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SYNOPSIS 

Age-related macular degeneration (AMD) is the leading cause of vison loss among 

the elderly in high income countries. Increased exposure to air pollution may be 

associated with AMD and differences in retinal layer thickness. 

 



ABSTRACT 1 

Aim: To examine the associations of air pollution with both self-reported age related 2 

macular degeneration (AMD), and in vivo measures of retinal sub-layer thicknesses. 3 

Methods: We included 115,954 UK Biobank participants aged 40 to 69 years old in 4 

this cross-sectional study. Ambient air pollution measures included particulate matter, 5 

nitrogen dioxide (NO2) and nitrogen oxides (NOx). Participants with self-reported 6 

ocular conditions, high refractive error (< -6 or > +6 diopters) and poor spectral-domain 7 

optical coherence tomography (SD-OCT) image were excluded. Self-reported AMD 8 

was used to identify overt disease. Spectral-domain optical coherence tomography 9 

(SD-OCT) imaging derived photoreceptor sub-layer thickness and retinal pigment 10 

epithelium (RPE) layer thickness were used as structural biomarkers of AMD for 11 

52,602 participants. We examined the associations of ambient air pollution with self-12 

reported AMD and both photoreceptor sub-layers and retinal pigment epithelium 13 

(RPE) layer thicknesses. 14 

Results: After adjusting for covariates, people who were exposed to higher fine 15 

ambient particulate matter with an aerodynamic diameter <2.5µm (PM2.5) (per 16 

interquartile range [IQR] increase) had higher odds of self-reported AMD (OR= 1.08, 17 

p=0.036), thinner photoreceptor synaptic region (β= -0.16µm, p=2.0X10-5), thicker 18 

photoreceptor inner segment layer (β= 0.04µm, p=0.001) and thinner RPE (β= -19 

0.13µm, p=0.002). Higher levels of PM2.5 absorbance and nitrogen dioxide (NO2) were 20 

associated with thicker photoreceptor inner and outer segment layers, and a thinner 21 

RPE layer. Higher levels of PM10 (PM with an aerodynamic diameter <10µm) was 22 

associated with thicker photoreceptor outer segment and thinner RPE, while higher 23 

exposure to NOx was associated with thinner photoreceptor synaptic region. 24 



Conclusion: Greater exposure to PM2.5 was associated with self-reported AMD, while 25 

PM2.5, PM2.5 absorbance, PM10, NO2 and NOx were all associated with  differences in 26 

retinal layer thickness.  27 



INTRODUCTION 28 

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness 29 

in adults 50 years and above in high income countries.1 Dry AMD is characterized by 30 

progressive dysfunction of the retinal pigment epithelium (RPE), photoreceptor loss 31 

and retinal degeneration.2 By 2020, the global projected number of people with AMD 32 

is approximately 200 million, increasing to nearly 300 million by 2040.3 Well-known 33 

risk factors include older age, smoking and genetic factors.1 A constellation of adverse 34 

factors (both risk genotypes, smoking and body mass index [BMI] ≥25) together 35 

increases the risk 19-fold.4 As smoking tobacco is a risk factor, it is plausible that 36 

ambient air pollution may also be a modifiable risk factor.  37 

 38 

Air pollution is one of the world’s most important environmental health risks. It is 39 

associated with increased mortality and morbidity.5 Exposure to air pollution is 40 

associated with pulmonary and cardiovascular disease6 and eye diseases including 41 

glaucoma7 and AMD.8 The mechanisms of air-pollution-induced health effects may 42 

likely involve oxidative stress and inflammation.9 The retina is one of the highest 43 

oxygen-consuming tissues in the human body and resides in an environment that is 44 

primed for the generation of reactive oxygen species (ROS) and resultant oxidative 45 

damage.10 Oxidative damage increases with age, resulting in retinal dysfunction and 46 

cell loss. Rapid, non-invasive optical coherence tomography (OCT) imaging of the 47 

retina is now commonly used by community opticians and hospital eye clinics and to 48 

assess retinal structural changes associated with AMD, and to guide its 49 

management.11  50 

 51 



If air pollution has an adverse effect on AMD risk, this may offer a new range of 52 

interventions for controlling this important condition. We examined data from UK 53 

Biobank, a large community-based cohort study. The aim of our study was to evaluate 54 

the relationship between ambient air pollution, AMD status and OCT imaging derived 55 

structural features of the disease: photoreceptor sub-layer and RPE layer thickness. 56 

 57 

METHODS 58 

Study population 59 

UK Biobank (UKBB) is a very large community-based cohort of 502,656 UK residents 60 

registered with the National Health Service (NHS) and aged 40–69 years at enrolment. 61 

