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ABSTRACT Smart farming is rapidly revolutionizing the agricultural sector where embedded Internet of
Things (IoT) devices are integrated into the field to maintain or improve the quality of products as well as
increase food production. Despite the tremendous benefits, various cybersecurity threats of IoT can also be
inherited by the sector. In this paper, we propose a lightweight specification-based distributed detection to
identify the misbehavior of heterogeneous embedded IoT nodes efficiently and effectively in a closed-loop
smart greenhouse farming system. To expand the monitoring space of a node, we exploited the Kalman-filter
algorithm and simple statistical operations to obtain estimates of data. Accordingly, this enables a monitoring
node to assess a target node that has distinct physical characteristics and access to natural phenomena. Along
with this, we derive the behavior-rules that are specific to the target system and carefully translate these
rules into a state machine diagram. Besides, we formally verify the functional correctness of the monitoring
processes as well as ensure that the behavior specifications are completely covered by using the model
checker tool UPPAAL. Through extensive experimental simulation using Proteus, we verify its applicability
to resource-constrained embedded devices, e.g., Arduino-Uno, as well as show high accuracy in detecting
misbehaving nodes while having low false alarms.

INDEX TERMS Smart greenhouse farming (SGF), Internet-of-Things, cyber-agroterrorism, misbehavior
detection, specification-based approach.

I. INTRODUCTION
The continuous increase of the world’s population has pro-
portionally increased the demand for sustainable food pro-
duction. Humans have found ways to increase yield as well as
improve the quality of agricultural products through research
and integration of various technologies. One of the significant
approaches is Smart Farming or Precision Agriculture [1].

Smart Farming is an emerging application of Information
and Communication Technologies (ICT) together with the
Internet-of-Things (IoT) to monitor crop, environmental, and
soil conditions as well as control fertigation and irrigation
systems [1]–[4]. It is composed of interconnected embedded
devices with various sensors and actuators such as temper-
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ature, humidity, soil moisture sensors, motors, variable-rate
sprayer, etc. and reports time-series data to a remote applica-
tion that supports in the optimization of agricultural processes
[5], [6].

Despite the tremendous benefits of integrating ICT and
IoT in the agricultural sector, it is also facing various cyber-
security threats. This has exposed the sector to be targeted
by agri-competitors and hacktivists with malicious intent [1].
Unfortunately, agri-companies or farmers paid very much
little attention to protect the sector against cyberattacks [7].
Additionally, they still do not fully realize the implications
even if the attacks are successfully carried out.

Among the different cyberattacks, the denial of service
(DoS) and ‘‘cyber-agroterrorism’’ attacks are the empirically
determined threats that are critical to Smart Farming. In the
sector, DoS attacks degrade the availability of real-time data.
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The availability of real-time conditions of the field is essential
as crops are sensitive to the environment. For example, irriga-
tion must be applied following the recommended soil mois-
ture condition of the planted crops. The delayed availability
of soil moisture data can lead to over-irrigation or under-
irrigation which could degrade the quality of crops as well
as decrease yield. Meanwhile, ‘‘cyber-agroterrorism’’ attacks
target the confidentiality and integrity of data being reported
by nodes. As such, attackers can effectively conduct national
agri-tech espionage and successfully malign agri-producers,
which results in the demotion of its reputation in the food
supply chain [1].

Clearly, it is of paramount importance to protect smart
farming systems from hostile attackers as it is rapidly rev-
olutionizing the agricultural sector in addition to being faced
with cyber threats. For such an aim, an intrusion detection
system (IDS) can play a significant role in countering pos-
sible security threats and attacks. To be applied to Smart
Farming, IDS must be as lightweight as possible considering
that most IoT devices have limited energy, memory, and
low computational capability [8]. Moreover, it is required to
address zero-day attacks that can result from the difficulty
for a timely smart update. Note that zero-day attacks can be
regarded as unknown-attacks from the perspective of IDS.

Indoor farm projects such as vertical farming and green-
house farming are currently taking over the global mar-
ket [9]. Both are benefiting from smart farming solutions.
Meanwhile, the security solutions introduced in this paper
focus on the smart greenhouse farming (SGF) environment
(See Section IIIc). However, it is worth noting that such
solutions are also applicable to the vertical farming environ-
ment withminimal changes. Accordingly, this paper proposes
a distributed behavior-rule specification-based misbehavior
detection approach to detect misbehaving sensing nodes in
SGF. Related work in [10] and [11] derived behavior-rules
to monitor a target node. However, the rules were derived
from the assumption that the monitoring nodes have the same
sensing capabilities and access to the same phenomenon. This
assumption is too strong since a multitude of embedded-IoT
devices that have different tasks and sensing capabilities are
integrated into SGF. Hence, if such a technique is applied
holistically in the SGF environment, the monitoring capa-
bility of the nodes would be limited only to the nodes with
the same physical characteristics and environmental access.
For this reason, we introduce a data estimation strategy based
on Kalman-Filter for us to expand the target space of a
monitoring node. In other words, the monitoring node and
its trusted target do not need to have the same sensors and
observe the same phenomenon.

The main contributions of this paper are as follows:

(i) We derive the behavior rules of the SGF environment
from given embedded system requirements.

(ii) We explore the Kalman Filter-based estimation algo-
rithm to expand themonitoring space ofmonitoring IoT
devices.

(iii) We express the behavior-rules as state machine dia-
grams based on the Unified Modeling Language
(UML) to illustrate the monitoring process.

(iv) We formally verify the state diagrams to validate func-
tional correctness and completeness of behavior rules.

(v) We develop an intrusion detection software agent that
can run on the Arduino Uno microcontroller.

(vi) We evaluate our intrusion detection method using the
Proteus simulation tool.

