximum grid power within the selected period. 
�'	T      Minimum grid power within the selected period. 
��[\      Mean value of grid power for the selected period. 
�ℎ      Grid power at specific hour. 
�, Rℎ      BESS charging power. 
�  ]^5525   Line power losses.  
��,ℎ XY       DG power injection at specific hour. 

�      Number of DGs. _      Number of BESS. 

The algorithm distributes the BESS charging power to fill 
the demand valleys and flatten the load to improve system 
efficiency, stability and reliability. Additionally, this 
methodology can be used to determine the amount of power 
to be managed for demand side management programs and 



pumped storage scheduling. The optimal solutions (BESS 
charging power) are constrained by the rate of charge (RoC), 
the RoC is taken as 25% of BESS capacity to prolong the 
BESS life and assure safe operation. 

0 ≤  ≤ `ab    |       ∈ [�,,ℎ ;ℎ]             (9)                   
The previous stages are performed sequentially 

considering the network and BESS technical constraints. The 
network active and reactive power balances are satisfied 
within the power flow routine itself. The charging and 
discharging power limits are satisfied by the optimization 
algorithm using the upper and lower bounds Eq. (4) and Eq. 
(9). The following equality and inequality constraints are 
fully satisfied within the strategy routine by converting the 
constrained problem to an unconstrained optimization 
problem using the penalty function method. 

1) Voltage limits: The voltage at �fℎ node should not 
exceed its permissible limits ( 0.95 – 1.05 p.u.). In the UK, 
the acceptable voltage limits for the 11 kV network as 
defined in ESQCR (No. 2665) are ±6% of the nominal 
voltage. In this work, voltage tolerance limits of ±5% are 
used as per the US standard ANSI C84.1. Many network 
operators do, however, prefer to specify tighter voltage limits 
based on the working practice to mitigate voltage variations. 

�0�, ≤ �� ≤ �0�1       ∀     i  ∈ 1, 2, …, N      (10)                          
2) Line Flow: The current flows in �fℎ line should not 

surpass the predefined maximum current rating.   

�0 ≤ �0 0�1        ∀    m  ∈ 1, 2, …, N – 1    (11)                          
3) State of Charge (SoC): The BESS power should be 

preserved within the SoC limits (10% to 90%) to increase its 
lifespan. 

:ab0�, ≤ :abghii ≤ :ab0�1            (12)                   
4) BESS Capacity: The total discharged/charged power 

over time from any BESS cannot exceed its capacity.  

 ∑� ℎ jkll
< 

 
> ≤ 89::,;    |   � ℎ jkll ∈ [�,,ℎ &	 , �,,ℎ ;ℎ] (13) 

The optimization problems in this paper can be divided 
into three parts; finding the optimal BESS locations, 
determining the discharging schedules and BESS sizes, and 
calculating the BESS charging schedule. Different types of 
algorithms can be used to solve these optimization problems. 
In this paper, global optimization nature-based metaheuristic 
algorithms are used to solve these optimization problems due 
to their efficacy in solving extensive complex engineering 
problems [12]. These algorithms are inspired by natural 
phenomena and biological behaviors of animals.  

Five algorithms were selected to examine their capabilities 
in providing solutions. For the purpose of a fair comparison 
between these algorithms, all these algorithms are classified 
as swarm intelligent optimization algorithms. Particle swarm 
optimization (PSO) [13], and Firefly Algorithm (FA) [14], 
are used due to their competence in applications related to 
the field of electrical engineering and power systems. Whilst, 
Novel Bat Algorithm (NBA) [15], Krill Herd (KH) algorithm 
[16], and Coyote Optimization Algorithm (COA) [17], have 
not been used widely in that field, but they were considered 
to examine their abilities in solving these types of problems. 

III. CASE STUDIES AND RESULTS 

To validate the proposed strategy, a load profile has been 
generated using actual measurements for a distribution 

network located in Northern Ireland from December 2016, 
which is representative of the winter demand pattern in the 
UK. To investigate the network congestion due to high future 
uptake level of LCTs, a 50% use of HPs was assumed, which 
would increase the maximum demand by 12.5% [18]. In 
addition, an average charging pattern of 200 EV was 
considered and modelled on the average EV daily charging 
pattern of Northern Ireland. LCTs patterns and scenarios 
were produced based on an official report on the future of 
Northern Ireland networks [19]. The generated demand 
profile is the worst-case demand profile scenario of this 
distribution network. The proposed strategy is implemented 
for three installation cases; one BESS, two BESS and three 
BESS for two different radial distribution networks. 