Baseline examinations were carried out between 2006-2010 at 22 study assessment 62 

centres. The North West Multi-centre Research Ethics Committee approved the study 63 

in accordance with the principles of the Declaration of Helsinki. The overall study 64 

protocol (http://www.ukbiobank.ac.uk/resources/) and protocols for individual tests 65 

(http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi) are available online. Participants 66 

answered a wide-ranging touch-screen questionnaire covering demographic, 67 

socioeconomic, lifestyle, systemic and ocular diseases information. Definition of 68 

hypertension was based on self-reported. Physical measures included height and 69 

weight. Body mass index (BMI) was defined as weight divided by height squared. 70 

 71 

Ocular assessment 72 

Ocular assessment was introduced as an enhancement in 2009 for six assessment 73 

centers which are spread across the UK.12 Habitual visual acuity (VA) was measured 74 

http://www.ukbiobank.ac.uk/resources/
http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi


using a logarithm of the minimum angle of resolution (LogMAR) chart (Precision 75 

Vision, LaSalle, Illinois, USA) on a computer screen under standard illumination.12,13 76 

Refractive error was measured using an autorefractor (Tomey RC 5000, Nagoya, 77 

Japan).14 High resolution OCT imaging was performed using the Topcon 3D OCT 78 

1000 Mk2 (Topcon Inc, Oakland, NJ, USA) in a dark room, without pupillary dilation 79 

using the 3D macular volume scan (scan settings: 512 horizontal A scans per B scan; 80 

128 B scans in a 6 x 6 mm raster pattern). The Topcon Advanced Boundary 81 

Segmentation (TABS) Algorithm (Version 1.6.1.1) 15 was used to detect retinal layer 82 

boundaries and measure the thickness of the RPE16 and photoreceptor sub-layers. 83 

(Supplementary Figure 1). The TABS segmentation algorithm has been validated 84 

previously showing a high degree of precision and reproducibility compared to manual 85 

segmentation methods.15 Strict quality control was implemented to exclude images of 86 

poor quality as described in detail previously.17 OCT scans with image quality score 87 

(signal strength) < 45 were excluded. Several segmentation indicators were calculated 88 

to identify poor scan quality or segmentation failures. Participants with the poorest 89 

20% of images for each of these indicators were also excluded. These indicators 90 

included an inner limiting membrane (ILM) indicator, a validity count, and motion 91 

indicators. The ILM indicator was a measure of the minimum localized edge strength 92 

around the ILM boundary across the entire scan. It is useful for identifying blinks, scans 93 

that contain regions of severe signal fading, and segmentation errors. The validity 94 

count indicator is used to identify scans with a significant degree of clipping in the OCT 95 

scan’s z-axis dimension. The motion indicators use both the nerve fibre layer and the 96 

full retinal thicknesses, from which Pearson correlations and absolute differences 97 

between the thickness data from each set of consecutive B-scans are calculated. The 98 

lowest correlation and the highest absolute difference in a scan serve as the resulting 99 



indicator scores and identify blinks, eye motion artifacts, and segmentation failures. 100 

The image quality score and the aforementioned indicators usually are highly 101 

correlated.18 102 

Definition of AMD status 103 

Definition of AMD status was based on self-reported data. AMD status was determined 104 

as those who selected “macular degeneration” from a predefined list of eye disorders 105 

to the question “Has a doctor ever told you that you have any of the following problems 106 

with your eyes?” We also carried out a validation of self-reported AMD status by 107 

carrying out masked grading of the retinal OCT and fundus images for features of AMD 108 

based on the Beckman AMD classification  on a random subset of age-matched 109 

participants.19 110 

 111 

Estimates of air Pollution  112 

The air pollution estimates were provided by the Small Area Health Statistics Unit 113 

(http://www.sahsu.org/) as part of the BioSHaRE-EU Environmental Determinants of 114 

Health Project (http://www.bioshare.eu/), and were linked centrally to the assessment 115 

data by UK Biobank analysts 116 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/EnviroExposEst.pdf). Detailed estimates of 117 

air pollution parameters have been published.20 The annual average concentration of 118 

PM2.5 (aerodynamic diameter of less than 2.5µm), PMcoarse (aerodynamic diameter 119 

between 2.5 and 10µm, PM10 (aerodynamic diameter of less than 10µm), PM2.5 120 

absorbance (a measurement of the blackness of PM2.5 filter – a proxy for elemental or 121 

black carbon), nitrogen dioxide (NO2) and nitrogen oxides (NOx) were calculated 122 

centrally by the UK Biobank using a land use regression model developed by the 123 

http://www.sahsu.org/
http://www.bioshare.eu/
http://biobank.ctsu.ox.ac.uk/crystal/docs/EnviroExposEst.pdf


European Study of Cohorts for Air Pollution Effects (ESCAPE) project 124 

(http://www.escapeproject.eu/).21 By using the predictor variables obtained from the 125 