The remainder of this paper is organized as follows.
Section II are surveys of related works on misbehavior detec-
tion in the IoT environment. Section III discusses the concept
of Kalman-filter and other statistical operations. Section IV
presents the derivation of behavior rules and the transforma-
tion of state diagrams, followed by the formal verification in
SectionV. SectionVI describes the threat model. Sections VII
and VIII present the details of our simulation and the obtained
results, respectively. Finally, section IX concludes the paper
and presents future works.

II. RELATED WORKS
The advent of IoT has raised security and privacy issues that
need to be addressed. Intrusion Detection System (IDS) has
acted as a second line of defense against inside and outside
attackers not only to traditional computer networks but also to
internet-connected sensory nodes [10]–[16]. It dynamically
monitors the communication flow, state, and behavior of the
system to find intruders and mitigate its effect on the system
[17].

In general, there are three categories for intrusion
detection, namely anomaly-based, signature-based, and
specification-based techniques that are also being exploited
in IoT.

Anomaly-based detection technique utilizes the normal
operational profiles of the system to detect malicious activ-
ities or events. Machine learning techniques were considered
as the most innovative method in anomaly detection [18].
Efstathopolous et al. [13] presented a comparative analysis
of a supervised machine learning algorithm that includes One
Class-SVM, Isolation Forest, Angle-Base Outlier (ABOD).
Stochastic Outlier Selection (SOS), and Principal Compo-
nent Analysis (PCA) for detecting an anomaly in the Smart
Grid environment. Each algorithm was trained using the data
obtained (temperature) from a power plant during normal
operation. The authors show that utilizing the operational data
and anomaly-based detection method can accurately detect
cyberattacks or malicious events. Van et al. [19] and Liang et
al. [14] also show high intrusion detection accuracy using the
machine learning approach through deep learning algorithms.

Meanwhile, the signature-based or misuse detection tech-
nique relies on pattern matching over a database of signatures
of every known system or network threats [20]. Accordingly,
such an approach is weak in defending against ‘‘zero-day
attacks’’ [15], [20]. To alleviate this weakness, this approach
worked cooperatively with other techniques to have a more
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robust IDS. Otoum et al. [21] proposed a hybrid technique
using signature-based and anomaly-based to defend against
known and unknown malicious behavior of sensory nodes,
respectively. The designed architecture of the authors is
composed of two co-operative subsystems such as spatial
clustering and random forest methods, which resulted in a
very impressive detection rate. Ozcelik et al. [16] has also
proposed a hybrid approach where misuse detection method
and trust calculation are combined to detect malicious sen-
sor nodes in a large hierarchical clustered WSNs. In their
approach, each node calculates its neighbor’s five reputation
values and are aggregated in a pre-selected cluster head node.
The consolidated trust values are then forwarded to a based
station and are matched against a misuse detection rules for
the final decision if a node is misbehaving or not. Their
approach has increased the network-lifetime of the nodes.

Additionally, several researchers have also proposed the
specification-based IDS solution because of the empirical
weaknesses of anomaly-based and signature-based tech-
niques. The latter approaches and hybrid IDS are not appro-
priate to resource-constraint devices as it needs large memory
storage or high computing power [15], [22]. Meanwhile,
in the specification-based method, malicious behavior is
detected through the behavior deviation of system from the
expert-defined rules [23]. You et al. [10] and Sharma et
al. [11] applied behavior-rules specification-based approach
for misbehavior detection in healthcare IoT and UAV-IoT,
respectively. The authors derived the behavior-rules from a
given operation profile. However, the rules were derived with
the assumption that the monitoring nodes have the same
sensing capabilities and access to the same phenomenon as
that of the target nodes. Therefore, the target space of the
monitoring nodes is limited. This motivated us to research
solutions to expand the monitoring space of a node.

III. BACKGROUND
This section describes the role of theKalman Filter alongwith
simple statistical operations in the detection of anomalous
data points. It also describes our adopted system model for
the smart greenhouse farm.

A. KALMAN FILTER ALGORITHM
Kalman filter was primarily intended to estimate the true
value of a phenomenon using time-series data measured in a
noisy environment [24]. It has a relatively simple operation
and does not need high computational power and storage,
thus, making it compatible with resource-constrained IoT
devices [23], [24]. Kalman filter is an iterative process where
each iteration is divided into two steps: projection and cor-
rection. In the projection stage, a priori estimate state and
priori estimate co-variance are obtained as in eq. 1 and 2,
respectively, where A is the transition matrix, B is the control-
input matrix that is multiplied to the control vector ct , and
Q is the process noise covariance matrix. In this paper, ct is
attributed as a knowledge-based rate of change of the target
phenomenon such as temperature and soil moisture level.

This means that ct is equal to the phenomenon’s change of
value per second ζ multiplied by the time interval between
two calculation instances.

x̂tt−1 = Ax̂t−1 + Bct (1)

Ptt−1 = APt−1AT + Q (2)

ct = ζ (t2 − t1) (3)

Subsequently, the correction stage computes the optimal
Kalman Gain, a posteriori estimate state, and posteriori esti-
mate covariance as

Kt =
(
Ptt−1H

T
) (

HPtt−1H
T
+ R

)−1
(4)

x̂t = x̂tt−1 + Kt
(
zt − H x̂

t
t−1
)

(5)

Pt = (I − KtH)Ptt−1 (6)

respectively, where H is a context filtering matrix, zt is the
measured data at time t, and R is the measurement noise
matrix. Time-varying values of Kt along with co-variance Pt
filters out the effect of noise and quickly converges to the
more accurate representation of data.