A. 53-node test feeder 

The first test system is a 11 kV feeder of 53 nodes located 
in Northern Ireland. A PV DG of 0.7 MW is located on node 
13. The generated load profile was applied to this system, 
Fig. 1 shows the test feeder and the violated nodes and lines. 
Six hours have voltage or line violations from 16:00 hr to 
21:00 hr. The minimum voltage is 0.934 p.u. at bus 53 during 
18:00 hr. As shown in Fig. 2 and Fig. 3, the high uptake of 
LCTs caused severe violations affecting the system stability, 
security and power quality. The proposed algorithm solves 
these violations by integrating and utilizing the BESS in the 
DN. As shown in the same figures, the capability of the BESS 
to solve these violations has been illustrated by allocating 
BESS as given in Table I.  

 
Fig. 1. 53-node test feeder with violated nodes and lines 

 
Fig. 2. Node voltage before and after the installation of BESS  

(Severest violations from 17:00 hr to  20:00 hr  –  53 node system)  

The results in Table I, are the minimum BESS sizes to 
solve the violations plus a 20% factor denoting the SoC. In 



this paper, the minimum value of SoC is taken as 10%, 
however, it can be set to 30-50% to avoid damaging the 
BESS by excessive discharge. All the optimization methods 
obtained good results. Though, PSO obtained the best values.  

TABLE I 
 BESS ALLOCATION AND SIZING RESULTS  – 53-NODE TEST FEEDER 

  
 Fig. 3. Violated lines before and after the intrusion of BESS at 18:00 hr 

Regarding the BESS charging and load flattening, the case 
study in this paper is the winter demand. Thus, there is no 
reverse power flow or over voltage violation risk. Hence, the 
objective of the charging in this case is to reduce the charging 
cost. This can be achieved by implementing the charging 
process during the low-price electricity rate period (e.g. 1 am 
to 8 am). The optimal BESS charging/discharging schedule 
for the three cases obtained by PSO is presented in Table II. 
Fig. 4 shows the grid power before and after BESS 
charging/discharging scheduling of the three cases using 
PSO. As shown in Fig. 4, the proposed algorithm managed 
to solve the network issues by optimally dispatch the BESS 
power. During the discharging mode, the BESS provided the 
required support to the network to solve all the 
infringements. While, during the charging mode, the BESS 
charges at the lowest rate and flatten the demand.  

TABLE II 
BEST CHARGING/DISCHARGING SCHEDULE USING PSO –  

53-NODE TEST FEEDER  

 
Fig. 4. Grid power before and after the BESS installation cases - PSO 

B. 33-bus distribution system 

To demonstrate the effectiveness of the proposed strategy, 
it has also been applied to the 12.66 kV 33-bus radial 
distribution network [20]. The same load profile was 
modelled on the network. Voltage violations occurred during 
the peak period and the minimum voltage is 0.932 p.u. at bus 
18 for 18:00 hr. The best BESS allocation and sizing results 
obtained among all the algorithms are tabulated in Table III, 
and the voltage profile for the violated nodes before and after 
installing the BESS is shown in Fig. 5.  

TABLE III 
 BESS ALLOCATION AND SIZING RESULTS  – 33-BUS NETWORK 

C.  Discussion 

 The proposed strategy offered different BESS allocation 
and scheduling options to relieve network’s stresses. In all 
cases, the losses were optimized, the best loss minimization 
was obtained using three BESS. Alternatively, the proposed 
strategy can be used for different DG types. For the 53-node 
system, and from the discharging part in Table II, a 657 kW 
DG can be placed on bus 53 to solve the network issues with 
the same power injections schedule. 

Case Optimization 
Algorithm 

Optimal 
Location 

Bus 

Optimal 
Size  

[MWh] 

Total BESS 
size  

[MWh] 

Case I 
One 

BESS 

FA 53 2.243 2.243 
PSO 53 2.24 2.24 
NBA 46 2.463 2.463 
KH 53 2.369 2.369 

COA 50 2.361 2.361 

Case II 
Two  

BESS 

FA 
49 0.711 

2.265 
53 1.554 

PSO 
49 0.444 

2.244 
53 1.8 

NBA 
48 0.665 

2.333 
52 1.668 

KH 
34 0.881 

2.867 
40 1.986 

COA 
52 0.984 

2.645 
53 1.661 

Case III 
Three 
BESS 

 
FA 

 