Geographic Information System such as traffic, land use, and topography, the land 126 

use regression models calculate the spatial variation of annual average air pollution 127 

concentration at participants’ residential addresses given at baseline visit. NO2 annual 128 

concentration data were available for four years (2005, 2006, 2007 and 2010), while 129 

PM10 data was available for 2007 and 2010. We averaged the values to obtain the 130 

mean estimate. All other particulate matter and nitrogen pollutants had the exposure 131 

data for a single year (2010).  132 

 133 

Inclusion and exclusion criteria 134 

A uniform set of exclusion criteria was applied in analysis of AMD status, 135 

photoreceptor layer and RPE thickness (Figure 1). We excluded data from: (1) 136 

participants who withdrew consent; or (2) had self-reported diabetes-related eye 137 

disease, eye injury resulting in vision loss or other serious eye conditions; high 138 

refractive error (< -6 diopters [D] or > +6D) or (3) participants who had poor OCT image 139 

scans using TABS software.16,22 These participants were excluded because of the 140 

well-recognized impact these factors have on retinal layer thickness.23  141 

 142 

Statistical analysis  143 

The present analysis was based on cross-sectional data collected at one point in time. 144 

For this analysis, if both eyes of a patient were eligible for inclusion in the analysis, 145 

one eye was randomly selected using STATA software (version 13, StataCorp LP, 146 

College Station, TX, USA). We examined the baseline characteristics of participants 147 

file:///C:/Sharon/Manuscripts/Pollution/Pollution%20and%20glaucoma/Association%20of%20air%20pollution%20and%20inner%20retina%20using%20OCT%20UK%20Biobank%20v2.docx


included for each specific outcome (self-reported AMD and retinal layers). Descriptive 148 

statistics for continuous variables are presented as mean (standard deviation [SD]), 149 

whereas categorical variables are presented as number (percentage). We examined 150 

the associations of each air pollutant (independent variables) with self-reported AMD 151 

(dependent variable) using logistic multivariable regression models, adjusted for  age, 152 

sex, race, Townsend deprivation index, BMI, smoking status, and refractive error. The 153 

associations of air pollutants with photoreceptor sub-layers and RPE thicknesses 154 

(dependent variables) were adjusted for the same variables, using linear multivariable 155 

regression models. The effect estimates represent the change in self-reported AMD 156 

and retinal layers variables per interquartile range (IQR) increment in air pollution. 157 

Statistical significance was set at p <0.05 for the outcomes self-reported AMD and 158 

RPE thickness. When photoreceptor sub-layer thickness was analyzed as an 159 

outcome, statistical significance was set at p<0.002 after Bonferroni correction as we 160 

examined six different types of air pollutants with four distinct photoreceptor related 161 

layers. In sensitivity analysis, we examined the associations of air pollutants with 162 

visually significant self-reported AMD. Visually significant self-reported AMD was 163 

defined as self-reported AMD participants with VA worse than LogMAR 0.3 (equivalent 164 

to Snellen 20/40), while non-visually significant self-reported AMD was defined as 165 

those with VA of LogMAR 0.3 or better. 166 

 167 

Results 168 

Of the 133,964 participants who completed ocular assessment, 24 participants 169 

withdrew their consent. Of the 133,940, we excluded 13,329 participants according to 170 

the exclusion criteria (Figure 1), leaving data on 120,611 participants. There were 171 



complete data (age, sex, race, Townsend deprivation index, BMI, smoking status, 172 

refractive error, self-reported AMD and air pollution measures) for 115,954 173 

participants. Of the 115,954, there was complete OCT imaging data on retinal layers 174 

for 68,088 participants. We excluded 15,486 participants according to the exclusion 175 

criteria for OCT. Hence, 52,062 participants were included in the analysis for 176 

examining RPE and photoreceptor layer thickness. This large number of exclusions 177 

for retinal layers was because of a later start for OCT imaging in UK Biobank, meaning 178 

a smaller number of people were scanned.  179 

 180 

The characteristics of participants with data on self-reported AMD and a sub-group 181 

with data on retinal layer are shown in Table 1. Both groups had similar 182 

sociodemographic and clinical characteristics. Compared to participants with self-183 

reported AMD, those without self-reported AMD were more likely non-white (9.1% vs 184 

7.0%; p=0.01), younger (56.8 years vs 61.6 years), more likely male (46.0% vs 40.9%), 185 

more likely to come from a more deprived area (less negative Townsend deprivation 186 

index) (-1.1 vs -1.4) and more likely to be smokers (9.7% vs 7.6%) (all p<0.001) 187 