Kalman filter is vulnerable to measurement val-
ues or behaviors that are called outliers, which were not
considered in the model. The influence of outliers in the
model can be minimized by associating the measurement
noise R as a tuning parameter. As shown in eq. 4, a higher
measurement noise parameter produces a small Kalman gain.
Consequently, the compensation term for the posteriori esti-
mate will also be small. In this paper, we adopt Mahalanobis
distance approximation MD and local weighting function
from [27] to obtain the new tuning parameter R as described
in eq. 7 and 8. This method minimizes the effect of outliers.

MD = 2
√(

zt − x̂
t
t−1
)2 (

HPtt−1H
T + Rt−1

)−1 (7)

Rt =
(
1+ e−MD

)−1
(8)

B. OUTLIER CLASSIFICATION OF TARGET PHENOMENON
Kalman filter algorithm can be extended to classify outliers
in the observed data by exploiting the estimated value for
statistical inference. In this paper, a simple statistical oper-
ation such as mean and standard deviation of the distribution
of root squared errors (RSE) between the observed data and
corresponding posteriori estimate are used as the judging
criterion in the classification of the anomalous data point.
Utilizing the results from Kalman filter estimation, the RSE
is described in Eq. 6.

Dt =
2
√(

zt − x̂t
)2 (9)

During the normal state of the system, the sequence of the
error [Dt−n, . . . .,Dt−1,Dt ] has a mean and standard devia-
tion until time t that can be described as,

µt =
(∑

i→t
Dt
)
N−1t (10)

σt =
2

√∑
i→t

(Di − µi)2 N
−1
t (11)
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respectively, where N is the number of data points at time t.
The variation of the computed errors in the normal state falls
under a confidence interval based on the mean and standard
deviation of the historical distribution. Otherwise, it indicates
that there is an anomalous change in the condition of the
system. In this paper, we integrate these techniques in the
formulation of the Boolean conditions for a behavior-rule,
that is introduced in the next section, where the physical
variables involve sensor readings.

Outliers are data points that significantly deviate from
other observations. For example, an observable charac-
teristic of a microenvironment’s temperature is that it
increases or decreases gradually over a period. A steep change
in sensor reading in a short interval is considered anoma-
lous. It could be caused by disturbances during the measure-
ment or in the context of data communication, it could be
a result of data tampering. To capture an anomalous data
point, the observed data at time t is first processed using the
Kalman filter method to get its corresponding estimated value
as presented in Algorithm 1.

Algorithm 1 Kalman Filter-Based Estimation
Input: zt , xt−1, ct ,Pt−1,Rt−1
Output: xt ,Pt ,Rt
(1) Calculate priori estimate x̂tt−1 and priori co-variance

P tt−1 using eq. (1) to (3)
(2) Calculate MahalanobisMD and update tuning

Parameter Rt using eq. (7) and (8)
(3) Calculate Kalman gain K t , posteriori estimate xt , and

posteriori co-variance P t using eq. (3) ∼ (5)

Subsequently, the estimated value is utilized for further
classification of an observed data point as an outlier or not
using Eq. 9 as the judging criterion, where βc is the perfor-
mance parameter. Now instead of assigning a fixed value for
βc from the start of deployment, the system learns the optimal
value based on gradient descent during the early period γ
of deployment. The update function for βc is described in
eq. 10 and 11 with a learning rate of αR. Now, so that the
update of βc will be sensitive to the level of noise, we set
αR to Rt from eq. 8. As shown in Algorithm 2, the update
happens when the current error Dt falls beyond the current
limit criterion LM t.

LM t = µt + βcσt (12)

βc+ = βc + αR
∂J (β)
∂β

(13)

J (N ) = (Dt − (µt + βσt ))2 (14)

C. SMART GREENHOUSE ECOSYSTEM
A greenhouse farm is an indoor farm where the structure

is made from transparent materials in which micro-climate
conditions are continuously monitored and controlled to pro-
vide a favorable growing environment for crops or plants in
general. Real-time monitoring and control of the climate con-
dition within a greenhouse farm are critical as it can affect the

Algorithm 2 Outlier Classification of Target Phenomenon
Input:zt , xt ,DT t−1,DE t−1,N t−1, βc
Output:V = True/False(0/1), DT t ,DE t ,N t , βU
(1) Calculate Euclidean distance Dt using eq. (6)
(2) Calculate the following:
(3) N t = Nt−1 + 1;DT t = DT t−1 + Dt
(4) µt = DT t/Nt ;DEt = DE t−1 + (Dt − µt)2

(5) σ t = 2
√
DE t/Nt

(6) Calculate limit criterion LM t using eq. (12)
(7) If (Dt ≤ LM t )
(8) Assign V = True
(9) Else
(10) If (Nt ≤ γ )
(11) Update βc using eq. (12) ∼ (14)
(12) Assign V = True
(13) Else
(14) Assign V= False
(15) DT t = DT t−1;N t = Nt−1
(16) DEt = DE t−1

quality and yield of the planted crops. A closed-loop control
and management system composed of embedded-IoT devices
integrated with sensors and actuators is currently adopted,
consequentlymade the greenhouse environment smarter [28].

Consequently, the integration of IoT in this sector helped
optimize growth and production [29]. On the other hand,
it has placed this sector to face inherent challenges related
to cybersecurity.

An example of a smart greenhouse ecosystem, which we
considered is given in Figure 1. IoT nodes in this greenhouse
farm have a vital role in monitoring the internal temperature,
soil moisture, irrigation flow state, etc. and respond accord-
ingly by controlling actuators such as motors, sprayers, etc.
As illustrated in the figure, an IoT node may have a unique
task, hence it is equipped with only the appropriate sensors
and actuators to achieve it. Additionally, nodes are placed
strategically to monitor a certain area on the farm. Thus,
each node may behave differently from other nodes for it is
possible that the crop planted on itsmonitored area is different
from the other areas. Furthermore, the nodes communicate
wirelessly to a base station where all data are aggregated and
utilized by software analytics.