43 0.525 
2.485 47 1.37 

49 0.59 
 

PSO 
 

47 0.225 
2.293 49 0.568 

53 1.5 

NBA 
47 0.418 

2.39 49 0.408 
53 1.564 

KH 
33 1.438 

3.286 35 0.879 
44 0.969 

COA 
26 0.801 

3.553 36 1.135 
46 1.617 

  Case I Case II Case III 

 BESSA BESSA BESSB BESSA BESSB BESSC 

 Bus 53 53 49 47 49 53 
Hour [kW] [kW]  [kW]  

C
ha

rg
in

g 

1 307 246 62 31 79 209 
2 394 312 62 40 79 209 
3 443 349 62 44 79 209 
4 377 299 62 38 79 207 
5 342 273 62 34 79 209 
6 4 20 62 0 79 207 

D
is

ch
ar

gi
ng

 16 -13 -7 -7 -19 -19 -19 
17 -458 -441 -18 -35 -26 -397 
18 -657 -639 -18 -25 -236 -397 
19 -375 -356 -19 -91 -110 -174 
20 -325 -21 -306 -11 -76 -238 
21 -38 -36 -2 -6 -6 -25 

Case Optimization 
Algorithm 

Location 
Bus 

Size  
[MWh] 

Total size  
[MWh] 

Case I FA 16 1.778 1.778 

Case II NBA 
17 0.828 

1.265 
32 0.437 

Case III NBA 
16 0.387 

1.276 18 0.49 
33 0.399 



   
Fig. 5. Node voltage before and after the installation of BESS  

(Severest violations from 17:00 hr to  20:00 hr  –  33 bus system)  

 The swarm-inspired algorithms proved their capabilities 
in solving the proposed strategy. For the two test systems, 
PSO, FA and NBA obtained good results for the three cases. 
Nevertheless, KH and COA obtained satisfactory results only 
in case I. The parameters of each algorithm were kept default, 
as these parameters can be considered as an optimization 
problem. However, different numbers of particles/candidates 
were tested, and the number of iterations was varied until 
good results were obtained. In addition, for each case, the 
simulations were repeated 10 times for each optimization 
algorithm to ensure that the obtained results were consistent. 
The processing time is an important factor that should be 
considered in selecting the appropriate optimization 
algorithm. However, in the planning approaches, the 
simulation time is not a crucial issue. Conversely, this time 
is important in the approaches that require online and fast 
actions. Hence, the processing time of the implemented 
optimization algorithms can be ranked respectively from 
fastest to slowest as; PSO, FA, NBA, KH and COA.  
 Selecting the best option from these installation scenarios 
is left to the network planners and operators, according to 
other practical aspects such as the applicability of installing 
BESS in certain locations, capacity, and cost restrictions. 
Undoubtedly, the debate about the BESS investment 
profitability is still ongoing. However, with the ongoing 
trend towards the net zero targets, new markets and schemes 
have been introduced that involve different type of ancillary 
services from the distributed resources (e.g. DS3 services in 
the island of Ireland). In these schemes, the BESS has a great 
opportunity to increase its profitability by providing the 
network with the fast response services as well as energy 
arbitrage. The BESS investment costs and expected revenues 
in the UK and Ireland are quantified in [21].  

IV. CONCLUSION 

 This paper proposed an operational planning strategy to 
determine the optimal locations, sizes and discharge/charge 
schedules of BESS in MV networks to mitigate problems that 
could arise from the rapid deployment of LCTs. The strategy 
considered minimizing the installation cost by determining 
the minimum BESS size that solves the network stresses. 
New metaheuristic algorithms were tested for the first time 
in providing solutions to BESS allocation and scheduling, 
including NBA, KH, and COA. The NBA obtained 
promising results among these algorithms. Moreover, COA 
and KH did not outperform any of other metaheuristic 
algorithms in solving this global optimization problem. Thus, 
it is highly recommended to rely on robust algorithms such 
as PSO, FA and NBA in solving this type of problem. 
Simulations performed on two different radial networks for 
single and multiple BESS installation scenarios proved the 

effectiveness of the proposed strategy. The strategy model 
can be modified to accommodate a wider range of constraints 
and objectives to meet the specific requirements of BESS 
owners. For future research, the proposed strategy can be 
applied to large complex systems to investigate its scalability 
as well as studying other congestion scenarios such as 
overvoltage issues due to PV generation. 
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