(Supplementary Table 1). The distribution of ambient air pollution exposure of 188 

participants with data on self-reported AMD and a sub-group with retinal layer data are 189 

shown in Supplementary Table 2. The mean [SD] of the various retinal layers are as 190 

follows: total length of photoreceptor (142.1µm [8.2µm]), photoreceptor synaptic 191 

region (80.4µm [6.6µm]), photoreceptor inner segment (23.8µm [2.0µm]), 192 

photoreceptor outer segment (37.9µm [4.3µm]) and RPE (25.6µm [7.2µm]). Of the 193 

115,954 participants, 1,286 (1.1%) were diagnosed with AMD. Masked grading of OCT 194 

and retinal fundus images from 119 participants (60 with self-reported AMD and 59 195 

without self-reported AMD) showed that 75% of those with self-reported AMD had 196 



OCT features of AMD while only 12% of those without self-reported AMD had OCT 197 

features of AMD. 198 

 199 

Participants exposed to higher levels of PM2.5 concentration were 8% more likely to 200 

have self-reported AMD (OR 1.08, 95% CI 1.01 to 1.16; p=0.036, per IQR increase) 201 

(Table 2). Following Bonferroni correction, higher levels of PM2.5 and NOx were 202 

associated with thinner photoreceptor synaptic region (Table 3). In contrast, per IQR 203 

increase in PM2.5, PM2.5 absorbance and NO2 were associated with a thicker 204 

photoreceptor inner segment layer. Exposure to higher levels of PM2.5 absorbance, 205 

PM10 and NO2 were associated with a thicker photoreceptor outer segment layer 206 

(Table 3). Higher concentration of PM2.5, PM2.5 absorbance, PM10 and NO2 were 207 

associated with a thinner RPE layer (Table 4). In addition, we examined the 208 

association of smoking status with self-reported AMD. Among participants with self-209 

reported AMD, 510/1,286 (39.7%) and 101/1,286 (7.9%) were previous and current 210 

smokers, respectively. After adjusting for age, sex, race, Townsend deprivation index, 211 

BMI, SER and PM2.5, compared to never smoking, previous and current smokers were 212 

not associated with self-reported AMD (p>0.05). We have additionally adjusted for 213 

hypertension in the multivariable models in view of its relationship with AMD24 and air 214 

pollution.25 The associations of air pollutants with self-reported AMD, photoreceptor 215 

sub-layers and RPE thickness did not differ after additional adjustment for 216 

hypertension. Sensitivity analysis showed that participants with higher exposure to 217 

PM2.5 was marginally associated with visually significant self-reported AMD (n=167) 218 

(OR 1.18, 95% CI 0.98 to 1.41; p=0.08, per IQR increase) compared to participants 219 

with either no self-reported AMD or those with non-visually significant self-reported 220 

AMD, although it was not statistically significant. None of the other air pollutants were 221 



statistically significant with visually significant self-reported AMD. In the sensitivity 222 

analysis, we have also additionally adjusted for smoking pack years and there was a 223 

borderline significant association between PM2.5 and self-reported AMD (OR 1.07, 224 

95% CI 0.99 to 1.16; p=0.07, per IQR increase). 225 

 226 

Discussion 227 

In this large study of UK Biobank participants, we have identified novel associations 228 

between ambient outdoor air pollutant levels at participants’ residential addresses with 229 

self-reported AMD, and also with retinal structure (including thickness of photoreceptor 230 

and RPE layers on OCT imaging). 231 

 232 

Our results showed that greater ambient PM2.5 exposure was associated with 233 

increased odds of AMD and corresponding retinal thicknesses (specifically 234 

photoreceptor sub-layer and RPE). No such significant associations were observed 235 

for PMcoarse. This may be explained by differences in the sites of deposition in the 236 

respiratory tract and the sources and chemical composition for these different-sized 237 

PM.26 PMcoarse are primarily produced from mechanical grinding, windblown dust, and 238 

agricultural activities, and mainly deposit in the upper and larger airways. In contrast, 239 

PM2.5 particles are mainly from combustion process and are able to reach the smaller 240 

airways and alveoli and are transmitted to the blood,27 causing a cascade of 241 

physiological events associated with morbidity and mortality.5,28 The deeper 242 

penetration of PM2.5 may account for the stronger associations of PM2.5 with self-243 

reported AMD and structural biomarkers observed in our study.  244 

 245 



NO2 is a product of combustion, primarily from traffic- and industrial sources, and one 246 

of the most notable ambient air pollutants associated with health effects.29,30 Similarly, 247 

NOx is produced from the reaction of nitrogen and oxygen gases in the air during 248 

combustion.31 NOx contributes to the formation of fine particles and ground level 249 

ozone. PM2.5 absorbance, a measurement of the blackness of PM2.5 filter – a proxy 250 

for elemental or black carbon, is also an indicator of combustion particles. Since the 251 

major source of NO2, NOx and PM2.5 absorbance is from combustion particles, it may 252 

explain the similar associations observed between these air pollutants with the retinal 253 

structures. A recent longitudinal population-based study using data from the Taiwan 254 