In this paper, we proposed a misbehavior detection based
on distributed monitoring. Our approach allows IoT nodes to
monitor the behavior of other nodes in proximity, regardless
of whether they are equipped with the same set of sensors and
actuators or not, by utilizing the Kalman filter algorithm and
the statistical attributes introduced in Sections IIIA and B.
In addition, the effectiveness of the explored methods relies
on a reasonable assumption that the system behaves well at
the early phase of its operation and misbehavior manifest
later. The target node periodically reports its physical param-
eters (heartbeat message), e.g., temperature readings, to the
monitor nodes in proximity. Subsequently, the monitor nodes
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FIGURE 1. An example of smart greenhouse ecosystem.

evaluate the received operational data and network function if
it deviates from the specified behavior of a node. When they
find a misbehaving node, they can immediately send an alarm
to designated personnel for mitigation.

IV. BEHAVIOR-RULE SPECIFICATION OF SMART
GREENHOUSE FARM
Behavior-rules are checklists that an IDS software agent used
as a basis in determining the state of the trusted node. Vio-
lation of such a rule implies that the system is misbehaving.
This section presents the derivation of the behavior-rule of the
sample smart greenhouse environment. The steps adopted in
the derivation of behavior-rules are inspired by [11].

A. DERIVATION OF BEHAVIOR-RULES
The behavior-rules manifest the expected behavior of a target
system; hence, it is a more systematic approach if these
rules are derived based on the embedded system requirements
specification which embodies the features and behavior of a
system or hardware presented in a much more extensive and
rigorous way. In addition, the specification enables embedded
system designers to plan well its design and identify vital data
assets as well as physical components needed to achieve the
requirements [30]. In this paper, we assume that the avail-
able embedded system requirements of our target domain are
listed in Table 1. ESR1 to ESR5 are the base requirements
which target the main objective of monitoring the microen-
vironmental condition and automating the operations within
the greenhouse farm. Furthermore, ESR6 is added to support
the misbehavior detection task of the device.

Before the formulation of the behavior rules, we first
enforce a security context on each given ESR by defining the

corresponding security requirements as shown in Figure 2.
The enforcement of security features puts a stringent per-
spective on the side of the monitor node as to how a trusted
node should behave. Subsequently, the potential threats asso-
ciated with a specific security requirement are identified.
The threat refers to possible incidents that are intentionally
conducted to prevent the system from performing its main
task. As presented in Figure 2, a specific security requirement
could have multiple threats that influence the node to fail.
Thereafter, the behavior-rules are derived to defend against
the identified threats. Note that a field expert’s knowledge
is important in its derivation for they know the possible
cause or source of threats. Such derivations are guided by
the security aspects such as integrity, confidentiality, and
availability. Accordingly, the derived behavior-rule set is the
basis for the behavior classification of nodes.

B. EXPRESSING BEHAVIOR-RULES AS STATE MACHINE
DIAGRAMS
After identifying the behavior-rules (BR), we express them
as state machine diagrams that are based on Unified Mod-
eling Language (UML), to illustrate the processes of mon-
itoring the target nodes’ finite-state sequences operating
at the monitor nodes. First, we divide the behavior-rules
into three categories such as ‘‘network-related behavior’’,
‘‘operational-related behavior’’ and ‘‘compliance-checker’’.
To draw the state diagrams, we assigned the differ-
ent behavior-rules to the appropriate category. Accord-
ingly, BR1-BR3 constitutes the network-related behavior,
operation-related behavior comprises BR4 – BR8, and
BR9 falls under compliance-checker. Afterward, we add at
the appropriate state the attack state indicator (ASI), which
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FIGURE 2. The adopted workflow on the derivation of behavior rules specific to the smart greenhouse environment.
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TABLE 1. Embedded system requirements definition (ESR) for smart greenhouse monitoring and automation.

holds information if a corresponding behavior-rule is vio-
lated or not. The ASIs are Boolean variables that hold a
value either True (1) or False (0) where the binary outcome
1 simply means that the node breaks the corresponding rule.
Figure 3 shows the network-related state diagram, whereas
Figures 4 and 5 describe the operational-related behavior of
nodes handling temperature and soil moisture data, respec-
tively, while Figure 6 illustrates the processes of compliance-
checker. Additionally, functions that are imperative for the
monitoring task are also included in the formulation of the
state diagram. Consequently, the drawn state diagrams can
be the basis for the development of the IDS software agents
operating at the monitoring nodes.

The network-related state diagram shows the process of
monitoring the network throughput of a target node. If the
monitor node receives the first byte of the first heartbeat
packet, the initial state transits to the Receive Data state.
Subsequently, it will stay in that state until a heartbeat packet
has been completely received or a waiting period expires.
In the case of the latter, it immediately transits to the Update
Do Time state. On the other hand, if the data packet is
completely received within the expected waiting duration, the
current state transits to the Arrival Validation state. In this
state, the packet’s inter-arrival time is then checked if it com-
plies with the predefined average periodicity. The packet’s
destination is also verified if it is included on a whitelist (a

FIGURE 3. Network-related state machine diagram.

list of legitimate receivers). Afterward, the state transits to
Update Do Time and then returns to Receive Data state.

As shown in Figure 3, the state diagram evaluates three
attack state indicators that correspond to the first three
behavior-rules. The details of the three ASIs are as follows:

• ASI 1 evaluated as True (1) indicates that a target node
has delayed in sending a complete heartbeat packet than
the required periodicity. This attack case is captured
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FIGURE 4. Operational-related state machine diagram handling
soil-moisture data and irrigation system.

FIGURE 5. Operation-related state machine diagram handling
temperature data and cooling machine.

when the preset waiting period during the Receive Data
state expires.

• ASI 2 evaluated as True (1) indicates that the target
node has sent a complete heartbeat packet too early
than the required periodicity or it is successively send-

FIGURE 6. Compliance-Checker state diagram.

ing heartbeat packets. This attack case is captured by
using algorithm 2 where zt and xt are set as the inter-
arrival between adjacent packets and required periodic-
ity, respectively.

• ASI 3 evaluated as True (1) indicates that the target node
is transmitting a heartbeat packet to an unauthorized
node. This attack case is detected by checking if the
destination is included on the list of authorized nodes
called a whitelist. This list may be distributed during ini-
tialization (at power-up) and may be updated at runtime.

Furthermore, the operational-related state diagrams show
the process of monitoring the main task of a target node.
In our target scenario, there are two types of nodes: (1)
a node’s main task is to monitor and control the micro-
temperature within the greenhouse farm, and (2) a node’s
main task is to monitor and control the soil-moisture level
within its area. Hence, we have drawn separate state diagrams
for each target node. If a monitor node receives the first
complete heartbeat packet, the initial state transits to the
Entry state. In this state, it simply computes the first estimate
and initial statistical attributes using algorithms 1 and 2,
respectively. Afterward, it immediately transits to the next
state depending on the status of the associated actuators as
illustrated in Figures 4 and 5.

As presented in Figures 4 and 5, the operational-related
state diagrams evaluate the attack state indicators of behavior-
rules 4 – 8. The details of the ASIs are as follows:

• ASI 4 evaluated as True (1) indicates that the operational
data (temperature or soil-moisture) received by the mon-
itor node significantly deviates from the model. The
possible cause of this is that the packet may have been
tampered with while on transit to the monitor node or the
physical setup was intentionally andmaliciously altered.
This attack case is detected through algorithms 1 and
2 which monitor the historical distribution of data.

• ASI 5 evaluated as True (1) indicates that a target node is
unable to activate the variable-rate sprayer even though
the soil the moisture level has already crossed under the
predefined extreme limit ML. In addition, it may also
indicate that the target node has activated the sprayer
where moisture level has not yet exceeded the activation
value MTL such that MTL > ML. This attack case is
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captured by checking the computed estimate of sensed
soil moisture data within the Irrigation off state if it
satisfies the given Boolean condition shown in Figure 4.

• ASI 6 evaluated as True (1) indicates that a target node is
unable to stop the sprayer despite that the soil moisture
level already falls over the predefined extreme limitML.
Additionally, it may also indicate that the target node
has stopped the sprayer earlier where the moisture level
is still below MTH such that MH > MTH . In contrast
to ASI 5, this attack state is captured by checking the
computed estimate of sensed moisture data within the
Irrigation on state if it satisfies the given Boolean con-
dition shown in figure 4.

• ASI 7 evaluated as True (1) indicates that the target
node is unable to turn on the cooling machine even
though the temperature is already over the extreme limit
TH . Likewise, it may also indicate that the target node
has prematurely turned-on the cooling machine. Thus,
the temperature has not yet exceeded the trigger limit
TTH such that TH > TTH . This attack case is captured
by checking the estimated temperature within the Cool-
ing Machine Off state if it satisfies the given Boolean
condition shown in Figure 5.

• ASI 8 evaluated as True (1), not only it indicates that
the target node is unable to turn off the cooling machine
despite that the temperature has already fallen under the
extreme limit TL but also it has prematurely turn-off the
machine. The latter means that temperature is still above
TTL such that TTL > TL. This attack case is captured
by also checking the estimated temperature data within
the Cooling Machine On state if it satisfies the given
Boolean condition shown in figure 5.

Meanwhile, the compliance-checker state diagram shown
in figure 6 describes the process of evaluating the compliance
of the target node based on the obtained values of ASI 1-8.
Under this category, the attack state indicator for BR 9 is
also assessed. BR 9 considers the case where the target node
also acts as a monitor node. Hence, an ASI 9 evaluated as
True (1) indicates that the target node provides a false eval-
uation towards a well-behaving node (called bad-mouthing
attack) or a misbehaving node (called ballot-stuffing attack).
This can be captured by checking the discrepancy of the target
node’s evaluation with its assessment towards the other nodes
that they both monitors.

V. FORMAL VERIFICATION THROUGH MODEL CHECKING
While state diagrams are formed to illustrate the process of
monitoring the reactive behavior of the target node if it is
following the expected state transitions guided by the derived
behavior-rules, it can also be the foundation for embedded
software development. To verify the functional correctness
and guarantee that behavior rules are completely covered
before software development, formal verification is neces-
sary.

In this paper, we utilized an integrated environment tool
for system modeling, simulation and verification called
UPPAAL [31]. UPPAAL has a user-friendly graphical inter-
face that allows users to easily model systems as timed
automata and assess the required specifications by represent-
ing it as computation tree logic (CTL) formulas. The model
checker uses state-space exploration to determine whether
a certain path to an automaton (node) exists or not during
run time. Such features can be checked by defining a CTL
formula that asserts the reachability property. Accordingly,
we represent each state of the UML diagram as an automaton
and drives its transition to the next state by synchronous
signals and guard conditions as shown in Figure 7. However,
due to the floating-point limitation of UPPAAL, we assume
that algorithm1 and algorithm 2 are already established. This
means that the operational data such as temperature, soil
moisture level, etc. that are used in the guard conditions are
the output of the two algorithms. As presented in the figures,
we also represent the different ASIs as an automaton to assess
the reachability property during normal and malicious events.
In this form, the composition of the CTL formulas for the
target property would make it very simple. Hence, the query
on such property towards theASIx node provides a conclusive
proof of correctness and completeness in the assessment of
behavior rules. Other properties, such as safety, i.e., deadlock,
can also be associated with the functional correctness ensur-
ing that the system will not commit deadlock both in normal
operations and malicious events. Note that the model for the
operational-related task that handles soil-moisture data is like
Figure 7c but only differs on the guard conditions.