National Health Insurance Program between years 2000-2010 included 39,819 AMD-255 

free participants, with 1442 participants developing AMD during the 11-year follow up. 256 

AMD status was defined via International Classification of Diseases, Ninth Revision, 257 

Clinical Modification (ICD-9-CM). Compared to participants in the lowest exposure 258 

quartile, those in the highest quartile of NO2 and carbon monoxide (CO) had increased 259 

risk of self-reported AMD (NO2: HR=1.91, 95% CI 1.64-2.23, p<0.001 and CO: 260 

HR=1.84, 95% CI 1.50-2.15, p<0.001, respectively).8 The difference in findings 261 

between ours and the Taiwanese study may be related to the study population, 262 

definition and proportion of AMD cases, type and method of estimating the exposure 263 

of air pollutants and type of covariates adjusted in the multivariable models. Compared 264 

to our study, the Taiwan study included slightly older participants (mean= 62 years vs 265 

56 years), had a slightly higher proportion of AMD (3.6% vs 1.1%) and estimated a 266 

smaller number of air pollutants (two air pollutants including NO2 and CO vs six air 267 

pollutants). In addition, the participant’s living area was defined based on the treatment 268 

venue for acute upper respiratory tract infection in the Taiwan study. The effect of 269 



pollution on retinal structure associated with AMD were not examined in the Taiwan 270 

study. 271 

 272 

Ambient air pollution could plausibly be associated with AMD through oxidative stress 273 

or inflammation. Oxidative damage induces many adverse biological effects including 274 

lipid, protein, deoxyribonucleic acid (DNA) oxidation, initiation of proinflammatory 275 

processes,28 and RPE apoptosis.32 Atrophic or “dry” AMD, also known as geographic 276 

atrophy is by degeneration of RPE cells, followed by loss of photoreceptor cells and 277 

choriocapillaris.33 Since the RPE is involved in the turnover of photoreceptor outer 278 

segments, RPE dysfunction may lead to thickening of photoreceptor outer segments.  279 

 280 

Our results showed that PM2.5 and NOx were associated with a thinner photoreceptor 281 

synaptic region. This is in agreement with a reduction in the number of photoreceptor 282 

synaptic terminals overlying drusen in AMD.34 In contrast, PM2.5, PM2.5 absorbance 283 

and NO2 were associated with thicker photoreceptor inner segment, while PM2.5 284 

absorbance, NO2 and PM10 were associated with thicker photoreceptor outer segment. 285 

As mitochondria are prominent in photoreceptor inner segments, oxidative stress may 286 

induce mitochondrial swelling,35 leading to a slight thickening in the photoreceptor 287 

inner segment. Abnormalities in the photoreceptor inner and outer segments have also 288 

been reported in retinal toxicity associated with hydroxychloroquine.36 Our study did 289 

not show an association between air pollution and average total photoreceptor layer 290 

thickness, which may be explained by thinning of the synaptic region cancelling out 291 

the thickening of the inner/outer segments. In a study by Schuman et al., although the 292 

authors reported decreased photoreceptor thickness over drusen, there was a lack of 293 



widespread photoreceptor loss.37 Hence, it is possible that there was focal loss of the 294 

photoreceptor thickness in our study but an overall loss of photoreceptor layer was not 295 

observed.  296 

 297 

Cigarette smoking may also contribute to particulate matter air pollution.38 Because of 298 

the previously recorded, very strong link between AMD and smoking,39 and the 299 

plausible link between smoking and particulate air pollution, we examined the 300 

association between smoking status of participants with self-reported AMD and did not 301 

observe a significant association. This suggests that the relationship between PM2.5 302 

and self-reported AMD is not mediated by cigarette smoke. The prevalence of late 303 

AMD standardized to the UK population aged 50 years or more and 65 years or more 304 

was 2.4% and 4.8%, respectively. Prevalence of geographic atrophy was 1.3% and 305 

2.5% for the respective age groups.40 The European Eye Epidemiology (E3) 306 

Consortium performed a meta-analysis and showed that overall prevalence was 307 

13.2% for early AMD and 3.0% for late AMD for people aged 70 years or older.41 308 

Compared to the E3 Consortium, participants in UK Biobank are slightly younger and 309 

include a healthier population than the rest of UK population.42 The self-reported AMD 310 

cases in our study may represent AMD in the early stages. We compared the visual 311 

acuity between participants with and without self-reported AMD. Among those with 312 

self-reported AMD, there was a higher proportion of participants with visual impairment 313 

(VA worse than LogMAR 0.3) compared to those without visual impairment (1.8% vs 314 