Table 2 summarizes the verification results of our tar-
get properties. The composed CTL formulas assert the ASI
node’s reachability when a malicious event occurs. As shown
in the table, a safety property is satisfied, which indicates that
the process will not be deadlocked during the whole operation
of the system. Meanwhile, when a reachability property is
verified with a normal target node in place, all queries, P2

to P8, are not satisfied. This result is positive since normal
nodes do not deviate from their specified behavior. Hence,
there will be no path to the ASIs automaton. In contrast,
when a malicious model is tested, all queries are satisfied.
Thus, we can conclude from these results the proof of the
correctness of our monitoring operations and the complete
evaluation of behavior rules. Moreover, the correctness and
completeness features can be associated as a satisfaction to
the security requirements of the system.

VI. THREAT MODEL
A. FIRMWARE TROJAN
A smart greenhouse, or smart agriculture in general,
is highly integrated with interconnected microprocessor-
based embedded devices that perform sensing, actuation, and
communication functionality. As such, due to the globaliza-
tion of embedded system development, amalicious individual
can insert a firmware Trojan at any phase of the fabrication
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FIGURE 7. UPPAAL model of the different modules of IDS task. The operational-related task model for soil moisture
is the same to (c) with minor changes on the guard conditions.

process [32]. In addition, the trojan may also be realized
during the firmware update where the malicious code was
successfully inserted into the updated version. Firmware tro-

jans, also called hardware trojans, are designed to disable,
manipulate functions, or degrade the performance of embed-
ded devices in some future. In other words, it stays dormant
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TABLE 2. Summary of queries to the requirement specification (legend: S = safety; R = reachability; N = normal; M = malicious).

within the chip’s physical layout until some external or inter-
nal activation condition, like counters or events, is met [33].
It is for this reason that firmware trojans are difficult to detect
during the testing phase. Furthermore, the attack mode of a
trojan may either be always-on or randomized.

B. FLOODING ATTACK
Flood attack, also known as Denial of Service (DoS) attack,
involves sending a massive volume of packets to a target
victim in order to exhaust its resources and disrupts the
processing of other legitimate data. In this paper, we see
this attack as one of the direct effects of the firmware trojan
squatting at the wireless communication module’s system-
on-chip or at the main module’s microcontroller. We focus on
this attack in such a way that valid messages are repeatedly
transmitted in a short interval.

C. DATA TAMPERING ATTACK
Data tampering is one of the major threats in many IoT-
assisted systems. In this case, the adversary manipulates data
with the intent not only to mislead the receiver on the con-
dition of the system or device being monitored but also to
inflict an adverse effect to applications or business processes
that strongly relies on the analysis of these data.

This attack may either be originated internally or from
an external entity. The former could also be a direct effect
of firmware trojan, while the latter is achieved through a
man-in-the-middle attack. In either case, we establish that

an adversary modifies the data (i.e., temperature and soil-
moisture) by adding an offset. Thus, the data received by the
monitor node can be described in eq. 12, where ∇d is the
deviation of sensed data due to noise at different levels (low,
moderate, high) and ld is the malicious offset.

mt = mrt+∇d+ld (15)

VII. EXPERIMENTAL VALIDATION THROUGH
SIMULATION
To validate our proposed specification-based misbehavior
detection, we conducted an experiment following the work-
flow illustrated in Figure 7. We first construct our simulation
environment, followed by the development of the firmware
which is composed of two tasks (Main task and IDS task).
In this case, we adopt the agile software development method.
The remainder of this section discusses in detail our experi-
ment.

A. SIMULATION ENVIRONMENT
To proceed with this study, a simulation scenario of a
smart greenhouse system that is composed of embedded IoT
devices was constructed using Proteus Design Suite (Proteus)
simulation tool. This tool was primarily used to design elec-
tronic schematics but later extended to simulate electronic
operations covering from analog to micro-controller based
embedded system applications. Hence, firmware developed
for microcontrollers supported by this tool can be tested and
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FIGURE 8. Experimentation workflow for the validation of the proposed
misbehavior detection.

FIGURE 9. Block diagram of IoT device that monitors the temperature
and controls the power supply for cooling machine.

co-simulated with other electronic components connected to
it.

Figures 8 and 9 show the block diagram of two IoT devices
found in the target smart greenhouse system. Note that the
broken arrows are not included in the real schematic of
the system and are only intended to assist the connected
components in the simulation of its modeled behavior. In
this case, we use the Arduino Uno as the main controller
and connect the appropriate sensors and actuators. The con-
trollers are uploaded with the main task code as well as
the IDS task code. Moreover, we model the behavior of
the moisture level and temperature using eq. 12 with ld
equal to zero. In accordance with the status of the actuators
(i.e., sprayer, cooling machine), we also model the change
of mrt as,

mrt+1 =

{
mrt −1c,flowstate = 1, pwrstate = 0

mrt +1c,flowstate = 0, pwrstate = 1
(16)

where mrt is the base voltage output of soil moisture sen-
sor or temperature sensor and1c as the rate of voltage change
per 5 seconds. Table 3 summarizes the values of the different
parameters used during the simulation.

B. COMPLIANCE DEGREE COLLECTION
During the simulation runtime, the compliance degree of
each target node is computed at the end of every unitformed-
aggregation time-spaceAt . Tominimize energy consumption,
we divide At by n-uniform discrete intervals where the moni-
tor nodes check the value of the attack state indicators which
reflects the behavioral-state of the target node. Accordingly,
at the end of each aggregation time space, the compliance
degree is computed as described in eq. 14, where Br is the
number of times the node is in the well-behaved state. Now,
at the end of mth aggregation time, a compliance degree
history c1, c2, c3,. . ., cm are collected.

px = Brn−1 (17)

C. ATTACK INSERTION AND ATTACKER TYPE
To evaluate the effectiveness of our proposed misbehav-
ior detection, we intentionally insert malicious behavior
in the code that corresponds to the attacks described in
Section V. Synthetic flooding attack events are inserted in
such a way that compromised IoT device transmit data every
100 ms for 1 second. Moreover, data tampering attack adopts
eq. 12 where offset ld is randomly generated from the range
[1, 10].

Furthermore, we also considered the following attacking
mode for malicious SGF nodes:

1. Always-On Mode: In the event where the base activa-
tion counter of firmware trojan is satisfied, the com-
promised SGF node, thereafter, continuously attacks
when it has an opportunity. This means that an adver-
sary will limit its attack when the disturbance, such as
environmental noise, is low. On the contrary, it attacks
more often as the noise level increases. Hence, we set
the malicious SGF node to discretely attack within all
aggregation time-space based on an attack condition
given as ∇d > ∇d ∗W where W is 50%, 25%, and
20% when in low, moderate, and high noise, respec-
tively. We patterned this attack scenario based on an
analogy that criminals will not commit a crime when
law enforcement officers are on alert and in contrast,
they perform crimes when officers are not.

2. Alternating Mode: In the event where the base activa-
tion counter of the firmware trojan is satisfied, the com-
promised IoT device thereafter, alternately attacks.
Hence, we set that the malicious SGF nodes to attack
within every aggregation time-space and adopt the
attack decision from Always-on mode as a preliminary
condition and then finally decide to attack depending
on the probabilistic condition. This means that when
the first condition is satisfied, the compromised IoT
device will finally attack when a randomly generated
number [0 1] is less than an attack probability Pa
(50%).

3. Unobtrusive Mode: In the event where the base activa-
tion counter of the firmware trojan is satisfied, the com-
promised IoT device, thereafter, unobtrusively attack
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TABLE 3. Values of the parameters used In the simulation.

in order not to be easily detected. Hence, we set that
the malicious IoT device attacks at every other aggre-
gation period and follow the same attack decision from
Always-on mode.

D. STATISTICAL ANALYSIS OF MISBEHAVIOR DETECTION
The estimation of compliance degree is more likely to be
imperfect because of environmental noise, communication
errors, or even software bugs. Thus, in this work, we adopt
the model from [10] where the compliance degree of the
embedded IoT node is a random variable C following the
beta probability distribution function G (.) = Beta(α,β).
Accordingly, the average compliance degree of the target

FIGURE 10. Block diagram of IoT device that monitors the soil-moisture
level and controls the variable rate sprayer.

FIGURE 11. Percentage Error between estimated value and true
temperature value.

node over a bounded period can be computed using the G’s
mean equation given by E (P) = α/(α + β). We set a fixed
value of α as 1 and parameterized β using the maximum
likelihood estimate, given by β = m/

∑m
i=1 log(1/(1−ci))

where ci is the target’s node compliance degree history
c1, c2, c3,. . ., cm collected during runtime. These assign-
ments reduced the run time complexity of solving the values
of the beta distribution’s parameters α and β to O(n) which
is extremely lightweight [10]. Consequently, the decision on
which target node is considered as a misbehaving node is
based on a binary criterion such that the node’s average com-
pliance degree is less than or equal to a predefined minimum
compliance threshold C̄T .

The effectiveness of the adopted statistical analysis method
can be measured by the false negative probability Pfn and
false positive probability Pfp. Pfp represents the likelihood
that a well-behaved node is treated as misbehaving node,
i.e., its average compliance degree is less than or equal to
the minimum threshold C̄T . On the other hand, Pfn rep-
resents the likelihood that a misbehaving node is treated
as well-behaved node, i.e.,., its average compliance degree
is greater than the minimum threshold C̄T . Hence, we can
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FIGURE 12. Estimation of microenvironment’s temperature affected by noise and tampering is shown
in top figures of each block. Meanwhile, bottom figures present the detected tampered data points
based on a statistically derived limiting criterion.

compute Pfn = Pr
(
C > C̄T

)
= 1− G (CT ) given that the

SGF node is ‘‘misbehave’’ and Pfp = Pr
(
C < C̄T

)
=

G(C̄T) given that the SGF IoT node is ‘‘well-behave’’ during
the experimental run.

VIII. SIMULATION RESULT
In this section, we present the effectiveness of the Kalman-
filter algorithm in the estimation of the operational data that
are transmitted by the target node. We also show the effect
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on the estimation when data are tempered by the attack-
ers in different attack modes. Furthermore, we evaluate the
performance of our proposed misbehavior detection tech-
nique in terms of ‘‘effectiveness’’ measured by detection rate,
false positive probability, and false negative probability as
well as the ‘‘efficiency’’ measured by memory utilization and
computation time.

A. KALMAN-FILTER ESTIMATION AND OUTLIER
INFERENCE
Figure 11 shows the estimated value of the temperature from
the Kalman-filter method, the microenvironment tempera-
ture, and the signal received by the monitoring node, which
is affected by noise and data tampering that is based on the
unobtrusive attack mode. Moreover, as can be seen from
the bottom graph of Figure 11, the corresponding points of
the tampered data fall above the limiting criterion based on
eq. 9 and algorithm 2. While in Figure 10, the percentage
error between the true value and the calculated estimate of
a received data is presented. As seen in the figure, the max-
imum percentage error is less than 10%. This error was
incurred as a result of data tampering while the influence of
noise is minimal. As observed in the figure, the estimated
value eventually converges to the true value once there are no
attack events. The same trend is observed in the always-on
mode and alternate-mode attackers. This means that the pro-
posed technique can detect the alteration of data and shows
resiliency to the noise environment as well as to tampering
attack.