1.0%; p<0.001). The proportion of self-reported AMD (1.1%) in our study may have 315 

been underestimated and it is likely that the risk estimates may have been 316 

underestimated.  317 



 318 

In addition to the increased risk of AMD associated with higher exposure to air pollution 319 

in the Taiwanese study, other studies in the UK Biobank43 and China7 have reported 320 

increased odds of glaucoma with higher exposure to PM2.5. In the UK Biobank study 321 

of 111,370 participants, greater exposure to PM2.5 was associated with both self-322 

reported glaucoma and retinal structures associated with the disease.43 Wang et al. 323 

reported that higher average levels of PM2.5 was associated with higher burden of 324 

glaucoma disability, using national level data.7 The New England-based Normative 325 

Aging Study showed an association between black carbon exposure with IOP that was 326 

greater in individuals with a high oxidative stress allelic score.44 Taken together, our 327 

results support published findings of increased risk of eye diseases or association with 328 

retinal structures in participants with higher exposure to ambient air pollution. As 329 

certain groups of individuals including people with diabetes mellitus45 or 330 

hypertension24 may have increased risk of AMD, it will be useful to explore if these 331 

groups of individuals are at greater risk of eye disease when exposed to air pollution 332 

in future analysis.  333 

 334 

Strength of this study include its large sample size and the highly accurate and 335 

reproducible measurements of the OCT retinal thickness. Limitations of the study 336 

include the UK Biobank is a volunteer cohort, and participants are likely healthier than 337 

the general population. Outdoor air pollution was estimated using the participants’ 338 

home address and do not explain all variation in indoor concentrations. As most 339 

individuals spend a large amount of time indoors, individual exposure to all forms of 340 

air pollution may differ from that indicated by the ambient outdoor figures. This is most 341 



likely to be non-differential between cases and controls and will therefore skew the 342 

associations towards the null. Another limitation of this analysis was the use of self-343 

report as the sole determinant of AMD status rather than incorporating a qualitative 344 

analysis of the colour fundus photographs and SD-OCT imaging, though we did carry 345 

out masked grading of retinal imaging in a proportion of participants. This may result 346 

in non-differential misclassification bias and most likely bias the estimates towards the 347 

null. Although we applied strict automated quality control criteria including a manual 348 

check of SD-OCT scans with high and low outlying layer thickness,17 it was not 349 

practical to manually check all OCT scans for segmentation accuracy. Selection bias 350 

may exist: out of the 115,954 participants with data on self-reported AMD, 52,602 351 

participants had measurements on outer retinal layers. However, the baseline 352 

characteristics (Table 1) across the two AMD-associated outcome groups appear to 353 

be similar. The cross-sectional design of our study limits the ability to determine the 354 

causality between ambient air pollution and AMD-associated outcomes. Further 355 

research is needed to probe the relationship between prior air pollution exposure and 356 

risk of incident disease.  357 

 358 

In this large study of an older middle-aged UK population, higher PM2.5 exposure was 359 

associated with a higher risk of self-reported AMD, while all pollutants except PMcoarse 360 

were associated with changes in retinal structure (in either photoreceptor sublayer 361 

and/or RPE layer thickness). Overall, our findings suggest that ambient air pollution, 362 

especially fine PM or those of combustion-related particles, may affect AMD risk. It is 363 

possible that the structural features observed may be unrelated to AMD, but 364 

associated with pollution induced retinal toxicity. However, the direction of the 365 

relationships between air pollution and both AMD and associated retinal layer 366 



thicknesses indicate higher exposure to air pollution may make the cells more 367 

vulnerable and increase the risk of AMD. Our findings add to the growing evidence of 368 

the damaging effects of ambient air pollution, even in the setting of relative low 369 

exposure of ambient air pollution. As UK Biobank is a very large prospective cohort, 370 

we anticipate being able to explore the effect of particulate matter on future risk of 371 

AMD. Further studies examining both outdoor and indoor ambient air pollution 372 

estimates on AMD and outer retinal structures may help to substantiate our findings 373 

and understand the implications for retinal disease associated with ageing. If our 374 

findings are replicated, this would support the view that air pollution is an important 375 

modifiable risk factor for AMD.376 



Table 1. Demographic, systemic and ocular characteristics of participants with availability 
of data on self-reported AMD and retinal layers.  