In the experiment, the periodicity of data transmission is
set at every 1 second. Thus, from the receiver’s point of
view, it follows that the expected arrival of the next message
will have an average of 1 second. Figure 12 illustrates the
timing reception of adjacent messages. As can be seen in
the figure, the inter-arrival time of messages with respect
to the expected arrival (1 sec) has a maximum variation
of 1 ms when in a normal state. However, when a flooding
event occurs, the absolute distance from the actual inter-
arrival time to the expected time will be significantly large
and thus violates the limiting criterion as illustrated in the
figure. Hence, a compromised IoT device launching flooding
attack can easily be detected. Note that the distance value of
malicious points is scaled down for better visibility inside the
graph.

B. EFFECTIVENESS PERFORMANCE EVALUATION OF IDS
We measure the effectiveness of our proposed approach by
the following performance metrics: (a) detection rate: the
probability of correctly identifying a misbehaving node; (b)
false negative probability (Pfn): computed as 1 – detec-
tion rate; (c) false positive probability: the probability of
misidentifying a well-behaved node as a misbehaving node;
(d) AUROC: area under a receiver operating characteristics
(ROC) curve formed by the detection rate vs false positive
probability. Figure 13 presents the ROC curves for the case
in which the misbehaving SGF nodes are in always-on and

FIGURE 13. Illustration of inter-arrival time of messages during normal
state and when a flooding attack is launched.

FIGURE 14. ROC curve of IoT device under different level of environment
noise at Always-on and Alternating attack mode. The y-coordinate is the
detection rate (1 - Pfn) and x-coordinate false positive rate (Pfp).

alternating attack mode. Moreover, each ROC curve has a
noise level of 10%, 20%, 30% with respect to the true data.
We see that in all noise levels, the AUROC is close to 100%
since the false positive rate (Pfp) and false negative rate (Pfn)
are close to zero. Furthermore, an interesting result shows that
even in high noise, it can effectively detect a misbehaving IoT
node. We can observe a slightly better accuracy compared
with the lower noise level. This is because the effect of noise
on the data is filtered out before the assessment of the target
node’s behavior.

Meanwhile, Figure 14 displays the ROC curves of an unob-
trusive attacker at different noise levels. As can be seen in the
figure, the proposed technique performs poorly in detecting
an unobtrusive attacker. This is because the compromised IoT
device is attacking very carefully to avoid detection. We can
equate this mode as an insidious attacker that has known
evaluation period of the compliance degree.

C. EFFICIENCY PERFORMANCE EVALUATION
We evaluate the efficiency of our proposed approach by
the following metrics: (a) the memory consumption: the
amount of memory utilized; (b) the computation overhead:
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FIGURE 15. ROC curve of IoT device under different level of environment
noise at Unobtrusive mode. The y-coordinate is the detection rate (1 -
Pfn) and x-coordinate false positive rate (Pfp).

FIGURE 16. Memory Utilization of the main task and ids agent software.

the amount of computation time from data reception to the
misbehavior detection.

Our proposed IDS agent is written for the Arduino-Uno
platform. In this paper, wewrote the programs that include the
main task of the device and the misbehavior detection task.
The used platform has two pools of memory: program space
of 32256 bytes and static random-access memory (SRAM)
of 2048 bytes. Figure 15 shows the memory utilized by
the main task and IDS task programs. The program space
basically holds a set of instructions (or called sketch) that
corresponds to the written program, while the SRAM is
where a data holders (variables) are created and manipulated
during run time. As can be seen in Figure 14, the footprint
of the IDS instructions is approximately 9% of the program
space and utilizes approximately 6% of the SRAM’s space,
which holds information of one target node. Hence, the IDS
agent can accommodate approximately 13 more target nodes.
However, it is recommended not to use up the whole SRAM
to prevent unexpected failures. Moreover, the computation
time can be obtained by capturing the time at two loca-
tions: upon complete reception of data and immediately after

behavior assessment. The processes operating within this
period include the Kalman-filter estimation, outlier classifi-
cation, and the ASIs evaluation. Accordingly, based on our
experiment, the average computation time needed to reach a
decision is 3 milliseconds.

IX. CONCLUSION
The incorporation of ICT and embedded IoT in the agri-
cultural sector poses risks to the quality and quantity of
its products. This work contributes to the protection of
resource-constrained embedded IoT, especially against zero-
day attacks, in a smart greenhouse farm by proposing
a behavior-rule specification-based distributed misbehavior
detection technique where behavior-rules specific to the tar-
get environment were derived. A lightweight estimation algo-
rithm based on Kalman-filter was also used to preprocess
the received data to remove the effect of the different noise
levels. Additionally, its integration resulted in the expan-
sion of the monitor nodes’ monitoring space in such a way
that both monitor and target nodes do not need to have the
same physical characteristics and access to the same target
phenomenon. Moreover, an IDS agent was developed that
can run on Arduino-Uno, and subsequently validated by
extensively simulating in the Proteus simulation tool. From
the experiments, it is shown that the proposed approach is
effective in detecting a misbehaving node that launches an
attack aggressively. However, we did not conduct a com-
parison against contemporary machine learning algorithms
like KNN or SVM, which are popular classification schemes
because of the limited memory storage of our selected plat-
form. It is known that these schemes have a large memory
footprint.

In future work, we will deploy our approach in a real
greenhouse environment. We also plan to test our approach
to different domains like healthcare or smart factory.
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