  

Participants with data on 
self-reported AMD 

(N=115,954)  

Participants with data on 
retinal layers (N=52,602) 

Sociodemographic factors    
Age 56.8 (8.0)  56.4 (8.1) 

Sex    
   Men 53,218 (46%)  24,753 (47%) 

   Women 62,736 (54%)  27,849 (53%) 

Race  
  

   White 105,465 (91%)  48,475 (92%) 

   Non-white 10,489 (9%)  4,127 (8%) 

Townsend deprivation index -1.1 (3.0)  -1.2 (2.9) 

Clinical factors  
  

Body mass index (kg/m2) 27.3 (4.5)  27.2 (4.4) 

Smoking status     
   Never 64,554 (56%)  29,238 (56%) 

   Previous 40,224 (35%)  18,421 (35%) 

   Current 11,176 (10%)  4,943 (9%) 

Spherical equivalent (diopters) -0.1 (2.1)   0.0 (2.0) 

Numbers are mean (SD) or no. (%), unless otherwise stated.  
AMD= Age-related macular degeneration, PM2.5= Particular matter (aerodynamic diameter of less than 2.5µm), PM2.5 
absorbance= Particulate matter (a measurement of the blackness of PM2.5 filter – a proxy for elemental or black 
carbon), PMcoarse = Particulate matter (aerodynamic diameter between 2.5 and 10µm, PM10= Particulate matter 
(aerodynamic diameter of less than 10µm), NO2= Nitrogen dioxide, NOx= Nitrogen oxide 
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Table 2: Association of ambient air pollution with self-reported age-relation 
macular degeneration (AMD) 

    Multivariate regression   

  OR (95% CI) P-value 

Air pollution factors    

   PM2.5 (µg/m3) 1.08 (1.01, 1.16) 0.036 
   PM2.5 absorbance 
(µg/m3) 1.00 (0.93, 1.07) 0.95 

   PM2.5-10 (µg/m3) 1.01 (0.96, 1.07) 0.58 

   PM10 (µg/m3) 0.94 (0.86, 1.02) 0.11 

   NO2 (µg/m3) 0.99 (0.91, 1.08) 0.80 

   NOX (µg/m3) 1.03 (0.97, 1.09) 0.34 
The odds ratio represents per IQR increase in exposure variable.  
Values are adjusted for age, sex, race, Townsend deprivation index, body mass index, smoking status and 
spherical equivalent refraction 
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Table 3: Association of ambient air pollution with thickness of the photoreceptor sub-layers 

  Multivariate regression 

   
Total photoreceptor 

 
Photoreceptor synaptic region  

 
Photoreceptor inner segment  

 
Photoreceptor outer segment 

   
β (95% CI) P-value 

 
β (95% CI) P-value 

 
β (95% CI) P-value 

 
β (95% CI) P-value 

Air pollution factors 
 

  
             

   PM2.5 (µg/m3) 
 -0.07 (-0.16, 0.02) 0.15  -0.16 (-0.23, -0.09) 2.0 X 10-5  0.04 (0.02, 0.06) 0.001  0.05 (0.003, 0.10) 0.04 

   PM2.5 absorbance (µg/m3) 
 0.06 (-0.03, 0.14) 0.22  -0.10 (-0.17, -0.03) 0.004  0.04 (0.02, 0.06) 2.0 X 10-4  0.12 (0.07, 0.17) 8.7 X 10-7 

   PMcoarse (µg/m3) 
 -0.04 (-0.11, 0.02) 0.18  -0.03 (-0.08, 0.02) 0.21  -0.008 (-0.02, 0.007) 0.32  -0.003 (-0.04, 0.03) 0.85 

   PM10 (µg/m3) 
 0.04 (-0.06, 0.14) 0.47  -0.05 (-0.13, 0.03) 0.24  -0.002 (-0.01, 0.007) 0.63  0.09 (0.04, 0.15) 0.001 

   NO2 (µg/m3) 
 0.15 (0.04, 0.26) 0.004  -0.06 (-0.14, 0.03) 0.19  0.04 (0.02, 0.07) 0.001  0.17 (0.11, 0.22) 1.1 X 10-8 

   NOX (µg/m3) 
  -0.02 (-0.09, 0.06) 0.63   -0.10 (-0.16, -0.04) 0.001   0.03 (0.008, 0.04) 0.004   0.05 (0.01, 0.09) 0.009 

The beta coefficients represent per IQR increase in exposure variable. 
Values are adjusted for age, sex, race, Townsend deprivation index, body mass index, smoking status and refractive error. 
Statistical significance was set at p<0.002 after Bonferroni correction. 
PM2.5= PM<2.5µg/m3; PM2.5 ab= (PM2.5 absorbance) a measurement of the blackness of PM2.5 filter - a proxy for elemental or black carbon; PMcoarse= PM between 2.5 and 10µg/m3; PM10= PM <10µg/m3; NO2= Nitrogen dioxide; NOx= 
Nitrogen oxide 
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Table 4: Association of ambient air pollution with thickness of the retinal pigment epithelium 
layer 

 Multivariate regression 

  RPE 

  β (95% CI) P-value 

Air pollution factors    
   PM2.5 (µg/m3) -0.13 (-0.21, -0.05) 0.002 

   PM2.5 absorbance (µg/m3) -0.09 (-0.17, -0.008) 0.03 

   PMcoarse (µg/m3) -0.02 (-0.08, 0.04) 0.50 

   PM10 (µg/m3) -0.12 (-0.21, -0.02) 0.01 

   NO2 (µg/m3) -0.12 (-0.21, -0.02) 0.01 

   NOX (µg/m3) -0.05 (-0.12, 0.02) 0.17 
The beta coefficients represent per IQR increase in exposure variable. 
Values are adjusted for age, sex, race, Townsend deprivation index, body mass index, smoking status and refractive error. 
Statistical significance was set at p<0.05. 
RPE= Retinal pigment epithelium; PM2.5= Particulate matter less than 2.5 µm in aerodynamic diameter; PM2.5 ab= (PM2.5 
absorbance) a measurement of the blackness of PM2.5 filter - a proxy for elemental or black carbon; PMcoarse= Particulate matter 
between 2.5 µm to 10 µm in aerodynamic diameter; PM10= Particulate matter less than 10 µm in aerodynamic diameter; NO2= 
Nitrogen dioxide; NOx= Nitrogen oxide 
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Supplementary Figure 1. Spectral-domain optical coherence tomography images with schematic showing representative of total 

photoreceptor (Inner nuclear layer–Retinal pigment epithelium); photoreceptor synaptic region (Inner nuclear layer- External limiting 

membrane); photoreceptor inner segment (External limiting membrane-Inner and outer segments); photoreceptor outer segment 

(Inner and outer segments-Retinal pigment epithelium) and retinal pigment epithelium (Retinal pigment epithelium-Basement 

membrane). 

 

(Inner and outer segments) 

(External limiting membrane) 

(Retinal pigment epithelium) 

(Inner nuclear layer) 

(Basement membrane) 



Supplementary Table 1. Comparison of characteristics between participants with self-reported 
AMD and without self-reported AMD   

  
No self-reported AMD 

(N=114,668)  

Self-reported AMD 
(N=1,286) P-value 

Sociodemographic factors     

Age 56.8 (8.1)  61.6 (5.9) <0.001 

Sex     

   Men 52,692 (46.0%)  526 (40.9%)  
   Women 61,976 (54.0%)  760 (59.1%) <0.001 

Race  
   

   White 104,269 (90.9%)  1,196 (93.0%)  
   Non-white 10,399 (9.1%)  90 (7.0%) 0.01 

Townsend deprivation index -1.1 (3.0)  -1.5 (2.9) <0.001 

Clinical factors  
   

Body mass index (kg/m2) 27.2 (4.5)  27.4 (4.3) 0.18 

Smoking status      

   Never 63,879 (55.7%)  675 (52.5%)  
   Previous 39,714 (34.6%)  510 (39.7%)  
   Current 11,075 (9.7%)  101 (7.8%) <0.001 

Spherical equivalent (diopters) -0.08 (2.1)   -0.03 (2.3) 0.40 
AMD status was classified based on self-reporting and hospital episode statistics data (ICD10).   
Numbers are mean (SD) for continuous variables and no. (%) for categorical variables.    
AMD= Age-related macular degeneration     

 



Supplementary Table 2. Distribution of PM2.5, PMcoarse, PM10, NO2 and NOX of participants with 
availability of data on self-reported AMD and retinal layers 

 Self-reported AMD  Retinal layers  

 (N=115,954)  (N=52,602) 

  Median (IQR) Range   Median (IQR) Range 

PM2.5 (µg/m3) 9.91 (1.07) (8.17, 19.69)  9.88 (1.12) (8.17, 19.69) 

      

PM2.5 absorbance (µg/m3) 1.22 (0.33) (0.83, 4.05)  1.22 (0.33) (0.83, 3.71) 

      

PMcoarse (µg/m3) 6.19 (0.75) (5.57, 12.82)  6.21 (0.77) (5.57, 11.30) 

      

PM10 (µg/m3) 19.37 (2.67) (13.04, 29.67)  19.33 (2.77) (13.38, 29.30) 

      

Nitrogen dioxide (NO2) (µg/m3) 31.75 (12.08) (9.44, 102.75)  31.25 (12.63) (9.44, 86.65) 

      

Nitrogen oxide (NOX) (µg/m3) 
43.66 (14.38) (19.74, 263.96)   43.17 (14.97) 

(19.74, 
263.96) 

AMD = Age-related macular degeneration, IQR = Interquartile range, PM2.5= Particular matter (aerodynamic diameter of less than 2.5µm), PM2.5 
absorbance= Particulate matter (a measurement of the blackness of PM2.5 filter – a proxy for elemental or black carbon), PMcoarse = Particulate 
matter (aerodynamic diameter between 2.5 and 10µm, PM10= Particulate matter (aerodynamic diameter of less than 10µm), NO2= Nitrogen 
dioxide, NOx= Nitrogen oxide 
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